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Abstract

We address the following mechanism design problem: Given
a multi-player Normal-Form Game (NFG) with a continu-
ous action space, find a non-discriminatory (i.e., identical for
all players) restriction of the action space which maximizes
the resulting Nash Equilibrium with respect to a fixed so-
cial utility function. First, we propose a formal model of a
Restricted Game and the corresponding restriction optimiza-
tion problem. We then present an algorithm to find optimal
non-discriminatory restrictions under some assumptions. Our
experimental results with Braess’ Paradox and the Cournot
Game show that this method leads to an optimized social util-
ity of the Nash Equilibria, even when the assumptions are not
guaranteed to hold. Finally, we outline a generalization of our
approach to the much wider scope of Stochastic Games.

1 Introduction
Consider a multi-player game with an additional social util-
ity function over the joint actions. Assuming that the play-
ers are self-interested and learn independently, they might
converge to joint actions (“user equilibria”) which are sub-
optimal, both from their own perspective (e.g., with respect
to Pareto efficiency) and from the viewpoint of social wel-
fare (Cigler and Faltings 2011). This can be demonstrated in
minimal setups (see the examples in Section 3), but it is also
common in real-world settings (Ding and Song 2012; Ace-
moglu et al. 2016; Memarzadeh, Moura, and Horvath 2020).

While the challenge of reconciling selfish optimization
and overall social utility in multi-player settings has long
been known (Roughgarden and Tardos 2002; Andelman,
Feldman, and Mansour 2009), it has become increasingly
relevant with the rise of ubiquitous autonomous agents and
automated decision-making in recent years as advancements
in deep reinforcement learning have enabled agents to learn
very effective (but still selfish) policies not only in well-
defined games but also in multi-agent systems with large,
complex, and unknown environments (Du and Ding 2021;
Gronauer and Diepold 2021).

A common solution method for this problem involves
reward shaping, where players’ utility functions are al-
tered by giving them additional positive rewards for so-
cially desirable behavior and negative rewards (i.e., sanc-
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tions) for undesirable behavior. Normative Systems (An-
drighetto et al. 2013) derive such rewards and sanctions
from norms, while Vickrey–Clarke–Groves (VCG) mecha-
nisms (Nisan and Ronen 2004) attribute to each player the
marginal social cost of its actions.

Reward-shaping methods generally make two assump-
tions which limit their applicability:

1. Rewards can be changed at will, and players simply ac-
cept the new reward function. This assumption is feasible
in stylized settings, but involves an arbitrary amount of
additional incentives (money) when applied in real-world
settings.

2. It is both possible and ethically justifiable to discriminate
between players by shaping their reward functions differ-
ently. On top of ethical issues, this approach might not be
applicable whenever players are not identifiable.

We propose a novel solution for closing the gap between
user equilibrium and social optimum, based on shaping
the action space available to the players at any given time
(as commonly done by regulating governmental entities).
Therefore, players continue to optimize their own objective
function over the restricted action space. This motivates the
problem of finding an optimal non-discriminatory restric-
tion of the players’ action space, i.e., a restriction which is
identical for all players and maximizes the social utility of a
stable joint action.

In this paper, we analyze the problem of finding so-
cially optimal restrictions for Normal-Form Games (NFG):
We define the concept of a Restricted Game (RG) and
present a novel algorithm denoted Socially Optimal Action-
Space Restrictor (SOAR) which finds optimal restrictions
via an exhaustive Breadth-First Search over the restriction
space, assuming that (a) there is always a Nash Equilibrium,
and (b) there is an oracle function which produces such a
Nash Equilibrium for a given restriction. We then demon-
strate the algorithm’s performance using two well-known
game-theoretic problems—Braess’ Paradox and the Cournot
Game. Our experiments show that applying SOAR can find
favorable outcomes even when we relax the assumptions. Fi-
nally, in Section 7, we outline how the approach developed
for (stateless) multi-player Normal-Form Games is also ap-
plicable to Stochastic Games with state transitions.



