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Abstract

This paper reviews current Al solutions towards
road traffic congestion alleviation. Three spe-
cific Al technologies are discussed, (1) intersec-
tion management protocols for coordinating vehi-
cles through a roads intersection in a safe and ef-
ficient manner, (2) road pricing protocol that in-
duce optimized traffic flow, and (3) partial or full
autonomous driving that can stabilize traffic flow
and mitigate adverse traffic shock waves. The pa-
per briefly presents the challenges affiliated with
each of these applications along with an overview
of state-of-the-art solutions. Finally, real-world im-
plementation gaps and challenges are discussed.

1 Introduction

Traffic congestion is one of the world’s most costly and press-
ing problems. It leads to lost time and productivity, reduced
air quality, and increased operating expenditures. While in-
frastructure expansions may help mitigate this problems, they
are costly, disruptive, and require predicting demand and ca-
pabilities years, if not decades, into the future. On the pos-
itive side, recent advancements in Al pave a path towards
improved utilization of existing infrastructure through au-
tonomous and self-learning controllers.

A large body of work [Kockelman et al., 2017; Zantalis
et al., 2019] was devoted in recent years to Al technology
integration within intelligent transportation systems. In this
paper, we present and discuss a subset of these works which
relate to congestion alleviation. Specifically, we discuss three
applications where Al controllers present significant potential
towards congestion mitigation.

(1) Intersection Management. Road intersections intro-
duce traffic bottlenecks which are a known and well stud-
ied source of traffic congestion [Tirachini, 2013]. We dis-
cuss two established Al approaches towards optimized in-
tersection management. Namely, signal control optimization
through deep reinforcement learning and reservation based
trajectory coordination.

(2) Road Pricing for Optimized Traffic Flow. Self-
interested drivers follow routes which optimize their own per-
sonal utility while potentially acting suboptimal with respect
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to the entire system (utility summed over all drivers). This
phenomena, measured by the price of anarchy [Roughgarden
and Tardos, 2002], is a known source of avoidable conges-
tion. We discuss two established Al approaches towards road
pricing protocols which attempt to align the drivers’ personal
utility with that of the system’s. Namely, a game theoretical
approach and a reinforcement learning approach.

(3) Fully or Partial Autonomous Driving. Erratic driving,
of even a single vehicle, can lead to congestion that is induced
by shock waves [Richards, 1956], which are also known as
stop-start traffic waves, ghost jams, or traffic shocks. Recent
autonomous driving controllers present a viable approach to-
wards mitigating such adverse behaviors. We discuss Al
approaches towards autonomous motion planing and con-
trol that stabilizes traffic flow progression by damping shock
waves.

We conclude the paper by presenting open challenges re-
lating to safety assurances in reinforcement learning, perfor-
mance guarantees, interpretable and foreseeable autonomous
control, warm start learning in reinforcement learning and
knowledge transfer issues, public and governmental accep-
tance issues, and infrastructure compatibility issues.

2 Intersection Management

Travel time studies in urban areas show that 12-55% of com-
mute travel time is due to delays induced by signalized in-
tersections (stopped or approach delay) [Tirachini, 2013].
Hence, optimized intersection management has the poten-
tial of reducing commute time, traffic congestion, emissions,
and fuel consumption, while requiring minimal infrastructure
changes. A line of publications attempted to harness mod-
ern Al techniques towards this control optimization problem.
This section surveys two such approaches. Namely, signal
control optimization and reservation-based coordination.

2.1 Signal Control Optimization

A signalized intersection is composed of incoming and outgo-
ing roads where each road is affiliated with one or more lanes.
A signal controller must assign right of passage to phases
where each phase is affiliated with a specific traffic movement
through the intersection (incoming to outgoing roads/lanes).
Two phases are defined to be in conflict if they cannot be
enabled simultaneously (their affiliated traffic movement is
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intersecting). During the signal operation, vehicles are as-
sumed to continuously arrive on incoming roads where each
vehicle is associated with a specific outgoing road. At ev-
ery time step, the signal controller is required to assign right-
of-passage (green light) to a set of non-conflicting phases
such that some utility measurement is optimized. The util-
ity to be optimized is commonly defined as the sum of vehi-
cles’ delay imposed by the intersection [Mousavi et al., 2017;
Ault et al., 2020].

