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A recent stream of publications proposed to model traffic signal control as a Markov decision process and optimize it with standard or
adjusted reinforcement learning (RL) algorithms. While presenting compelling results for optimizing such controllers in stand-alone
intersections, limited success was shown for cooperative control over multiple intersections. Still, current control schemes such as
green-wave propagation show that coordinating and optimizing signal controllers over adjacent intersections has the potential to
greatly reduce congestion and, as a result, emissions and travel times. In this paper we investigate the applicability of state-of-the-art
multiagent RL (MARL) algorithms to the multi-intersection signal control domain. We show that, such algorithms suffer from inherent
limitations in this domain which prevent them from converging to an optimized coordinated policy.

CCS Concepts: • Computing methodologies→Multi-agent reinforcement learning; • Applied computing→ Transportation.

1 INTRODUCTION

Signalized intersections are a known bottleneck responsible for 12–55% of commute time in urban areas [12]. Recently
proposed solutions suggest modeling traffic signal control (TSC) as a Markov decision process (MDP) and training the
signal controller with reinforcement learning (RL). While presenting compelling results showing a reduction of up to
52% in average vehicle travel time when compared to fixed-time actuation, these RL solutions were shown to fail at
coordinating the signal control over several intersections [2]. Domain-independent multiagent reinforcement learning
(MARL) algorithms are designed to address similar coordinated control problems. In this paper, we investigate the
performance of MARL benchmark algorithms [9] when applied to benchmark multiagent TSC (MATSC) tasks [2]. Our
study found that despite strong results shown in other domains, cooperative MARL algorithms may not be particularly
effective in MATSC tasks when compared to independent single-agent RL algorithms.

2 BACKGROUND

In reinforcement learning (RL) an agent is assumed to learn through interactions with the environment. The environment
is commonly modeled as a Markov decision process (MDP) which is defined by: S – the state space, A – the action
space, P(𝑠𝑡 , 𝑎, 𝑠𝑡+1) – the transition function of the form P : S × A × S → [0, 1], 𝑅(𝑠, 𝑎) – the reward function of the
form 𝑅 : S × A → R, and 𝛾 – the discount factor. The agent is assumed to follow an internal policy 𝜋 which maps
states to actions, i.e., 𝜋 : S → A. The agent’s chosen action (𝑎𝑡 ) at the current state (𝑠𝑡 ) affects the environment such
that a new state emerges (𝑠𝑡+1) as well as some reward (𝑟𝑡 ) representing the immediate utility gained from performing
action 𝑎𝑡 at state 𝑠𝑡 , given by 𝑅(𝑠, 𝑎). The observed reward is used to tune the policy such that the expected sum of
discounted reward, 𝐽𝜋 =

∑
𝑡 𝛾

𝑡𝑟𝑡 , is maximized.

2.1 Traffic Signal Control (TSC) as an MDP

A signalized intersection is composed of incoming and outgoing roads where each road is assembled from one or more
lanes. At each time step, a signal controller is responsible to enable some combination of non-conflicting phases such
that some utility measurement is optimized. A phase is a specific traffic movement through the intersection activated
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by one or multiple physical signals. We adopt the TSC MDP formalization presented by Ault et al. [1]. The state space
(S) is defined by the state of incoming traffic and the currently enabled phases. The action space (A) is all sets of
non-conflicting phases to be assigned the right-of-passage (green light). The transition function (P) is defined by the
traffic progression following the signal assignment as determined by a simulated environment (we use the simulation
of urban mobility, SUMO [3]). The reward function (R) is the negative waiting time summed over all vehicles within
200m of an intersection. The discount factor (𝛾 ) is set to 0.99.

2.2 Multiagent RL (MARL)

In a multiagent MDP setting the action space is a Cartesian product of several sub action spaces 𝐴 ← 𝐴1 × ... × 𝐴𝑛

where each sub action space 𝐴𝑖 is affiliated with a single agent 𝑖 . MARL algorithms commonly belong to one of two
classes, (1) independent – agents are trained without knowledge of other agents’ actions and local observations and (2)
centralized training-decentralized execution (CTDE) – agents’ policy is conditioned only on local observations but can be
trained with access to all agents’ observations and actions.