2 Preliminaries
Unless indicated otherwise, we follow the standard Game
Theory notation as used, for instance, in Leyton-Brown and
Shoham (2008).

2.1 Model
Let G = (N,A,u) be a Normal-Form Game with player
set N = {1, ..., n} and action space A which applies to all
players (“uniform” NFG). Writing product sets and vectors
of variables in bold face, a joint action is given by a ∈ A :=
AN . The players’ utility functions are u = (ui)i∈N , where
ui : A → R. Moreover, let u : A → R be a social utility
function. We call G = (N,A,u, u) a social game.

It is important to note that the notion of “optimality”
refers to two functions: First, there is the individual utility
ui of each player which defines the player’s optimization
goal (the reward in multi-agent systems). Second, the social
utility u represents the view of the governance (i.e., the en-
tity imposing restrictions on the system), which is not neces-
sarily linked to the player utilities. In practice, however, we
often use functions like u =

∑
i∈N ui to measure overall so-

cial welfare (we will do so for the remainder of this paper).
As usual in multi-player games, all utility values depend on
the joint action, such that players cannot simply maximize
their utility without taking into account their competitors’
actions.
Definition 1 (Restriction). A restriction is any subset R ⊆ A
of the action space, denoting the set of allowed actions.
Definition 2 (Restricted Game). For a social game G =
(N,A,u, u) and a restriction R ⊆ A, we define the Re-
stricted Game (RG), G|R = (N,R,u) such that the players
are only allowed to use actions in R instead of the full action
space A. Equivalently, the domain of the utility functions is
restricted to R := RN .

2.2 Equilibria and Optima
Definition 3 (Best Response). Let a ∈ A be a joint action,
and let a−i := (a1, ..., ai−1, ai+1, ..., an) denote the vector
obtained by removing ai (thus, we can write a = (ai,a−i)).
Then

Bi(a−i) := argmax
a∈A

ui(a,a−i) ⊆ A

denotes the set of all best responses (BRs) of player i to the
other players’ given actions a−i.
Definition 4 (Nash Equilibrium). A joint action a ∈ A is
a (pure) Nash Equilibrium (NE) of G if each individual ac-
tion in a is a best response to the other players’ actions. N
denotes the set of all Nash Equilibria of G:

N := {a ∈ A : ai ∈ Bi(a−i)∀i} .
Definition 5 (Minimum Nash Equilibrium). A minimum
Nash Equilibrium N− := argmina∈N u(a) is an equilib-
rium with the lowest social utility (the worst NE from the
governance’s perspective).

Definitions 3 and 4 can be applied to restricted games,
and are denoted as Bi|R,N|R, andN−|R, respectively. It is
noteworthy that they can, in general, change arbitrarily (for
better or worse) by restricting a game.

Definition 6 (Minimum Equilibrium Social Utility
(MESU)). Let R be a restriction of A. For the RG G|R,

S(R) := min
a∈N|R

u(a) = u(N−|R)

denotes the minimum equilibrium social utility, given the
restriction R.

We focus on the minimum NE in this definition, since the
governance cannot decide which one of the equilibria the
players converge to in an RG G|R. Thus, S(R) provides a
lower bound for the resulting social utility of a restricted
game.

2.3 Restrictions
Although the model does not specify any structure for the
action space, A, we limit our discussion here to real-valued
intervals. By doing so, we can define restrictions that are
finite unions of half-open intervals in A.

Assumption 1 (Interval-Union Restrictions). We assume in
this work that the action space, A, is a one-dimensional in-
terval [a, b) (using ±∞ for unbounded spaces), and that
the governance can define restrictions of A which are finite
unions of intervals:

R =
⋃
i

[li, ui) (1)

with interval bounds li, ui ∈ A ∀i.
A joint action a ∈ A is allowed if all components of a

are in R, or equivalently, if a ∈ R, since the restriction R
applies equally to all players (it is “non-discriminatory”).