Given that signalized intersections vary in their layout and
demand profile, optimized control policies are unique and in-
stance dependent. Consequently, signal controllers should
be trained and optimized according to observed conditions
at the associated intersection. Such online optimization of
signal controllers requires: (a) sensing the state of approach-
ing traffic (e.g., number and position of approaching vehicles,
approaching speeds, vehicle queue length, waiting times) ag-
gregated by approaching lanes, and (b) defining a controller
that takes the current state of traffic as input and outputs the
next phases to be enabled (which is translated to a green, yel-
low, and red assignment for each light box).

Recent publications [Mousavi et al., 2017; Ault et al.,
2020] proposed to utilize state-of-the-art reinforcement learn-
ing (RL) algorithms for online optimization of signal con-
trollers. In this approach, the state of the intersection is usu-
ally defined by the set of incoming vehicles (incoming lane,
speed, waiting time, queue length) and the current signal (en-
abled phase) assignment. An RL agent is tasked with opti-
mizing a policy which maps states to signal (phase) assign-
ment. Such learning is commonly done using a value-based
approach (specifically a deep Q-learning approach [Mnih et
al., 2015]) which attempts to learn the expected future util-
ity from every action at a given state. The controller is then
directed towards actions that maximize the expected future
utility. Such an approach showed a potential reduction of up
to 73% in vehicle delays when compared to fixed-time actua-
tion [Mousavi et al., 2017].

Recent work showed further potential for accumulated de-
lay reductions when utilizing Multiagent RL for coordinated
control of multiple adjacent intersections [Chen ef al., 2020].

2.2 Reservation-based Coordination

Looking towards a future when most vehicles are autonomous
and connected, researchers are developing reservation-based
intersection management protocols. By relying on the fine
and accurate control of connected and autonomous vehicles
(CAVs) along with their communication capabilities, inter-
section management protocols coordinate multiple vehicles
simultaneously across an intersection. Such protocols have
been shown to lead to significant traffic delay reductions
when compared to traditional traffic signals. One prominent
example of such a protocol is the autonomous intersection
management (AIM) protocol [Dresner and Stone, 2008]. The
AIM protocol defines two types of autonomous agents: in-
tersection managers (IMs), one per intersection, and driver
agents, one per vehicle. An intersection manager is respon-
sible for directing incoming vehicles through its assigned in-
tersection, while the driver agents are responsible for control-
ling the CAV to which they are assigned. To improve the
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throughput and efficiency of the system, the driver agents
“call ahead” to an intersection manager and request path
reservations (space-time sequence) within the intersection.
The IM then determines whether or not this request can be
met by checking whether it conflicts with any previously ap-
proved reservation or any potential human operated vehicles
(HVs). If the IM approves a driver agent’s request, the driver
agent must follow the assigned path through the intersection.
On the other hand, if the IM rejects a driver agent’s request,
the driver agent may not pass through the intersection but may
attempt to request a new reservation.

A line of publications followed Dresner and Stone’s 2008
seminal work by considering variants of the originally pre-
sented reservation based approach. These approaches in-
clude reservation coordination methods that are modeled as
a quadratic program [Riegger et al., 2016], a model pre-
dictive control [Kim and Kumar, 2014], and a joint op-
timization (path coordination and trajectory control) prob-
lem [Malikopoulos et al., 2021]. Other approaches con-
sider platooning and batch reservations [Bashiri et al., 2018],
game theoretic/incentive based [Sayin et al., 2018], auction
based [Levin and Boyles, 2015], and RL-based [Wu et al.,
2019] techniques for allocating reservations. Recent work
also considered mixed traffic scenarios where human oper-
ated vehicles and CAVs coexist [Sharon and Stone, 2017].

3 Dynamic Road Pricing for Optimized
Traffic Flow

Another significant sources of traffic congestion stems from
the fact that drivers are self-interested when making travel
choices: for instance, they (quite naturally) select the route
that optimizes their own utility. Under such conditions, the
sum total of individual travel times (i.e., the social welfare)
can be arbitrarily worse than it would be were a centralized
controller to assign routes for the purpose of achieving max-
imum social welfare [Roughgarden and Tardos, 2002]. In or-
der to combat this inefficiency, researchers have devised vari-
ous approaches for computing and assigning optimized travel
routes. A line of publications assume the ability to assign dy-
namic road pricing per road segment and that by doing so, the
route choice of self-interested drivers can be manipulated. In
this sense, the problem of assigning optimized travel routes is
reduced to assigning a set of road prices that induce optimized
flow.

