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 A B S T R A C T

In the current study, we present a novel computer-vision-based method for automated detection, measurement, 
and statistical analysis of detonation cellular structure images. The new approach consists of four primary 
steps: (1) image preprocessing, (2) cell contour detection, (3) parameter optimization, and (4) statistical 
analysis. First, the cell size measurements from the proposed approach are extensively validated against other 
measurement methods for numerical soot foils. We demonstrate that the computer vision approach can measure 
the average cell dimensions with a maximum relative error of 30% for images with a very wide range of cell 
regularity levels and resolutions. For high-resolution regular and irregular patterned numerical soot foil images, 
the maximum relative errors decrease to 8% and 17%, respectively. Moreover, cell distribution histogram 
analysis is carried out for cases with irregular cellular structures. We show that the suggested method can 
capture the correct cell size distributions with reasonable accuracy in comparison with other measurement 
methods. Finally, we demonstrate the new computer vision approach capability to automatically analyze 
high-quality experimentally-derived detonation cellular structure images.
1. Introduction

Gas-phase and liquid spray detonation waves are known for their 
unstable propagation [1,2]. Although in many cases the detonation 
wave average speed is constant and remarkably agrees with the clas-
sical Chapman–Jouguet (CJ) theory [3], the wave front local speed is 
governed by highly unsteady triple-shock interactions [4]. As such, the 
incident shock interacts with transverse waves leading to a localized 
explosion that forms a Mach stem. The maximum pressure produced 
by these reactive shock interactions is usually found at the triple 
point which connects the three shock waves. The triple point trajecto-
ries commonly produce complex cellular structures that resemble fish 
scales [5]. It is well-established that the average detonation cell width, 
typically denoted as 𝜆, is associated with detonation wave’s ability to 
propagate through thin tubes or channels, as well as the critical tube 
diameter and detonation direct initiation energy, see for instance [6]. 
Moreover, the detonation cell size distribution, which can range from 
very regular to highly-irregular, can also affect the above-mentioned 
detonation properties, see for instance [7].

Experimental measurement of cellular detonation structures is usu-
ally carried out via soot-covered foils that are placed at the inner side 
of the confinement (tube or channel) [8]. The high localized pressure 
variations in the vicinity of the triple points leave visible markings 
on the soot foil that reveal the detonation wave cellular structure, 
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see for instance [7]. Another possible technique for cell size measure-
ments is open-shutter photography, where luminescence induced at the 
triple points is directly photographed [9]. Although this technique is 
limited to certain mixtures, such as acetylene-oxygen, it can produce 
high-quality images of the detonation cellular structures, see for in-
stance [10,11]. The practical importance of the detonation cell width 
has driven extensive experimental measurements under a variety of 
conditions, see for instance [2,12–20]. In addition, multi-dimensional 
numerical simulations can also produce cellular structures similar to 
those observed in experiments, thus providing further insights on the 
detonation wave dynamics. Due to the high computational cost, most 
numerical simulations are two-dimensional with either single-step [21–
29] or multi-step [30–34] chemical kinetics. However, the detonation 
cellular structure has also been explored by highly computationally ex-
pensive three-dimensional numerical simulations, see for instance [35–
38].

For both experiments and numerical simulations, the resulting cel-
lular structure is measured from an image. Typically, cell dimensions 
are measured manually, either by finding the distances between triple 
point tracks or by discretely measuring each cell dimensions, see for 
instance [39]. In either case, the quality of the observed cellular struc-
tures can significantly differ between images depending on the chosen 
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experimental technique, level of cell regularity, and image rendering 
technique for numerical soot foils. As a result, it is well-established that 
manual measurements are prone to subjective measurement errors of 
up to 100%, see for instance [6]. In addition, manual measurements of 
detonation cells can be time-consuming and tedious. Also, it should be 
noted that currently there are no standardized approaches for deriving 
experimental or numerical images of cellular structures. Thus, attain-
ing reliable and accurate manual measurements of detonation cellular 
structures, whether experimentally or numerically, still remains highly 
challenging.

To overcome the above-mentioned limitations of manual measure-
ments, different automated techniques were developed for quicker and 
more objective detonation cell size measurements. The first automated 
framework for cell size measurements was developed by Shepherd 
and Tieszen [40]. A digital image processing technique was utilized 
for analyzing experimental soot foils. The power spectral density of 
the cellular structure was obtained using a two-dimensional spectral 
analysis. Then, the most dominant cell width was found from a one-
dimensional projection of the spectral density. The suggested technique 
was later utilized by Shepherd et al. [41] for analyzing experimental 
soot foils of gas-phase detonations in a variety of mixtures. Each 
soot foil was photographed, digitized, and enhanced. Then, using a 
Fast Fourier Transform (FFT), the cell size was derived according to 
the resulting spectra. Lee et al. [42] analyzed experimental soot foils 
using a one-dimensional autocorrelation function. For this purpose, 
the cellular structure observed in the soot foils was hand-drawn and 
digitized. Then, histogram and statistical analysis of the cell sizes was 
carried out for detonations in various mixtures. This technique was 
later improved by Lee et al. [43] using a two-dimensional autocorrela-
tion function for quantifying the cell size and level of regularity. Sharpe 
and Radulescu [22] developed two different methods for analyzing 
numerical soot foils. Both methods relied on signed vorticity records 
for identifying the triple point trajectories. The spacings between triple 
point tracks were calculated either directly or by an autocorrelation 
function. The two methods were used to statistically analyze irreg-
ular cellular structures obtained via gas-phase detonation numerical 
simulations with single-step chemical kinetics. Very recently, Sharma 
et al. [44] developed a machine-learning-based approach to determine 
detonation cell size in either numerical or experimental soot foil im-
ages. The method involves an image preprocessing step followed by 
a modified image segmentation technique based on cellular biology 
segmentation models. It has been demonstrated that the new machine 
learning approach can detect and measure cell sizes from a wide range 
of known detonation cellular structure images. It should be noted 
that although different automatic approaches were suggested in the 
past, there is still no standardized automatic method for detonation 
cell measurements. As a result, in many cases, manual measurements, 
which involve subjective errors, are still used.

