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Abstract

The A* algorithm is commonly used to solve NP-hard combinatorial optimization
problems. When provided with an accurate heuristic function, A* can solve such
problems in time complexity that is polynomial in the solution depth. This fact
implies that accurate heuristic approximation for many such problems is also NP-
hard. In this context, we examine a line of recent publications that propose the use
of deep neural networks for heuristic approximation. We assert that these works
suffer from inherent scalability limitations since — under the assumption that
P̸=NP — such approaches result in either (a) network sizes that scale exponentially
in the instance sizes or (b) heuristic approximation accuracy that scales inversely
with the instance sizes. Our claim is supported by experimental results for three
representative NP-hard search problems that show that fitting deep neural networks
accurately to heuristic functions necessitates network sizes that scale exponentially
with the instance size.

1 Introduction

Principal computational problems such as planning and scheduling [Wilkins, 2014], routing [Toth
and Vigo, 2002], and combinatorial optimization [Papadimitriou and Steiglitz, 1998] are known
to be NP-Hard (NP-H) in their general form. Consequently, there are no known polynomial-time
algorithms for solving them. Moreover, for many of these problems (belonging to the NP-Complete
class), it is unknown if a polynomial-time solver is attainable. This complexity gap, known as the P
vs. NP problem [Cook, 2003], remains one of the biggest open CS questions to date (2022).

Recognizing the challenges/unattainability of polynomial complexity solvers, many researchers are
focusing on reducing the exponential complexity of known solvers using heuristic functions [Pearl,
1984]. One prominent example of an optimization algorithm that utilizes such heuristics is the A*
algorithm [Hart et al., 1968]. A line of publications [Goldenberg et al., 2014, Felner et al., 2018]
exhibited this algorithm’s ability to achieve exponential reductions in computational time when paired
with an informative heuristic function. Moreover, it is easy to show that given a sufficiently accurate
heuristic function, A* can solve NP-H problems in complexity that is polynomial in the solution
length and the branching factor. This fact has two major implications that are discussed in this paper.

1. Attaining a sufficiently accurate heuristic function could enable scalable solutions to a large
class of fundamental CS problems.

I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.



2. Querying such a sufficiently accurate heuristic function is NP-H.

Our work expands upon the initial discussion on scalability of heuristic approximations by Pendurkar
et al. [2022]. We show that training a heuristic function to arbitrary precision is indeed attainable
using common machine learning approaches for problems that can be reduced to a discrete search
space. This fact along with implication 1 motivates a line of publications [McAleer et al., 2018,
Agostinelli et al., 2019, 2021b] to propose methods for accurately approximating heuristic values
using universal function approximators. However, our paper asserts that, given implication 2, these
methods are not ‘scalable’ in nature. That is, the complexity of such heuristic approximators does
not scale polynomially with increasing problem sizes. Such a formal discussion can help place
previous publications in an appropriate context. Namely by showing that the applicability of heuristic
approximations is inherently limited due to scalability barriers. Our claims are supported by rigorous
experiments examining the minimal fully connected neural network that is required to fit true heuristic
values of three NP-H problems to various levels of precision.1

2 Preliminaries

The class of problems that are solvable in polynomial time by a deterministic Turing machine is
denoted by P. NP is the class of problems for which a solution can be verified in polynomial time.
As a result, these problems are solvable in polynomial time by a non-deterministic Turing machine.
NP-Hard (NP-H) is a class of problems to which every problem in NP can be reduced in polynomial
time. Finally, NP-Complete (NP-C) is a class of problems that belong to both NP and NP-H. As a
result, proving that any problem in NP-C is also in P implies that P=NP.

A large set of NP-H problems can be reduced to a least cost path problem over an appropriate graph,
G = {V,E}2. In such cases, each edge (e ∈ E) is affiliated with a non-negative cost (c : E 7→ R+).
Consequently, the least cost path is defined as p = argminE′⊆E

∑
e∈E′ c(e) subject to E′ is an

ordered set of edges leading from a given start vertex (vs ∈ V ) to a defined goal vertex (vg ∈ V ).
The resulting path (p) is a solution to the original NP-H problem. Despite this, the least cost path
problem is not NP-H as, for all known reductions from an NP-H problem, the size of the resulting
graph scales exponentially with the problem instance size, thus the reduction is not of polynomial
complexity.