3.1 Game-theory Approach

Self interested agents that are routed in a congestible network,
such as vehicles in a road network, impose a user equilibrium
(UE) that is often far worse than the system optimum (SO)
flow [Roughgarden and Tardos, 2002]. Charging marginal
cost tolls (MCT), in which each agent is charged a toll equiv-
alent to the damage it inflicts on all other agents, results in a
UE that achieves SO performance [Pigou, 1920].
Calculating the MCT for a given passenger, on a given
path, i.e., the damage that the passenger inflicts on other
passengers by traversing the path in question, is challenging
without making several simplifying assumptions (e.g., well-
defined and known latency functions) that do not hold in most
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traffic models and certainly not in real-life traffic. Recent
work [Sharon er al., 2017a; Sharon et al., 2017b] suggested a
model free technique, denoted A-tolling, for evaluating MCT.
A-tolling was proven to result in exact MCT only when traf-
fic accumulation follows the Bureau of Public Roads (BPR)
latency function [Moses and Mtoi, 2017]. By contrast, when
the BPR assumption does not hold, A-tolling provides only
an evaluation of the true MCT. Nonetheless, experimental re-
sults using a cell transmission model [Daganzo, 1994] pre-
sented a reduction of up to 32% in total system travel time
when using A-tolling and up to 52% when tuning the affili-
ated hyper parameters with standard black-box optimization
techniques [Mirzaei et al., 2018].

Looking towards real-world application of MCT-based sys-
tems, recent publications examined various implementation
issues. Among them, the impact of partial participation in a
MCT scheme [Sharon et al., 2018; Hanna et al., 2019] and
worst-case performance guarantees for imposing inaccurate
(evaluation-based) MCT [Sharon et al., 2019].

3.2 Reinforcement-learning Approach

RL approaches for learning and setting pricing policies were
considered in previous publications [Chen et al., 2018]. In
such cases, multiagent RL formalization is used to train a
pricing policy. The state space is defined as the observed traf-
fic flow per road segment. A set of priced road segments in
a given road network defines the action space as a Cartesian
product of the allowed price change over these road segments.
The reward function is simply minus total system travel time
per time step. The pricing policy is trained such that the ex-
pected sum of future rewards is maximized.

Chen et al. 2018 showed that applying a policy gradient
approach within an actor-critic architecture can outperform
A-tolling by up to 15% (reduced total system travel times)
when only a subset of road segments can be priced in a given
network. These results are to be expected as A-tolling—and
any MCT based pricing scheme for this matter—assume that
all road segments can be priced.

4 Autonomous Driving

Erratic or unpredictable driving of even a single vehi-
cle can lead to substantial traffic congestion due to shock
waves [Richards, 1956]. Luckily, autonomous vehicles (AVs)
provides a viable way towards predictable and smooth vehi-
cle control. Moreover, such AV technology showed potential
for proactively stabilizing traffic flow and thus lead to reduced
congestion. AV technology has evolved significantly in recent
years to a point where many researchers agree that it is not a
question of ‘if” but a question of ‘when’ will the technology
be viable.

4.1 Motion Planning

Researchers have proposed to address the AV motion control
problem using classic Motion planning techniques [Frazzoli
et al., 2002]. However, it is challenging to apply such tech-
niques in highly dynamic and stochastic environments such
as the driving domain. The uncertainties introduced by other
actuators (e.g., vehicles, pedestrians, traffic signals) and con-
trol objectives (e.g., Car-following, lane-keeping, trajectory
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following, merging) necessitate a large variety of coordinated
low-level control tasks as well as frequent replanning opera-
tions. Consequently, many researchers turn towards RL tech-
niques that can learn a general and robust control policy.
Aradi 2020 provided a survey on deep RL hierarchical
motion planning approach in which different layers of mo-
tion planning, namely, strategic decisions, trajectory plan-
ning, and control, are presented and combined to create the
desired robust driving control policy. In a more specific ex-
ample, Shalev-Shwartz et al. 2016 addressed the high-level
task of long term driving strategies and trajectory planning.
They addressed this planning problem by applying the RE-
INFORCE algorithm [Williams, 1992] (Monte-Carlo policy
gradient) along with a Q-estimator as a baseline. Both the
policy and the Q-estimator were defined using deep neural-
networks. This approach was shown to increase driving sta-
bility and predictability while satisfying safety constraints.