Computer vision is a sub-field of Artificial Intelligence (AI) that 
deals with analysis of digital images and data extraction, see for in-
stance [45,46]. Today, computer-vision-based techniques and algo-
rithms are commonly used to tackle a variety of practical fluid me-
chanics problems. Examples include analysis of air flows [47], mea-
surements of free surface wave displacements [48], extraction of liquid 
droplet shapes [49], analysis of high-temperature plasma flows [50], 
characterization of bubble dynamics [51], and tracking of gravity cur-
rent features [52]. For analysis of detonation cellular structure images, 
the main uses of computer vision techniques focused on image denois-
ing and filtering, see for instance [53], automatic feature extraction 
via spectral methods [22,40–43], and assistance in manual cell size 
measurements, see for instance [23]. Also, Sharma et al. [44] carried 
out soot foil segmentation using a machine-learning-based computer vi-
sion technique. However, many of existing computer vision algorithms 
and techniques had still never been used for measuring and analyzing 
images of detonation cellular structures. Our goal is to propose a new 
automatic detonation cell measurement method, which is based on 
2 
algorithmic computer vision techniques. As such, the current study will 
pave the way for a standardized measurement approach.

To address the above-mentioned research gaps, we develop a novel 
computer-vision-based framework that can automatically detect, mea-
sure, and analyze images of detonation cellular structures obtained 
either numerically or experimentally. As the new approach is com-
pletely automatic, subjective measurement errors of cell dimensions 
can be avoided. In addition, the laborious and time consuming task 
of manually measuring and statistically analyzing detonation cell di-
mensions can be replaced using a standard laptop computer. In the 
next sections, we describe our newly suggested approach in detail 
and extensively validate its results against a variety of cases from the 
literature.

2. Proposed method

In this section, we present the general framework for our newly 
proposed automated detonation cell size detection algorithm. This 
approach, based on widely used techniques within the computer vi-
sion domain, comprises four primary steps: image preprocessing, cell 
contour detection, parameter optimization, and statistical analysis. The 
source code for the suggested computer vision detonation cell detection 
approach will be publicly available in an online repository.

2.1. Image preprocessing

The initial step involves image preprocessing, which aims to en-
hance the accuracy of cell size measurements. This process, imple-
mented using methods from the OpenCV library, comprises two pri-
mary steps: contrast enhancement and image denoising [54]. Note that 
the computer vision techniques chosen for the image preprocessing 
step were found to be optimal by empirical trial-and-error across many 
possible variations. The proposed set of image preprocessing methods 
and parameters is applied to all the cellular detonation structure images 
analyzed in the current work.

2.1.1. Contrast enhancement
To improve the visibility of cellular structures formed by detonation 

waves, we first apply a local contrast enhancement technique to the 
detonation cellular structure image. The purpose of this procedure is 
to make subtle features, such as cell boundaries and details within the 
cell structures, more distinguishable.

An image processing technique commonly used for improving lo-
cal contrast and enhancing the definitions of edges is the Adaptive 
Histogram Equalization (AHE) [55]. This technique uses histogram rep-
resentation of the image and divides it into smaller blocks or ‘‘tiles’’. 
Then, for each block, histogram equalization is carried out. Thus, pixel 
intensities are redistributed within each block to spread out the most 
frequent intensity values and improve contrast in that specific region.

However, AHE may lead to over-amplification of noise [55], espe-
cially in images with varying local contrast, which is often seen in 
soot foil images. To address this issue, we convert the image from 
RGB color space to gray-scale and use the Contrast Limited Adaptive 
Histogram Equalization (CLAHE) technique, which is a variation of AHE. 
The key advantage of CLAHE is that it prevents over-amplification 
of noise by limiting the contrast in each region [56]. The CLAHE 
technique is controlled by two parameters: clipping limit and tile 
grid size. Increasing the clipping limit may result in more prominent 
and clearly-visible cellular edges; however, it may amplify noise and 
generate artifacts. Similarly, decreasing the tile grid size may adapt 
better to rapidly varying edge intensities (for example, in highly dense 
soot foil images); however, it may increase noise and the appearance 
of unwanted artifacts. As such, the clipping limit is set to 2.0, with 
a tile grid size of 8.0 pixels. These values were found to be most 
effective in improving the visibility of faint cellular structures while 
minimizing noise amplification. Fig.  1 demonstrates the effect of the 
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Fig. 1. A numerical soot foil image from Zadok et al. [21] (a) before and (b) after applying the CLAHE technique.
Fig. 2. Preprocessed numerical soot foil image after (a) dilation operation and (b) division operation.
CLAHE technique on a typical numerical soot foil from the work by 
Zadok et al. [21].

Subsequently, a gray-scale dilation operation, which expands bright 
regions within the image, is performed on the contrast-enhanced image 
using a flat structuring element with dimensions of 8 × 8 pixels [57]: 

(𝑓 ⊕ 𝑏)(𝑥, 𝑦) = max
(𝑠,𝑡)∈𝑏

{𝑓 (𝑥 − 𝑠, 𝑦 − 𝑡)}, (1)

where 𝑓 (𝑥, 𝑦) is the contrast-enhanced image intensity at point (𝑥, 𝑦), 
which is dilated by the structuring element 𝑏 at coordinates (𝑠, 𝑡). The 
resulting image after the dilation operation is depicted in Fig.  2a.

Then, we employ a pixel-wise division operation between the
contrast-enhanced image and the dilated image to normalize illumi-
nation variations in the image: 

𝑅(𝑥, 𝑦) =
𝐼𝑐 (𝑥, 𝑦)
𝐼𝑑 (𝑥, 𝑦)

× 255, (2)

where 𝐼𝑐 (𝑥, 𝑦) and 𝐼𝑑 (𝑥, 𝑦) are the contrast-enhanced image and the 
dilated version of 𝐼𝑐 (𝑥, 𝑦), respectively. The resulting image is shown 
in Fig.  2b.

Finally, the resulting image undergoes thresholding using Otsu’s 
method [58]. This step converts the image into a binary format (0 
for black and 1 for white), effectively distinguishing foreground from 
background based on intensity.
3 
2.1.2. Image denoising
For image denoising, a non-local means image denoising algorithm 

is implemented, see [59]. This advanced denoising technique mitigates 
noise while preserving critical edges and details within the image. For 
this purpose, we use the parameters recommended by the OpenCV 
documentation, see [54]. The final manipulated image is shown in Fig. 
3.