The resulting least cost path problems are commonly solved using the A* algorithm. A* searches for
the least cost path over the graph without constructing the full graph explicitly. The cost function
g : V 7→ R+ estimates the cumulative cost from the start vertex to any vertex v ∈ V . A* is also
guided by a heuristic function, h : V 7→ R, that estimates the least cost path from any vertex in the
search graph, v ∈ V , to a goal vertex. The vertices of the search graph are denoted states hereafter,
and the set of all states is denoted by S. A* was shown to expand the minimal number of vertices
that is required for finding and proving an optimal (least cost) solution [Pearl, 1984].3

Given an accurate heuristic function, that is, ∀s ∈ S, h(s) = h∗(s), where h∗(s) is the true minimal
cost between s and a goal state, A* would expand only the states along the optimal (least cost) path.4
That is, the complexity of solving the problem is polynomial in the solution depth and branching factor
(the maximum degree of the vertices in the search graph). While current, domain-specific heuristic
functions were shown to result in orders of magnitude speedups [Helmert and Mattmüller, 2008] for
NP-H problems, they lack sufficient accuracy to allow polynomial time complexity. Attempting to
close this gap, a recent body of work suggested fitting a universal function approximator [Higgins,
2021], e.g., deep neural networks, to h∗.

2.1 Related Work

One of the initial works on approximating heuristic learning was done by Arfaee et al. [2010]
which we refer as Boostrap Learning Heuristic (BLH). They proposed an iterative method (‘boostrap

1Code is available at https://github.com/Pi-Star-Lab/unscalable-heuristic-approximator
2The reduction function is specific to each domain [Bulteau et al., 2015, Cormen et al., 2009, Gupta and Nau,

1992].
3This claim assumes an admissible and consistent heuristic function [Pearl, 1984].
4This claim assumes that f -values ties are broken in favor of higher g values
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learning’) that starts with a known baseline (usually very weak) heuristic approximator and performs a
search with A* while storing the expanded states along with their cost to goal (h∗). Recently, McAleer
et al. [2018] proposed to apply reinforcement learning (RL) algorithms on top of a Monte Carlo
Tree Search (MCTS) to solve the Rubik’s Cube domain. They learn a value function (negative of
the heuristic function) using temporal difference learning (bootstrapping), with a neural network as
the value function approximator, and MCTS as the search algorithm. Following, Agostinelli et al.
[2019] presented the DeepCubeA algorithm which learns a heuristic function similar to [McAleer
et al., 2018], but replaces MCTS with weighted A* [Ebendt and Drechsler, 2009] and uses a distinct
state distribution to perform bellman updates. DeepCubeA presents state-of-the-art results on various
NP-H domains in terms of solution quality and run time complexity (number of generated states).

Another line of work focused on learning a policy [Orseau et al., 2018, Orseau and Lelis, 2021], where
a policy is a function that maps states (vertices in the search graph) to operators (edges in the search
graph). The optimal policy is the one returning the edge that follows the least cost path to the goal
state. Orseau et al. [2018] proposed using a policy-guided search algorithm and provided theoretical
guarantees on the number of states expanded. Policy-guided Heuristic Search (PHS) [Orseau and
Lelis, 2021] uses both a heuristic function along with a policy for better performance.

On the other hand, there are various universal approximators that can approximate any well behaved
function to arbitrary precision. A 2-layer feedforward neural network, with non-polynomial activation
function and sufficient number of neurons in the intermediate hidden layer is one such universal
function approximator [Cybenko, 1989, Hornik et al., 1989, Pinkus, 1999]. Another universal function
approximator, is a neural network with non-affine continuous activation function, and a fixed number
of neurons per layer, but with sufficient number of such layers [Kidger and Lyons, 2020].

3 The feasibility of approximating h∗

At first glance, fitting a universal function approximator to h∗ seems promising given Corollary 1.
Corollary 1. A universal function approximator can fit h∗ : S 7→ R to arbitrary precision assuming
a discrete state space S with a bounded heuristic range h∗(S).