The Extended PyMARL (EPyMARL) [9] codebase provides benchmark MARL implementations. In total it includes 9
multi-agent algorithms:

Independent algorithms: (1) Independent Q-Learning (IQL) [14]; (2) Independent Asynchronous Advantage Actor-
Critic (IA2C) [8]; (3) Independent Proximal Policy Optimization (IPPO) [11]

CTDE algorithms: (4) ValueDecompositionNetworks (VDN) [13]; (5)QMIX [10]; (6)Multi-Agent DDPG (MADDPG) [7];
(7) Counterfactual Multiagent Policy Gradient (COMA) [6]; (8) Multiagent A2C (MAA2C); (9) Multiagent PPO
(MAPPO) [15]

2.3 The Reinforced Signal Control (RESCO) toolkit

The Reinforced Signal Control (RESCO) toolkit gives a benchmark for MATSC. The tasks have between 3 and 21 hetero-
geneous signalized intersections spread across urban traffic networks. RESCO provides benchmark implementations
of MARL algorithms specifically designed for coordinated MATSC. These include, MPLight [4] which uses upstream
and downstream pressures in the state and reward on top of a shared-parameter specialized DQN model and Feudal
Multiagent A2C (FMA2C) [5] which uses a hierarchy of managing agents to coordinate independent worker agents.

RESCO also includes independent MARL methods (not coordinated) which use only local rewards, instead of a
single global reward that is common in EPyMARL. In each of the benchmark tasks the authors of [1] found that
the independent methods outperform MPLight and FMA2C. The authors noted that while their independent PPO
implementation could improve performance slighty (about 5% on average) over that of DQN, the later was considerably
faster to converge (an order of magnitude fewer training episodes).

3 EXPERIMENTS

We compared all of the MARL algorithms implemented in EPyMARL against the benchmark TSC algorithms provided
by RESCO on the 4 MATSC benchmark tasks (“Cologne Corridor”, “Cologne Region”, ”Ingolstadt Corridor”, ”Ingolstadt
Region”). For the tested algorithms, all hyper-parameters were set to those given by [1] and [9]. The general implemen-
tations in EPyMARL make 2 unique assumptions regarding the underlying environments that do not hold for TSC and,
thus, require special modifications.



Cooperative Multi-agent Reinforcement Learning Applied to Multi-intersection Traffic Signal Control 3

Fig. 1. Learning curves over 10 random seeds, with a sliding window average of 5 episodes. Dashed lines give the best static baseline
method from RESCO for each task. Only the 4 best performing algorithms are shown out of 10, for ease of presentation.

Assumption 1 (parallel worlds): The environment can be instantiated arbitrarily. TSC case: A real-world TSC
environment can not be arbitrarily instantiated multiple times (outside of a simulator). Modification 1: Algorithms in
EPyMARL which expect parallel policy rollouts were adjusted to receive a single rollout.

Assumption 2: Optimization is performed episodically over a total of millions of environmental steps. TSC case:
Evaluation in MARL research on TSC is typically only over hundreds of episodes [1, 2, 4], e.g., in RESCO each episode is
set to 360 steps. Modification 2: EPyMARL was extended to support 𝑛-step execution of the implemented algorithms,
such that policy gradient methods are rolled out for 10 environment steps instead of 10 episodes and Q-learning based
methods perform a policy update after each environment step instead of each episode.

The codebase for our experiments is provided open-source at: https://github.com/Pi-Star-Lab/epymarl_resco

RESCO’s independent DQN implementation denoted IDQN in Figure 1 performed significantly better than the three
independent methods from EPyMARL. This is principally due to the difference in state representation and local rewards.
IDQN aggregates each agent’s observations in convolutional layers over lanes composing the same incoming road.
Both QMIX and COMA failed to converge on all TSC tasks, likely due to sensitivity of the default hyper-parameters.
Tuning these parameters on the validation tasks in RESCO may alleviate this issue. In the Ingolstadt Region task, only
the independent methods IDQN, IA2C, and IPPO converge. Ingolstadt Region can have significant distance between the
intersections (independent agents) reducing and varying the impact each agent has on another. For the Cologne Region
task the independent methods all performed similarly. MAA2C and MADDPG converge to local optimums, however in
this case VDN performs reasonably well (comparable to the best RESCO benchmark, IDQN). The discrepancy in the
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VDN performance between Ingolstadt and Cologne (regional) is explained by the fact that the Cologne task has less
than half the number of intersections in a much smaller area. The Cologne Corridor task presented the most challenging
coordination problem, with low traffic arterial roads and short distances between intersections. In this task, none of the
algorithms improved over a static fixed time controller and performance between them was not significantly different.

4 CONCLUSION

Our experimental study suggests that domain-independent MARL algorithms are not more effective in optimizing
multi-intersection signal control when compared to RL algorithms that are specifically designed to solve such problems.
Moreover, our study suggest that independent MARL methods perform better when compared to those explicitly
targeting coordinated behavior. This trend seems to follow similar conclusions drawn from the original EPyMARL
work where, in 19 of 25 tasks, independent MARL approaches performed best. We conclude that training coordinated
behaviors in MARL is challenging in many domains including signal control, even when considering as few as three
intersections.
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