2.2. Contour detection

For identifying the cellular structures in the preprocessed image, 
we use the Suzuki and Abe contour detection algorithm for binary 
images, see [60]. By scanning the image row by row, pixel by pixel, 
the algorithm identifies a set of adjacent pixels that share the same 
intensity or color, which are referred to as connected components. The 
algorithm finds the first black pixel (edge) and follows the chain of 
neighboring black pixels until it returns to the starting point, forming 
a closed contour. The Suzuki and Abe algorithm can also be used with 
specified minimum and maximum contour area thresholds to exclude 
structures that fall outside this range. The computational cost of the 
algorithm is relatively low, making it suitable for real-time applications 
and large-scale image processing tasks. In addition, the algorithm can 
handle images with noise, gaps, and partial occlusions [60].
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Fig. 3. Final output image after the preprocessing stage.

Fig. 4. Contour detection before applying area filtering, showing the identification of 
amorphous artifacts (an example is shown in circle).

The resulting image, after applying the Suzuki and Abe algorithm, is 
presented in Fig.  4. While the fundamental cell structure is well defined 
and identified, some artifacts are observed, likely resulting from high-
pressure points within the cell structure. Yet, the detection of such 
abstract structures can be avoided by setting appropriate minimum and 
maximum area threshold values for contour detection, as mentioned 
above. As a result, structures that fall outside this range are filtered 
out. In the next section, we present an optimization algorithm that 
automatically selects the best minimum and maximum area threshold 
values based on the proximity of adjacent cell corners.

2.3. Parameter optimization

As mentioned in the section above, a key step in fully automating 
the cell size measurement procedure is to find the optimal minimum 
and maximum area threshold values in the contour detection process. 
For this purpose, we define a junction as the situation where the 
bottom, left, top, and right corners of the top, right, bottom, and left 
cells, respectively, are found within a specified radius, 𝑟, which is 
calculated by using Eq. (3) (see also Fig.  5): 
𝑟 =

√

𝐴∕𝜋, (3)
4 
Fig. 5. Illustration of a junction overlaid on a numerical soot foil magnified view.

where 𝐴 is the minimum or maximum area value. All the steps for 
searching and finding the junctions are described in detail in Algorithm 
1. In particular, the algorithm receives the lists of all the top, bottom, 
left and right corners of the detected cells, following the contour 
detection process. Additionally, it receives the value of the minimum 
or maximum cell area, 𝐴, to determine the criterion for the junction 
identification, as introduced in Eq. (3). Then, it outputs a list of all the 
junctions found in the image.

Algorithm 1: Junction search.
Input: top.list, bottom.list, left.list, right.list, 𝐴 (min.area or 

max.area)
1 𝑟 ← (𝐴∕𝜋)1∕2;
2 foreach top ∈ top.list do
3 foreach bottom ∈ bottom.list do
4 if distance(top, bottom) ≤ 𝑟 then
5 foreach left ∈ left.list do
6 if distance(top, left) ≤ 𝑟 then
7 foreach right ∈ right.list do
8 if distance(top, right) ≤ 𝑟 then
9 Add 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚, 𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 to 𝑗𝑢𝑛.𝑙𝑖𝑠𝑡;
10 end 
11 end 
12 end 
13 end 
14 end 
15 end 
16 end 
17 return 𝑗𝑢𝑛.𝑙𝑖𝑠𝑡, 𝑟;

The optimization procedure utilizes a modified brute-force search 
over a range of minimum and maximum area values, 𝐴min and 𝐴max, 
respectively, see also Algorithm 2. For each pair of values, following 
the contour detection procedure, the algorithm computes the number 
of junctions. The optimal area values are those who yield the maximum 
number of junctions. To make the search more efficient, the initial 
value of 𝐴min is set to be 0, and the initial value of 𝐴max is set to a 
high number, e.g., total image area. Initially, the algorithm performs 
a ‘‘forward search’’, in which the value of 𝐴max is fixed and the value 
of 𝐴min is increased gradually, by increments of 10 pixels. The number 
of junctions is calculated in each step. As initially the value of 𝐴 in 
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Eq.  (3) is 𝐴min = 0, the initial number of junctions is zero. As the 
search progresses, the value of 𝑟 also increases. The coupling of both 
radius and area values of the junctions ensures automatic filtration of 
structures that are smaller than the radius of each junction, and which 
are assumed to be artifacts, see Fig.  4. The steps for the ‘‘backward 
search’’ are identical to those described in Algorithm 2, with the 
exception that the ‘‘for’’ loop runs from 𝐴max down to 𝐴min,opt for each 
value of 𝐴. The returned value is then 𝐴max,opt which is calculated in 
the same manner as described in Algorithm 2. Note that the suggested 
brute-force search approach for the optimization procedure can be 
replaced by sophisticated and more efficient search techniques, such as 
a genetic algorithm. However, for all the cases explored in the current 
study, this improvement is not essential due to the relatively modest 
computational overhead associated with the current algorithm. Ulti-
mately, the goal of the optimization procedure, by carefully selecting 
the optimal values of 𝐴min and 𝐴max, is to effectively eliminate and filter 
any artifacts that may be detected during the contour detection process.

Algorithm 2: Optimization loop for minimum area.
1 𝐴max ← ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ;
2 foreach 𝐴min ∈ {0,… , 𝐴max} do
3 Detect.contours (𝐴min, 𝐴max) → cell.area, top.list, 

bottom.list, left.list, right.list;
4 𝑎𝑟𝑒𝑎.𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ← (cell.area)/𝐴max;
5 if 𝑎𝑟𝑒𝑎.𝑝𝑒𝑟𝑐𝑒𝑛𝑡 == 0 then
6 break;
7 end 
8 𝑗𝑢𝑛.𝑛𝑢𝑚 ← find junctions using algorithm 1;
9 end 
10 𝐴min,opt = argmax𝐴min

{jun.num};
11 return 𝐴min,opt ;

The resulting image after the optimization procedure is shown in 
Fig.  6. Note that the current optimization procedure relies on the 
assumption that each detonation cell has four corners. However, this 
assumption might not be correct for certain cellular structures. For 
example, numerical soot foils derived from 3-D simulations with a 
strong influence of the confinement shape, see for instance, [37], or 
experimental front views of cellular structures that more resemble 
polygons, see for instance [61]. Although it is possible to extend the 
suggested approach to these less common cases, it is beyond the scope 
of the current work.