Corollary 1 is an extension of universal function approximation theorem for discrete input (state)
space with a bounded function (h∗) range. Thus, Corollary 1 shows that it is possible to fit a universal
function approximator (like a two layer neural network) to h∗ sufficiently accurate such that the A*
algorithm would run in time complexity that is polynomial in the optimal solution depth (number
of edges) and branching factor. This is because, A* would expand only the states along an optimal
path while generating all their neighbors. We defer the proof to Appendix B.1. Despite this positive
result, Lemma 1 shows that querying such an approximator for a large set of NP-C problems is, in
fact, NP-H. Note that previous work [Bruck and Goodman, 1988] already proved that querying a
neural network that outputs an exact solution to a NP-H problem is itself NP-H. We extend this result
to heuristic approximation. We first define ϵ Bounded NP-Complete problems.
Definition 1. A problem belongs to the set of ϵ Bounded NP-C problems (ϵBNP-C) iff:

1. It is an NP-C decision problem defined by

• a discrete and bounded state space S.
• a start state, s ∈ S.
• a set of solutions per start state (potentially empty), solutions(s).
• a cost function cost : solutions(s) 7→ R.
• a target solution cost bound, k.

2. It answers the following question: is there solution l ∈ solutions(s) such that cost(l) ≤ k.

3. For any s ∈ S and any two solutions l1, l2 ∈ solutions(s), it must hold that |cost(l1) −
cost(l2)| = 0 OR |cost(l1)− cost(l2)| ≥ ϵ.

Lemma 1. Calling (querying) a function approximator ĥ : S 7→ R, satisfying maxs∈S |h∗(s) −
ĥ(s)| < ϵ/2 is NP-H when considering S spanned by any ϵBNP-C problem.

The proof is in Appendix B.2. Lemma 1 implies that learning accurate heuristic values for state
spaces spanned by ϵBNP-C problems is not scalable in nature. For example, consider fitting h∗ to ϵ/2
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precision using an artificial neural network. Querying such a network using forward propagation has
a complexity of O(n2l) where n > 1 is the maximal layer width and l ≥ 1 is the number of hidden
layers. That is, the querying complexity grows polynomialy with l and n. As a result, P ̸=NP and
Lemma 1 necessitate that either l, n, or both, grow non polynomialy with an ϵBNP-C instance size.

Further, [Helmert and Mattmüller, 2008] show that a precision of ϵ/2 is required to avoid expansion
of exponential number of nodes by the A* algorithm.

4 Experiments

The experimental study is designed to address the following questions.

1. How does the complexity of a universal function approximator, ĥ ≈ h∗, scale with a state
space spanned by an ϵBNP-C problem?

(a) Does such an approximator suffer from ineffective learning due to memorization of the
training data (overfitting)?

2. Is the approximator scalability trend sensitive to variation in the target approximation
precision?

4.1 Universal Function Approximators

We use the two artificial neural network structures as universal function approximators. First, a
2-layer neural network (1 hidden layer), with Rectified Linear Unit (ReLU) [Nair and Hinton, 2010]
as the activation function.5 We refer to this approximator as ‘fixed depth’ where the number of
neurons in the hidden layer may vary, but the number of layers is fixed. Second, we use a neural
network with a fixed width per layer, but allow any number of layers. As in the previous setting,
we use ReLU as the activation function for each layer. Similarly, we refer to this structure as ‘fixed
width’. We used residual connections [He et al., 2016]6 and batch normalization [Ioffe and Szegedy,
2015] to mitigate issues such as vanishing gradients that were observed during optimization. Our
fixed width architecture follows that of Agostinelli et al. [2019], with two differences. First, we
reduce the number of neurons per layer to allow a more gradual increase of the number of parameters
following addition of layers. Following theoretical constraints on the minimal layer size presented
by Kidger and Lyons [2020], the size of each layer was set as the number of input dimensions + 3.
Second, we just have 1 layer before the residual blocks (as opposed to 2) for an odd number of hidden
layers. This enables us to have an odd number of layers. Doing so also contributes to a more gradual
increase in the number of parameters.

Following previous work [Arfaee et al., 2010, Agostinelli et al., 2019, 2021b] we only consider the
‘fixed depth’ and ‘fixed width’ structures. Other variants of neural networks, like convolutional neural
networks used by Orseau and Lelis [2021], are not considered as they make specific assumptions
regarding the state feature space (e.g., spatial locality) which do not hold in the domains used in our
experiments.