4.2 Stabilizing Traffic Flow

Leveraging previously proposed trainable AV motion con-
trollers, researchers examined incorporation of flow stabiliz-
ing behaviors. This is noteworthy as traffic flow instabilities
are known to contribute to adverse congestion, e.g., through
traffic shock waves. Zheng et al. 2020 demonstrated how few
AVs can potentially stabilize mixed (human operated vehicles
and AVs) traffic flow progression. Such stabilizing is usually
achieved through speed and headway distance control that op-
timize string stability. Results by Zheng et al. suggest that as
few as 5% AV presence can lead to 6% increase in traffic flow
speed. Vinitsky et al. 2018 suggested a deep RL approach
for AV control with the objective of stabilizing traffic flow
when entering a road bottleneck. Example of such a bottle-
neck is a bridge with a reduced number of lanes as compared
to its incoming road. Vinitsky et al. showed that training
AVs towards flow stabalizing behavior using trust region pol-
icy optimization (TRPO) [Schulman et al., 2015] can lead to
25% throughput improvement at high inflows when as little
as 10% AV penetration levels are considered. Addressing the
scalability issues in these approaches, Cui et al. [Cui ef al.,
2021] proposed to apply a transfer RL approach that can han-
dle open-road settings where vehicles can dynamically join
and leave a traffic flow composed of hundreds of vehicle.

Finally, Stern et al. 2018 provided a real-world demon-
stration of how flow-stabilizing AV controllers contribute
to smooth and predictable driving which mitigates adverse
shock waves. Moreover, Stern et al. demonstrated how a sin-
gle AV can actively dampen shock waves initiated by other
vehicles in a real-world setting.

S Open Challenges

Several open challenges hinder the real-world implementa-
tion of the aforementioned technologies. Next, we briefly
highlight some of these challenges.

Safety concerns. Common reinforcement learning (RL) al-
gorithms rely on extensive exploration of the state and ac-
tion space to discover an optimized control policy. In the
discussed traffic domains, such exploration can lead to un-
acceptable safety violations. Notably, a large body of work
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was devoted towards safe RL [Garcia and Ferndndez, 2015]
and stable performance during RL training [Schulman et al.,
2015]. Still, applicability and algorithmic adaptations studies
towards the discussed traffic applications need to be estab-
lished.

Predictability. Due to the non-deterministic nature of real-
world control problems, RL-based controllers are commonly
limited to a single-step planning horizon. That is, given the
current state of the environment, the RL agent computes an
action to be taken at the current time step, but does not com-
mit to any future actions. While allowing the RL agent flex-
ibility to immediately adapt and respond to the environment,
this fact reduces the ability to regulate the RL agent’s be-
havior and predict its actions. Moreover, the aforementioned
traffic applications involve environments where multiple ac-
tuators (in the form of vehicles, infrastructure, pedestrians)
operate in conjunction. In such cases, actuator predictabil-
ity can foster more efficient and safe coordination and should
thus be aspired for.

Efficient Controller Training. Training an RL controller
is often slow, sample inefficient, and brittle. When it comes
to traffic applications, such training can be prohibitively ex-
pensive. As a result, integration of warm start learning from
demonstrations [Hester et al., 2018] and knowledge transfer
approaches [Parisotto et al., 2015] should be examined and
adapted towards RL-based traffic applications.

Public and Governmental Acceptance. Following the
aforementioned safety, predictability, and efficiency con-
cerns, some people deem Al technology as not trustwor-
thy when safety-critical tasks are considered. Such trust is-
sues can lead to reduced public and governmental willing-
ness to apply the discussed Al-based methods. Al algorithms
and approaches that integrate legal, ethical, societal and eco-
nomic impact considerations can address such trust issues and
should thus be sought after. Relevant impact considerations
can be found in legal documents such as the framework for
trustworthy AI proposed by the European Commission [Eu-
ropean Commission Press Release, 2021].

Infrastructure Compatibility. Real-world implementa-
tion of traffic controllers is restricted by stringent standards
and regulations. In the area of traffic controls, the National
Transportation Communications for Intelligent Transporta-
tion Systems Protocol (NTCIP) [NEMA, 1996] is a family
of standards that provides protocols and the vocabulary nec-
essary to allow electronic traffic control equipment from dif-
ferent manufacturers to operate with each other as a system.
In spite of such well defined protocols, Al-based traffic con-
trollers are often developed with no regards to standardiza-
tion. This inconsistency might lead to substantial infrastruc-
ture compatibility issues and should thus be avoided.
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