2.4. Statistical analysis

To perform statistical analysis of cell sizes, the dimensions of each 
cell are automatically measured. For this purpose, the top, bottom, 
right, and left corners of each cell are determined by finding the 
extremum 𝑥 and 𝑦 coordinates for each contour. Then, each cell length 
and width are calculated as the Euclidean distance (in pixels) between 
the right and left corners, and top and bottom corners, respectively, 
see Fig.  7. By specifying the image height or width (provided as an 
argument to the algorithm) this distance can be converted into length 
units. The results are automatically presented in a histogram that 
illustrates the distribution of the cell sizes, alongside the probability 
density function (PDF) and the cumulative distribution function (CDF). 
The mean values for both cell length and width are also calculated. 
In general, statistical results can be computed for a single image or 
aggregated across multiple images.

3. Results and discussion

In this section, we present an extensive validation and demonstra-
tion of the suggested computer-vision-based approach capabilities in 
5 
Fig. 6. Final contour detection (red lines) of a numerical soot foil image by Zadok 
et al. [21]. The minimum and maximum area values for optimal contour detection 
are selected automatically.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 7. Automated cell length and cell width measurements used for statistical analysis 
of a numerical soot foil image by Zadok et al. [21]. Misaligned measurements, caused 
mainly by merged cells with insufficiently distinguishable borders, are indicated by the 
red arrows (4.22% out of total measured cells).  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

detecting and measuring detonation cellular structures from images. In 
particular, regular and irregular numerical soot foils from the literature 
are analyzed in detail. Then, all the cell size measurement results are 
compared against results obtained from prior measurement methods.

3.1. Image resolution and preprocessing sensitivity analysis

As mentioned in Section 2, adequate image preprocessing is key for 
successful identification of the cellular structure of soot foil images. 
This step is highly dependent on the image quality, and specifically 
the amount of noise introduced. In addition to the noise reduction 
techniques introduced in Section 2.1.2, correctly adjusting the image 
resolution may also improve the image preprocessing results. Practi-
cally, higher image resolution may amplify noise, especially in images 
with relatively high noise levels. In general, a measure of ∼40 pix-
els/cell size was found empirically to be optimal for balancing image 



D. Jalontzki et al. Applications in Energy and Combustion Science 23 (2025) 100340 
Fig. 8. The effect of image resolution on cell contour detection for a typical soot foil by [37]: (a) High-resolution (∼60 pixels/cell size), (b) Medium-resolution (∼40 pixels/cell 
size, and (c) Low-resolution (∼20 pixels/cell size). Image resolution of ∼40 pixels/cell size was empirically found to be optimal for all cases discussed in this work.
noise reduction and successful cell identification for the majority of 
the examined soot foils. Fig.  8 depicts how different image resolu-
tions affect the cell identification process in the numerical soot foil 
image from [37]. In this image, the high-pressure triple points exhibit 
relatively high noise levels. Using the original image resolution (∼60 
pixels/cell size) resulted in cell contours having a higher number of 
obscured shapes. Lowering the image resolution to ∼40 pixels/cell size 
allowed for better cell contour identification as noise levels decreased. 
However, further lowering the image resolution to ∼20 pixels/cell 
size resulted in a higher number of unidentified cells. This is also 
reflected in the measured average cell widths, which are 4.58 cm, 
5.98 cm, and 7.73 cm for the high-, medium-, and low-resolution 
soot foil images, respectively. For comparison, the manually measured 
average cell width is 5.66 cm, corresponding to relative errors of 19%, 
5.7%, and 37% for the high-, medium-, and low-resolution images, 
respectively. In this case, the high-resolution image resulted in smaller 
measured cells due to obscured or fragmented cell shapes, whereas the 
low-resolution image failed to identify smaller cells altogether, leading 
to an overestimation of the average size. Ultimately, the medium-
resolution image produced the most accurate measurement, with the 
lowest relative error. To conclude, for images with a resolution higher 
than 40 pixels/cell size, lowering the image resolution to the optimal 
value improves the algorithm’s performance. On the other hand, for 
images with a resolution lower than 40 pixels/cell size, the algorithm’s 
performance degrades. Thus, to achieve optimal performance, the ini-
tial image resolution should be equal to or higher than 40 pixels/cell 
size.

We also demonstrate how the different image preprocessing steps, 
as introduced in Section 2.1, affect the cell identification results shown 
in Fig.  7. For example, Fig.  9 shows the computer vision approach 
results once the CLAHE step is omitted, leading to a greater number of 
undetected or merged cells. Fig.  10 presents the same test case without 
the image denoising step. In a similar manner, the number of merged 
6 
cells increases. This comparison highlights the importance of proper 
image preprocessing on the algorithm’s performance.

3.2. Computational performance analysis

In this section, we analyze the computer vision approach algorithm’s 
computational performance. Thus, several runtime complexity tests 
are conducted on four different numerical soot foils from Sharpe and 
Radulescu (Cases A-D) [22]. Each of the soot foils is divided into four 
subsections of dimensionless size of 96 × 750. For each case, the algo-
rithm is first executed on the initial subsection, followed by a second 
execution using the aggregation of the first and second subsections, and 
so on, until the final execution on the full-scale image. All tests are 
carried out using a standard laptop computer and a single core. Fig.  11 
demonstrates how the runtime of the optimization procedure linearly 
increases with image size and number of cells.

3.3. Numerical soot foils with a regular cellular structure

In this section, we analyze cell dimensions measurements obtained 
via the computer vision approach for numerical soot foils with a regular 
cellular structure. We examine three different numerical soot foils from 
the work of Zadok et al. [21], which used single-step chemical kinetics 
and a calorically perfect gas equation of state. As such, for all the cases, 
the ratio of specific heat capacities, 𝛾, and normalized heat release, 𝑞, 
are equal to 1.5 and 26.33, respectively. However, the effective activa-
tion energy, 𝜀, varies between the different cases with values of 3, 4, 
and 5. For each case, the numerical soot foil dimensions are 32 × 32 cm. 
Fig.  12 presents the three numerical soot foils from Zadok et al. [21], 
where the computer vision approach cellular structure detection results 
are overlaid in red. For the cases for which 𝜀 = 4 and 5, the cellular 
structure is perfectly regular, see also Figs.  12(b) and 12(c). For all 
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Fig. 9. (a) Automated cell contour detection and (b) Cell size measurements of the soot foil in Fig.  7 without employing CLAHE. Misaligned measurements, caused mainly by 
merged cells with insufficiently distinguishable borders, are indicated by the red arrows (25.7% out of total measured cells).  (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 10. (a) Automated cell contour detection and (b) Cell size measurements of the soot foil in Fig.  7 without employing image denoising. Misaligned measurements, caused 
mainly by merged cells with insufficiently distinguishable borders, are indicated by the red arrows (9.84% out of total measured cells).  (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Algorithm runtime as a function of: (a) Image size and (b) Number of cells. In Cases A-D from [22], each soot foil image is divided into four subsections. The algorithm 
is first executed on the initial subsection, followed by successive executions on incrementally aggregated subsections, up to the full-scale image.
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Fig. 12. Numerical soot foils with regular cellular patterns: 𝛾 = 1.5, 𝑞 = 26.33, see also Zadok et al. [21]. Computer vision approach cellular structure detection results are 
overlaid in red.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Regular cellular structure numerical soot foil analysis, see also Fig.  12. Comparison between the average cell length, 𝐿, and width, 𝜆, measurements obtained manually and by 
the computer vision approach. The standard deviation for each case is denoted as 𝜎.
 Cell dimension 𝜀= 3 𝜀= 4 𝜀= 5