4.2 Setup

Fitting Criterion: For a model to be considered as ‘fitting’, we train the model on a fixed size
dataset until a certain number of epochs and check whether it follows a ‘fitting criterion’. For the
experiments, we use MSE as the fitting criterion and set a maximum of 300 epochs to achieve it. We
use different threshold values (T ) to relax the fitting criterion.

Loss Function: We use MSE as the loss function throughout the experiments. Note, this is a
relaxation of the strict requirements presented in Section 3, so that the experiments are more in line
with [Agostinelli et al., 2019, 2021a,b, Orseau and Lelis, 2021].

Datasets: For all domains, the training set (D) included 106 (a million) samples. For all cases, the
test set was set to 2× 105 random samples.

5ReLU activation function satisfies the properties required by the universal function approximation theo-
rem [Sonoda and Murata, 2017].

6Residual networks were shown to be universal function approximators [Lin and Jegelka, 2018].

4



Optimization: We optimize the neural networks using the Adam optimizer [Kingma and Ba, 2015].
Note that Adam is not guaranteed to converge on the global optimum. However, it is widely used
in the literature [Agostinelli et al., 2019, Orseau and Lelis, 2021] as it usually leads to near optimal
solutions in practice. To mitigate the impact of local minimas, we train each neural network 5 times
and report the lowest loss. It is important to note that, in our setting, a model failing to fit D does not
necessarily mean that it is unable to fit D as no guarantees are provided regarding convergence to the
global optimum.

Domains: We choose domains that (a) have a state space spanned by an ϵBNP-C problem and (b) in
which the number of states grows relatively slowly to have comparison over a larger range of instance
sizes. Following these reasons, we choose Pancake sorting, Travelling salesman problem (TSP), and
Blocks world (BW). Details about the domains and ϵBNP-C equivalency are in Appendix C.2.

Note that several effective methods were presented for pruning the state space for the domains
considered [Valenzano and Yang, 2017, Fitzpatrick et al., 2021, Slaney and Thiébaux, 2001]. However,
we avoid using such methods as our experiments are designed to study the scalability of heuristic
approximation and not present/analyze a state-of-the-art method.

4.3 Results

4.3.1 Scaling neural networks for increasing problem size:

To address Experiment Question 1, we report the smallest number of parameters (weights and biases)
that are able to fit the dataset for increasing problem sizes. Figure 1 shows plots for the number of
parameters on a log scale for a fixed depth approximator. For BW we see a linear trend (on a log scale)
that suggests that the minimum number of parameters grows exponentially as we increase problem
size. For pancake and TSP, we can see a linear trend until a certain problem size and then decrease in
minimum number of required parameters. This suggests that, after a certain point, the approximator
(neural network) starts overfitting, denoting that the neural network is expressive enough to memorize
the entire training set. For instance, if we consider the pancake puzzle, the rise is linear until problem
size 12, and after that it starts decreasing, suggesting memorization of the training samples. We see a
similar trend at problem size 7 for TSP.

Figure 1: Increase in minimum number of parameters (log scale) for a ‘fixed depth’ network required
to fit problems with increasing sizes. On the x-axis we have the problem sizes for each of the domains.
On y-axis to the left, we have the number of parameters on a log scale. On y-axis to the right, we
have MSE values. Loss thresholds are 0.2, 0.35 and 0.2 for pancake, TSP and BW respectively.

Figure 2: Increase in minimum number of parameters (log scale) for a ‘fixed width’ network required
to fit problems with increasing sizes. On the x-axis we have the problem sizes for each of the domains.
On y-axis to the left, we have the number of parameters on a log scale. On y-axis to the right, we
have MSE values. Loss thresholds are 0.1 0.35 and 0.02 for pancake, TSP and BW respectively.

We see similar patterns for the fixed width case as shown in Figure 2. The plots are noisier than
Figure 1, as adding another layer of size n increase the number of parameters by n2 extra weight and
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n extra bias parameters, making it challenging to observe a continuum of the number of parameters.
We can see that the number of parameters required to fit is similar across fixed depth and fixed width
cases (∼ 5× 105) at the point when memorization begins.

To validate our overfitting hypothesis (Question 1a), we include a test error for each approximator
size in Figure 1 and Figure 2. It is easy to see that while the minimal reported network size stagnates
past some problem size (for pancake and TSP), the test error continues to increase which is a common
indicator of overfitting. For BW, by contrast, we do not see a rise in test error but also no stagnation.