 𝐿 𝜆 𝐿 𝜆 𝐿 𝜆  
 Number of cells 80 72 67

 Manual measurement, cm 5.98 3.55 6.07 3.73 5.81 3.95  
 (2𝜎∕𝜆 = 0.16) (2𝜎∕𝜆 = 0.18) (2𝜎∕𝜆 = 0.037) (2𝜎∕𝜆 = 0.051) (2𝜎∕𝜆 = 0.059) (2𝜎∕𝜆 = 0.061) 
 Computer vision approach, cm 5.75 3.64 5.85 3.77 5.88 4.26  
 (2𝜎∕𝜆 = 0.18) (2𝜎∕𝜆 = 0.20) (2𝜎∕𝜆 = 0.019) (2𝜎∕𝜆 = 0.071) (2𝜎∕𝜆 = 0.037) (2𝜎∕𝜆 = 0.034) 
 Relative error, % 3.9 2.5 3.6 1.1 1.2 7.9  
cases, we compare the computer-vision-based measurements against 
individual manual measurements for each cell width and length.

Table  1 presents a comparison between the average cell width, 𝜆, 
and length, 𝐿, values obtained by the computer vision approach and 
manual measurements. For all cases, the computer vision approach is 
able to correctly capture the average cell dimensions with a relative 
error of less than 8%.

For the case of 𝜀 = 3 from Zadok et al. [21], which does not 
exhibit a perfectly regular cellular pattern, we carry out a more de-
tailed statistical analysis. Fig.  13(a) shows the manual measurement 
procedure we carried out for each cell by using ‘‘ImageJ’’, a widely 
recognized image processing tool in the scientific community that 
allows manual measurements of the Euclidean distance between two 
points in a selected image [62]. Fig.  13(b) shows the measurements by 
the computer vision approach for the same numerical soot foil. The 
measured cell widths and lengths are indicated in violet and green, 
respectively. A detailed comparison between the cell width and length 
distributions obtained manually and by the computer vision approach 
is shown by histograms in Fig.  14.

3.4. Numerical soot foils with an irregular cellular structure

In this section, we demonstrate the computer vision approach cell 
detection capabilities for irregular numerical soot foils with different 
levels of cell regularity that were generated using our own numeri-
cal simulations. Furthermore, we compare the results from the com-
puter vision approach against benchmark results from the literature for 
irregular structured numerical soot foils.

First, we employ the computer vision approach on numerical soot 
foils generated by 2-D numerical solutions of the reactive compressible 
Euler equations with single-step chemical kinetics and calorically per-
fect gas equation of state following [22]. For all the cases, the values 
of the specific heat capacity ratio, 𝛾, and the normalized heat release, 
𝑞, are 1.4 and 25, respectively. Three different values of the effective 
activation energy, 𝜀, are explored: 2.5, 3.75, and 5. As such, the level 
of cell regularity alters for different values of 𝜀. The results for the cell 
contour detection and the measurements for each case are presented 
8 
in Fig.  15. The total number of measured cells is 834, 644, and 807 for 
Fig.  15a, b, and c, respectively. The results suggest that the computer 
vision approach can accurately measure the cell size for regular as well 
as irregular numerical soot foils.

Moreover, we compare the computer vision approach measure-
ments, which are illustrated in Figs.  16–19, against the results by the 
automated signed vorticity records approach suggested by Sharpe and 
Radulescu [22]. Table  2 presents the measured average normalized cell 
width for cases with different normalized activation energies 𝐸: Case 
A (𝐸 = 20), Case B (𝐸 = 25), Case C (𝐸 = 27), and Case D (𝐸 = 15). 
Note that a higher normalized activation energy increases the cellular 
structure’s irregularity, see for instance [63]. Our analysis shows that 
all measurements from these cases suggest less than 17% relative error 
for the average normalized cell width between the computer vision 
approach and the results reported by Sharpe and Radulescu [22].

A key feature of the computer vision approach is its ability to 
provide discrete values for the cell dimensions. We further analyze 
differences between the computer vision approach and the method 
suggested by Sharpe and Radulescu [22], which is based on measuring 
distances between triple point tracks. Fig.  20 compares the Probability 
Density Functions (PDF) for the cell width distributions for Cases A-
D as obtained from Sharpe and Radulescu [22] with the histograms 
provided by the computer vision algorithm. For normalized cell widths, 
also referred to as ‘‘spacing’’, larger than 10, the general trends in the 
cell size distribution are very similar for both methods. Also, for Case 
D, which exhibits the most regular cellular structure, the agreement 
between the two methods is very good. However, the probabilities of 
the cell size distributions obtained by the two methods are different 
for Cases A-C. The reason for this is twofold. First, it is evident that 
the computer vision approach cannot identify some of the smallest 
cellular structures, especially for very irregular cases, see Figs.  16–18. 
Second, these differences are associated with the fact that the PDFs for 
Cases A-C suggest the existence of cells with spacings approaching zero, 
even though it is evident that such small cells do not appear in these 
numerical soot foils. Thus, some of the discrepancies are due to the fact 
that the method by Sharpe and Radulescu [22] analyzes the spacings 
between neighboring triple point tracks rather than the discrete width 
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Fig. 13. Cell dimensions measurements for the case of 𝜀 = 3 from Zadok et al. [21]: (a) Manual measurements, and (b) Computer vision approach measurements.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Comparison by histograms between manually and computer vision approach measured cell dimensions distributions for the case of 𝜀 = 3 from Zadok et al. [21]: (a) Cell 
length and (b) Cell width.
Table 2
Average cell width: Comparison between the measurements according to the computer vision approach and the results by 
Sharpe and Radulescu [22]. The measured standard deviation is denoted as 𝜎.
 Case A Case B Case C Case D  
 𝐸 = 20 𝐸 = 25 𝐸 = 27 𝐸 = 15  
 Sharpe and Radulescu [22] 21.0 (𝜎 = 7.2) 22.0 (𝜎 = 9.4) 22.0 (𝜎 = 9.7) 19.0 (𝜎 = 3.2)  
 Computer vision approach 24.5 (𝜎 = 7.8) 24.1 (𝜎 = 8.09) 22.1 (𝜎 = 7.59) 16.9 (𝜎 = 3.34) 
 Total number of cells 490 397 440 621  
 Cell regularity (2𝜎∕𝜆) 0.64 0.67 0.69 0.39  
 Relative error, % 17 10 0.5 11  
associated with each cell. Note that for a sufficient number of cell 
measurements, the cell size distribution typically converges into a 
Gaussian (normal) distribution, see Case D in Fig.  20d. However, when 
the number of measured cells is not sufficiently large, the statistical 
errors can lead to a cell size distribution that deviates from the Gaussian 
distribution and might resemble other non-physical distributions, such 
as a bimodal distribution, see for instance Fig.  20b and c.