These results also show that neural networks fail to find good latent structures for NP-H problems
unlike in text and image based data. This suggests that a sufficiently accurate heuristic function for
NP-hard problems might not have a meaningful latent structure and thus require memorization. As a
result, the scalability of a heuristic approximator follows that of a naive lookup table, which grows
exponentially with the instance size.

4.3.2 Invariance to ϵ:

Figure 3: Increase in minimum number of parameters (log scale) required to fit problems with
increasing sizes for different loss thresholds. On the x-axis we have the problem sizes for each of the
domains. On y-axis we have the number of parameters on a log scale. For each of the three domains,
we use three different thresholds.

It seems enticing to think that h∗ can easily be fitted if the acceptable loss threshold is set high enough.
Although, it is true that fitting to a larger loss threshold is easier than fitting to a low threshold, we see
that, even for larger thresholds, the number of parameters still scale exponentially with the problem
size. Figure 3 shows the growth in number of parameters across problem sizes and for various
representative loss thresholds. Although the number of parameters required for lower precision is
lower, the required number of parameters still grows exponentially. We can also see that, as we
increase the threshold, the point where overfitting begins changes. For instance, for pancake problem,
we see that for threshold 0.6, the curve is mostly linear until problem size 17. Similar to our results in
previous subsection, we begin to see overfitting when we have a minimum of ∼ 5× 105 parameters,
across different thresholds and domains. These results suggest that the answer to Question 2: “Is the
approximator scalability trend sensitive to variation in the target approximation precision?" is ‘No’.

We also study the (in)variance of the trend to the choice of optimization objective and the details are
presented in Appendix D. We observe the trend is agnostic to the choice of the optimization objective.

5 Summary

In this paper, we investigate the unscalability of heuristic approximators for NP-hard search problems.
We provide theoretical justifications for our claim of unscalability while empirically verifying our
claims through experiments on 3 representative domains. We also show (empirically) that, irrespective
of the architecture of the neural network, choice of optimization objective, and required precision,
the number of parameters needed to fit a heuristic function scale exponentially with the problem
instance size. The main conclusion drawn from this paper is that heuristic search algorithms that rely
on function approximators to fit heuristic values for NP-Hard problems are inherently not scalable.
We expect that our paper will impact the research community by shifting its research efforts to
other/additional ways of integrating heuristic search with machine learning.
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A Summary of previous results

Problem |State Space| Approach Num. Parameters Solution Quality Expanded Nodes
48 Tile puzzle 3.00× 1062 DeepCubeA 3.00× 107 253.4 *5.73× 106

24 Tile puzzle 7.70× 1024
DeepCubeA ↑ 2.10× 107 ↓ 89.5 ↑ ∗2.01× 106

PHS* 1.05× 106 ↑ 224.0 ↓ 2.87× 103

PHSh 1.05× 106 119.5 5.86× 104

BLH ↓ ∗3.00× 104 - 5.22× 106

15 Tile puzzle 1.00× 1013
DeepCubeA ↑ 1.82× 107 52.0 ↑ 1.28 ∗ ×106

BLH ↓ ∗3.00× 104 - ↓ 1.01× 104

Sokoban *1.53× 1015
DeepCubeA ↑ 1.50× 107 ↓ 32.9 ↓ 1.05× 103

PHS* ↓ 3.71× 106 37.6 1.52× 103

PHSh ↓ 3.71× 106 ↑39.1 ↑ 2.13× 103

Table 1: Comparison of previous approaches: DeepCubeA [Agostinelli et al., 2019], Policy Guided
Heuristic (PHSh, PHS*) [Orseau and Lelis, 2021], Bootstrap Learning Heuristic (BLH) [Arfaee
et al., 2010]. ‘*’ in front of a value denotes, some approximation based on additional assumptions.
‘-’ denotes unreported values in original paper. ‘↑’ in front of value denotes the worst value, and ‘↓’
denotes the best value for the domain. ‘|State Space|’ denotes the size of state space.

Table 1 shows a rough comparison between the results of previous approaches. For each domain
(‘problem’) we report the size of its state space and for each approach, the number of parameters
used to fit the underlying heuristic approximator, the resulting solution quality (cost), and its running
complexity (number of expanded states).