Additionally, we validate the suggested computer vision approach 
by comparing our measured cell sizes against those originally reported 
by Smirnov et al. [64] for two different numerical soot foils (see Fig. 
5a and b in [64]). The computer vision approach cell detection results 
are shown in Fig.  21a and c. For these soot foils, the reported cell 
size values, manually measured by Smirnov et al. [64], were 0.2 cm 
and 0.4 cm for Fig.  21a and c, respectively. The computer vision 
approach cell size measurements for the cases shown in Fig.  21a and 
9 
c are 0.218 cm and 0.430 cm, leading to relative errors of 9.0% and 
7.5%, respectively. Subsequently, these numerical soot foil images are 
utilized to qualitatively compare our method contour detection results 
against the machine-learning-based approach introduced by Sharma 
et al. [44]. Fig.  21b and d present the cell detection results obtained 
by the approach suggested by Sharma et al. [44]. A visual inspection 
of the first numerical soot foil, see Fig.  21a and b, suggests that both 
automated methods appear to capture most of the cellular structures 
observed in the image. Nevertheless, for both methods, certain ar-
eas containing cellular structures are left undetected. For the second 
numerical soot foil, see Fig.  21c and d, the machine-learning based 
approach seems to capture most of the observed cellular structures, 
whereas our computer vision approach is unable to detect certain areas. 
The suggested computer vision approach can be further improved by 
implementing new techniques in the image preprocessing step.



D. Jalontzki et al. Applications in Energy and Combustion Science 23 (2025) 100340 
Fig. 15. Numerical soot foils with different levels of cell regularity for 𝛾 = 1.4, 𝑞 = 25, and 𝜀 values of: (a) 2.5, (b) 3.75, and (c) 5. Computer vision approach detection results 
are overlaid in red, and cell measurements are indicated by green and blue arrows.  (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
We further validate our computer vision approach by analyzing a 
soot foil image derived via 2-D numerical simulations from the work by 
Crane et al. [37], see Fig.  22. The automatically measured cell widths 
and lengths are denoted by violet and green arrows, respectively. Note 
that the shaded areas in Fig.  22 represent partial cellular structures 
that are automatically excluded by the computer vision approach from 
the analysis. Although most of the cell dimensions are detected by the 
computer vision approach, some individual cells are left undetected. 
Nevertheless, the following analysis demonstrates that the current re-
sults are in accordance with manual measurements. For this purpose, 
we compare the measured cell width distributions using histograms, 
see Fig.  23. For both cases, the cell width manual measurements by 
Crane et al. [37] are compared against our own original cell width 
10 
manual measurements and the computer vision approach’s cell width 
measurements. There is excellent agreement among the three different 
cases. In fact, the results indicate that the computer vision approach 
measurements are very accurate, taking into account the well-known 
subjective errors induced by manual cell size measurements, see for 
instance [22].

Finally, we validate our computer vision approach against the man-
ual measurements by Meagher et al. [30]. Seven cases of soot foil 
images derived via 2-D numerical simulations for gas-phase detonations 
in different hydrogen–oxygen mixtures are examined, see Figs.  24 and
25. We use the same visualization style for the measured detonation 
cells as presented in Fig.  22. These seven cases cover a wide range of 
cellular pattern regularity, from mainly regular to irregular patterns. In 
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Fig. 16. Detonation cell size measurements for an irregular numerical soot (Case A) from Sharpe and Radulescu [22]. The computer vision approach results are overlaid in red. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Detonation cell size measurements for an irregular numerical soot (Case B) from Sharpe and Radulescu [22]. The computer vision approach results are overlaid in red. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
addition, the original image quality is much lower than the numerical 
soot foils analyzed in previous sections. As such, for cases with a very 
high level of cell irregularity, like 1, 2, 6, and 7, the computer vision 
approach cannot properly identify the cellular structures in certain 
areas. We found that the image preprocessing step, see Section 2.1, 
is the main reason for this discrepancy as it leads to obscure cellular 
structure in certain areas. Moreover, due to the relatively low image 
quality, for cases 4, 5, and 6, the computer vision approach sometimes 
identifies multiple cell widths as a single cell width. Nevertheless, we 
show below that the computer vision measurements for all the cases are 
still reasonably aligned with the average cell dimensions as measured 
manually by Meagher et al. [30]. Thus, for each case, the average cell 
11 
width, 𝜆, and length, 𝐿, normalized by the induction length, 𝛥𝑖, are 
measured by the computer vision approach.