For the number of parameters of BLH, we calculate a rough estimate assuming a 3 layer neural
network with 1000 neurons in each layer. DeepCubeA, reports the number of generated nodes instead
of number of expanded nodes, which we approximate as generated_nodes / branching_factor. PHS*
and PHSh are two variants as used in [Orseau and Lelis, 2021]. For the 10×10 Sokoban grid with
4 boxes, the size of state space is approximately calculated as 100 ×

(
100
4

)
×

(
100
4

)
where 100 are

possible player locations
(
100
4

)
are box locations as well as box targets. We disregard parameters

added due to any batch normalization layer. We note that the change in the number of parameters
for a given approach results from varying the number of input features for the problem size, and
not from changes to the hidden layers’ layout. An exception to this is DeepCubeA, which uses 6
residual blocks [He et al., 2016] for Tile puzzle and 4 for Rubik’s Cube and Sokoban. The results
present a trend where scaling the problem size necessitates a larger approximator (w.r.t the number of
parameters). If the approximator’s size is not increased, then we observe reduced accuracy (‘Solution
Quality’) and/or increased computational complexity (‘Expanded Nodes’).

B Proofs in the feasibility of approximating h∗

B.1 Proof of Corollary 1

Proof. Any n+ 1 set of discrete values (h∗(s)) can be fitted with an nth-order polynomial (by e.g.,
the Lagrange method of interpolation). The resulting polynomial maps from some finite and bounded
domain space (defined by S) to another finite dimension space (defined by h∗) and can thus be
fitted to arbitrary precision following the universal function approximation theorem [Hornik et al.,
1989].

B.2 Proof of Lemma 1

Proof. 1. Known NP-C problem: any ϵBNP-C problem.

2. Poly time reduction: any instance of the ϵBNP-C problem can be reduced to a single call
of ĥ(s). Specifically, ϵBNP-C(s, k) ≡ ĥ(s) < (k + ϵ/2).

3. Equivalence: if ϵBNP-C(s, k) = True then ĥ(s) < h∗(s) + ϵ/2 ≤ k + ϵ/2. If
ϵBNP-C(s, k) = False then h∗(s) ≥ k+ϵ and ĥ(s) > h∗(s)−ϵ/2 ≥ k+ϵ−ϵ/2 = k+ϵ/2
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C Additional Experimental Setup Details

C.1 Finding the minimum number of parameters to fit D

Note, if a neural network with 1-hidden layer of size n can fit a given function, it must be that a
neural network with n+ 1 neurons in the hidden layer can also fit (by simply setting the additional
weights as 0). Similarly, for fixed width case, if a neural network with n layers can fit a function, it
can also fit it with n+ 1 layers, by setting the weight matrix of the added layer as the identity matrix.
Following these understandings, we perform a binary search on the number of neurons (fixed depth)
or layers (fixed width) to effectively approximate the minimum number of neurons or layers that is
required to fit D.

C.2 Domains

Pancake: (1) Description: The pancake sorting problem is a NP-H problem [Bulteau et al., 2015],
where the task is to sort pancakes stacked one on top of another in minimum number of steps. A step
allows inserting a spatula at any position in the stack and flipping (inverting) all the pancakes above
it. (2) Dataset Generation: Following [Agostinelli et al., 2019], we generate the training data by
taking a random walk from the goal state. To calculate the h∗ values (or labels), we solve the problem
with A* search and an admissible heuristic function known as the gap heuristic [Helmert, 2010].
(3) Encoding: The state encoding, ϕ(s) was defined through a one-hot encoding of each pancake
location in the stack. An example of pancake problem along with state representation can be seen in
Figure 4 (a). (4) ϵBNP-C: The decision problem for pancake is NP-C [Bulteau et al., 2015] and if
the cost of each move is assumed to be constant (set to 1 in our case), it is also ϵBNP-C. As a result,
we can bound the heuristic approximation error defined by Lemma 1 to |h∗(s) − ĥ(s)| < 0.5. (5)
Problem Size: Problem size of n is a pancake problem with n pancakes.