Fig.  26 presents the average normalized cell dimensions according 
to the manual measurement by Meagher et al. [30] and the measure-
ments by the computer vision approach. Error bars for one standard 
deviation of the measured values are also shown. One can observe 
that for all cases the agreement between the two approaches is fairly 
good, and for almost all of them the average normalized cell length 
and width values, as obtained from the computer vision approach, fall 
between the range bounded by the error bars as determined by Meagher 
et al. [30]. A more quantitative comparison of the measured normalized 
cell widths and lengths is presented in Table  3. We show measured 
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Fig. 18. Detonation cell size measurements for an irregular numerical soot (Case C) from Sharpe and Radulescu [22]. The computer vision approach results are overlaid in red. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Detonation cell size measurements for an irregular numerical soot (Case D) from Sharpe and Radulescu [22]. The computer vision approach results are overlaid in red. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
values both by Meagher et al. [30] and the computer vision approach 
including the relative errors. For almost all the seven cases the relative 
errors are below 20%. The only exceptions are the normalized cell 
widths in cases 5 and 6 that exhibit relative errors of about 30%. As 
mentioned above, these differences are associated with the computer 
vision approach tendency to detect multiple cell widths as a single cell 
width. These discrepancies could have been avoided by using images 
with a higher resolution that are currently not available for us. Also, 
further improvements in the image preprocessing step, see Section 2.1, 
either by algorithmic or machine-learning-based techniques, can allow 
better cell detection for low resolution images. These rather challenging 
test cases demonstrate that even for low resolution soot foil images, in 
12 
which not all areas are identified or identified incorrectly, the derived 
average cell dimensions reasonably agree with manual measurement 
results. This is due to the fact that once a sufficient number of cells are 
measured by the computer vision approach, the cell size average values 
can still be accurately captured.

3.5. Analysis of experimentally-obtained cellular structure images

In this section, we demonstrate our computer vision approach’s 
ability to analyze experimentally-obtained detonation cellular structure 
images. The most common experimental method for measuring the det-
onation cell dimensions is covering the inner sections of the tube or the 
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Fig. 20. Statistical analysis for irregular cell size distributions. Comparison between PDFs obtained by Sharpe and Radulescu [22] and histograms obtained by the computer-vision-
based approach: (a) Case A (𝐸 = 20); (b) Case B (𝐸 = 25); (c) Case C (𝐸 = 27); (d) Case D (𝐸 = 15).
Fig. 21. Comparison of automated cell detection methods applied to numerical soot foils originally presented by Smirnov et al. [64]: Left panel — Results obtained using the 
proposed computer-vision-based approach. Right panel — Results obtained using the machine-learning-based method proposed by Sharma et al. [44] (reprinted with permission 
from Elsevier).
channel with soot foils, see for instance [5,8,65] . However, we found 
that existing experimental soot foil images from the literature contain a 
significant amount of noise and in many cases the image quality is poor 
due to external factors, such as smoking technique, camera resolution, 
13 
and contrast. As a result, the currently suggested image preprocess-
ing step, see Section 2.1, yields black and white images in which a 
significant portion of the cellular structures is missing. Thus, cell size 
measurements using the contour detection algorithm, see Section 2.2, 
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Fig. 22. Computer vision approach cell width and length measurements for the numerical soot foil as obtained from Crane et al. [37]. The shaded areas represent partial cell 
structures that are automatically excluded from the analysis. The total number of detected cells is 53. Misaligned measurements are indicated by the red arrows (5.66% out of 
total measured cells).  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Comparison of average normalized cell dimensions measurements between Meagher et. al [30] and the computer vision approach.
 Cell dimension 𝜆∕𝛥𝑖 𝐿∕𝛥𝑖

 Case 1 2 3 4 5 6 7 1 2 3 4 5 6 7  
 Meagher et al. [30] 22.7 20.0 23.1 18.4 18.6 19.5 11.9 33.9 30.0 37.8 31.2 32.6 29.8 17.9 
 CV approach 25.3 20.6 26.2 20.8 24.3 25.4 13.1 29.0 24.3 33.5 27.3 29.1 30.6 14.7 
 Total number of measured cells 48 38 63 101 93 75 55 48 38 63 101 93 75 55  
 (misaligned measurements) (11) (7) (10) (19) (16) (26) (17) (11) (7) (10) (19) (16) (26) (17) 
 Relative error, % 11 3.0 14 13 30 30 10 14 19 11 15 11 3.0 18  
Fig. 23. Statistical analysis for irregular cell size distributions. Comparison by his-
tograms between computer vision approach and manual measurements as obtained by 
ourselves and by Crane et al. [37].

simply cannot provide accurate measurements for areas with missing 
cellular structures. It is possible to resolve this limitation by further 
improving the image preprocessing step either through more advanced 
algorithmic or machine-learning-based techniques. Nevertheless, we 
demonstrate that the computer vision approach with the currently 
suggested image preprocessing step is capable of detecting cellular 
structures in real experimentally-derived images once the image qual-
ity is comparable to numerical soot foils. Another possible technique 
for experimentally measuring cell dimensions is using open shutter 
photography, see for instance [10,11]. For this case, the obtained exper-
imental images exhibit similar quality to typical numerical soot foils. 
Hence, we analyze via the computer vision approach the experimental 
images obtained by Radulescu and Lee [10] for cellular detonations 
propagating in thin rectangular channels with partially porous walls. 
We focus on the case of an acetylene-oxygen (C2H2∕O2) stoichiometric 
mixture with an initial pressure of 3.6 kPa. In the experiments by 
Radulescu and Lee [10], the detonation wave first propagates under 
14 
confinement of solid walls and then encounters the porous walled 
section. As a result of detonation wave interactions with the porous 
walls, the cell size tends to increase and can even, for some cases, 
disappear altogether due to detonation attenuation [10]. Figs.  27 and
28 present the open shutter photography images by Radulescu and 
Lee [10] overlaid with the computer vision approach contour detection 
and cell size measurements. Three different channels are shown, in 
which detonation waves propagated simultaneously. Fig.  27 presents 
the solid wall part of the channel while Fig.  28 presents the porous wall 
part of the channel. In each image, cell width and length measurements 
are denoted by violet and green arrows, respectively. The total number 
of measured cells for the combined solid and porous wall parts is 143, 
130, and 144 for the top, middle, and bottom channels, respectively. 
Misaligned or duplicated measurements were visually and manually 
assessed, and are marked by red arrows. Moreover, partial detonation 
cells near the boundaries of the channel are shaded since they are 
automatically excluded from the analysis. It is evident that most of 
the cellular structure in the image is identified by the computer vision 
approach.