Travelling Salesman Problem (TSP): (1) Description: TSP is a NP-H problem [Cormen et al., 2009]
where, given a graph of cities, the task is to find the shortest route (sum of cost of edges) that visits
every city (vertex in graph) exactly once while returning to the start city. (2) Dataset Generation: We
generate complete weighted directed graphs with edges uniformly sampled from numbers in range
[0.1, 5] with 0.1 granularity. The start node is randomly picked. Note that, for the experiments, we
consider only initial states, that is, no city is travelled, but use different graphs with different start
cities. To calculate h∗, we use the Held–Karp algorithm [Held and Karp, 1962] as the solver. (3)
Encoding: The state encoding, ϕ(s) was defined by a 1-dimensional representation of adjacency
matrix of the graph concatenated with array of length n denoting which nodes are visited and the start
node. An example of TSP problem along with state representation can be seen in Figure 4 (b). (4)
ϵBNP-C: The decision version of TSP is known to be NP-C [Cormen et al., 2009]. As the minimum
possible edge cost is 0.1, difference of any two feasible solutions will be either 0 or ≥ 0.1, thus the
decision version of TSP is ϵBNP-C. (5) Problem Size: Problem size of n is a TSP problem with n
distinct cities.

(a) Pancake (b) TSP (c) Blocks World

Figure 4: Examples of problem state for each of three domains along with state encoding ϕ(s).

Blocks World (BW): (1) Description: The BW problem is a NP-H problem [Gupta and Nau, 1992]
that consists of a number of blocks stacked into towers [Slaney and Thiébaux, 2001], where the task
is to turn a given start state to a given goal state with a minimum number of steps. A step allows
moving one block from the top of a tower onto the top of another one or to the table. (2) Dataset
Generation: We fix a goal state and generate instances with uniform random start states. To calculate
the h∗ values, we solve the instances with A* using the number of blocks that are in the wrong
positions as heuristic.
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We use a goal state where all blocks are stacked on each other in order with the lowest numbered
block at the bottom. (3) Encoding: We use the same state encoding, ϕ(s), as used in [Slaney and
Thiébaux, 2001]. An example of BW problem along with the state encoding can be seen in Figure 4
(c). (4) ϵBNP-C: It was previously shown Gupta and Nau [1992] that the decision problem of BW is
NP-C. Given a constant operation cost of 1, the decision version of BW is in ϵBNP-C. (5) Problem
Size: Problem size of n is a BW problem with n blocks.

Rubik’s Cube and Tile Puzzle: For both of the domains the minimum difference between any
two solutions is 0 or ≥ 1, and their decision variant is in NP-C Demaine et al. [2018], Ratner and
Warmuth [1990] respectively. Thus, their decision version is in ϵBNP-C.

D Invariance of unscalability trends to loss objectives

Figure 5: Increase in minimum number of parameters (log scale) required to fit problems with
increasing sizes on various loss functions. On the x-axis we have the problem sizes for each of the
domains. On y-axis we have the number of parameters on a log scale. The thresholds used for scaled
loss, accuracy threshold for cross entropy loss, MSE are 0.001, 90%, 0.2.

Beyond the initial variants of lϵ loss, we now report results for two additional loss functions.

1. categorical cross entropy loss by viewing the heuristic learning as a classification problem.

2. Scaled loss defined as: 1
N

∑N
i=1(1−

ĥθ(si)
h∗(si)

)2

The motivation behind the scaled loss variant is as follows. In many cases, the suboptimality factor of
the A* algorithm is governed by the relative error in ĥθ and not the absolute error. The weighted-A*
algorithm [Ebendt and Drechsler, 2009] is a prominent example.

Figure 5 shows a plot for three loss functions for the pancake problem using the ‘fixed depth’
network structure (similar trends were observed for the other domains and network structure). These
results suggest that the exponential size increase of a fitting neural network followed by stagnation
(suggesting overfitting) is agnostic to the choice of the loss functions.

11


	Introduction
	Preliminaries
	Related Work

	The feasibility of approximating h*
	Experiments
	Universal Function Approximators
	Setup
	Results
	Scaling neural networks for increasing problem size:
	Invariance to :


	Summary
	Summary of previous results
	Proofs in the feasibility of approximating h*
	Proof of Corollary 1
	Proof of Lemma 1

	Additional Experimental Setup Details
	Finding the minimum number of parameters to fit D
	Domains

	Invariance of unscalability trends to loss objectives