We can also use the results to separately analyze the detonation 
cell size at the solid and the porous wall sections. First, according to 
the computer vision approach measurements, the average cell widths 
for the solid and porous wall sections are 8.89 mm and 9.83 mm, 
respectively. This trend of increasing average cell width due to the 
presence of porous walls qualitatively agrees with the experimental 
results. Second, we can compare the average cell width value measured 
by the computer vision approach at the solid wall section against other 
measurements from the literature. Nevertheless, it should be noted 
that existing measured cell width values for these specific conditions 
exhibit different values. For instance, Strehlow et al. [5] provided cell 
width measurements for detonation waves propagating in a rectangular 
channel with an acetylene-oxygen stoichiometric mixture and initial 
pressure values ranging from 1.5 to 101.3 kPa. The average cell width 
measured by our computer vision approach for the solid wall section is 
8.89 mm, while the interpolated cell size from Strehlow et al. [5] for 
an initial pressure of 3.6 kPa is 9.13 mm, suggesting a relative error of 
2.6%. On the other hand, Radulescu and Lee [10] derived correlations 
for the cell width as a function of initial pressure for various mixtures. 
These correlations are based on experiments carried out using a round 
tube by Desbordes et al. [66,67], Pedley et al. [68], Knystautas et 
al. [69], Laberge et al. [70], and Abid et al. [71]. For the case of 
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Fig. 24. Computer vision approach cell width and length measurements for the numerical soot foils as obtained from cases 1–3 of Meagher et al. [30]. The shaded areas represent 
partial cell structures that are automatically excluded from the analysis. Misaligned and duplicated measurements are indicated by the red arrows.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
acetylene-oxygen stoichiometric mixtures, the value of the average cell 
width derived from the correlation is 5.6 mm, while the average cell 
width value using the computer vision approach is 8.89 mm, suggesting 
a relative error of 59%.

A more detailed statistical analysis for the cell width and length 
distributions at solid and porous wall sections is shown in Fig.  29. 
Both histograms, see Fig.  29a and c, and CDFs, see Fig.  29b and d, 
are used for comparison between the different cell size distributions. 
Our analysis shows a notable change in both cell width and length 
distributions due to the presence of porous walls. Although the values 
of the minimum cell dimensions are almost unaffected by the porous 
wall interactions, the cell dimensions distributions for the porous wall 
section are different from the cell dimensions distributions for the 
solid wall section. The current analysis demonstrates our computer 
vision approach’s ability to assist in gaining deeper understanding of 
complex physical phenomena affecting the detonation cellular structure 
as demonstrated by Radulescu and Lee [10].

4. Conclusions

In the current work, we present a novel computer-vision-based 
approach for automated detection and statistical analysis of detonation 
cellular structure images. The proposed method employs advanced 
15 
image processing techniques, contour detection algorithms, and opti-
mization schemes to accurately identify and measure detonation cell 
sizes.

We demonstrate that for images with a sufficiently high initial reso-
lution, the proposed computer vision approach can effectively identify 
and measure the average cell dimensions from numerical soot foils 
with a wide range of cell regularity levels. In particular, for high-
resolution images with regular and irregular cellular patterns, the 
maximum relative errors for the average cell dimensions are 8% and 
17%, respectively. On the other hand, for low-resolution images, the 
maximum relative errors for the average cell dimensions can increase 
up to 30%. Moreover, for cases with irregular cellular structures, we 
carried out a detailed, automatic histogram analysis. The results show 
that the accuracy of the derived statistics is comparable to manual 
measurements. Similar trends are observed for comparisons against the 
automatic signed vorticity record method for mildly irregular cellular 
patterns. On the other hand, for highly irregular patterns, we found 
some discrepancies between the two methods in the statistics of very 
small cellular structures. These discrepancies are attributed to small 
cells going undetected by the computer vision approach and detection 
of non-existent small cellular structures by the signed vorticity record 
method. We also show that the computer vision approach can be 
used to analyze high-quality experimental images of detonation cellular 
structures. More specifically, we analyze experimental results under the 



D. Jalontzki et al.

Fig. 25. Computer vision approach cell width and length measurements for the numerical soot foils as obtained from cases 4–7 of Meagher et al. [30]. The shaded areas represent 
partial cell structures that are automatically excluded from the analysis. Misaligned and duplicated measurements are indicated by the red arrows.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Statistical analysis for average normalized cell dimensions. Comparison between our computer vision approach measurements and manual measurements by Meagher 
et al. [30] for: (a) Normalized cell width, 𝜆∕𝛥𝑖, and (b) Normalized cell length, 𝐿∕𝛥𝑖. For each case, error bars at one standard deviation of measured values are presented.

Applications in Energy and Combustion Science 23 (2025) 100340 

16 



D. Jalontzki et al. Applications in Energy and Combustion Science 23 (2025) 100340 
Fig. 27. Computer vision approach contour detection results (left panel) and cell size measurements (right panel) overlaid on the solid wall part in the experimentally-derived 
detonation cellular structure images by Radulescu and Lee [10]. Clearly visible misaligned or duplicated measurements are marked in red arrows (12.2%, 21.6%, and 17.4% out of 
the measured cells for (b), (d), and (f), respectively.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 28. Computer vision approach contour detection results (see (a), (c), and (e)) and cell size measurements (see (b), (d), and (f)) overlaid on the porous wall part in the 
experimentally-derived detonation cellular structure images by Radulescu and Lee [10]. Clearly visible misaligned or duplicated measurements are marked in red arrows (29.8%, 
18.3%, and 21.4% out of the measured cells for (b), (d), and (f), respectively).  (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
complex scenario of a detonation wave propagating through channels 
with partially porous walls. We demonstrate our method’s ability to 
quickly measure, compare, and analyze the cell statistics in either solid 
or porous wall sections. Also, a comparison of the measured average 
cell width at the solid wall section against experimental measurements 
from the literature is found to be in reasonable agreement.

The suggested computer vision approach allows quick, accurate, 
and reliable analysis of detonation cellular structure images, which is 
independent of subjective measurement errors, as long as the image 
initial resolution is sufficiently high. As a result, cell size measurement 
errors, which can explain some of the discrepancies between numerical 
and experimental results, can be significantly reduced. Finally, we 
envision that the proposed computer vision approach will serve as a 
foundation for developing a standardized method for detonation cell 
size measurements.
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Fig. 29. Statistical analysis of experimental images from Radulescu and Lee [10] for cell dimensions based on the computer vision approach. Comparison between solid and porous 
wall sections: (a) Cell length histogram, (b) Cell length CDF, (c) Cell width histogram, (d) Cell width CDF.
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