It is important to note that adding or removing an interval
[l, u) ⊆ A to or from R does not violate Equation 1 since
this family of restrictions is closed under finite unions and
set differences. We call a restriction R′ more constrained
than R if R′ ⊂ R. Finally, for a restriction R of form (1), let
|R| :=

∑
i (ui − li) denote the size of R.

The limitation of one-dimensional action spaces is dis-
cussed in Section 7.1.

3 Braess’ Paradox and the Cournot Game
The approach of governing via action space restrictions
is best illustrated in the discrete case of Braess’ Para-
dox (Braess 1968). Nonetheless, our main contribution ap-
plies to the more general case of continuous actions.

Example 1 (Braess’ Paradox). Braess’ Paradox can be
translated from its original domain of traffic routing (Fig-
ure 1a) into the two-player matrix game shown in Figure 1b,
where the row action is controlled by player 1, and the col-
umn action by player 2. By convention, both players want to
maximize their respective payoff.

The best response for both players is always b. Self-
ish players will converge to the user equilibrium (b, b) and
therefore end up with a payoff of 1. Let us now forbid action
b, i.e., restrict the action space to {a, c}. The user equilibria
become (a, c) and (c, a) with a payoff of 2 for both players.



(a) as a routing problem with n
players

a b c

a (0, 0) (0, 5) (2, 2)

b (5, 0) (1, 1) (5, 0)

c (2, 2) (0, 5) (0, 0)

(b) as an equivalent two-
player Matrix Game

Figure 1: Braess’ Paradox

It is known that Braess-like scenarios are not only techni-
cal cases, but appear often in random networks (Valiant and
Roughgarden 2006; Chung and Young 2010).

Apart from illustrating the efficacy of a restriction-based
governance approach, this example also shows the “meta
challenge” of restrictions: if we allowed for individual re-
strictions of the players’ action spaces, it would be straight-
forward for the governance to achieve any possible outcome
(i.e., combination of actions) by allowing each player to
use exactly one action. This procedure reduces the (multi-
player) game to a (single-player) optimization problem,
where the governance computes the socially optimal matrix
cell maxa∈A u(a) with A =

∏
i∈N Ai, and then simply as-

signs the respective actions to the players.
Things become more challenging when only considering

non-discriminatory restrictions, as we have done in Exam-
ple 1. This also satisfies an extremely desirable property for
any form of governance: All players are treated fairly by
having the same space of allowed actions. In the example,
the governance could enforce the (socially optimal) solu-
tions (a, b), (b, a), (b, c), or (c, b) with social utility 5 by
using individual restrictions. Still, with uniform restrictions,
we can improve the game’s MESU from 2 to 4.

Let us now consider a game with a continuous action
space where rewards are given as individual utility functions
over the joint action space: The Cournot Game is a classical
example of an NFG with one-dimensional continuous action
spaces, and one of the fundamental economic models for es-
tablishing produced quantities and prices on a market.

Example 2 (Cournot Game). Let two players decide on the
produced quantities q = (q1, q2) ∈ R2 of a good whose
price is defined as p(q) = max(pmax − q1 − q2, 0) with
pmax > 0. Both players produce at a constant cost of c ≥ 0
per unit. The players’ utilities (i.e., their profit) are therefore
given as ui(q) = qi · (p(q)− c).

Choosing pmax = 120 and c = 12, the BR of player i
to action qj is Bi(qj) = 54 − qj

2 , which leads to a unique
NE of q∗ = (36, 36) and a payoff of u1(q

∗) = u2(q
∗) =

1296. By restricting the quantities produced by each player
to the range qi ≤ 27, it would be possible to improve the
equilibrium payoff to 1458 per player.

In these examples, we have the particular situation that the
restriction improves the utility of all players, which makes a
very strong case for using such restrictions. In general, it is
not the case that all players will be better off, so the gover-

nance’s goal is simply to maximize the social utility u.
We revisit the examples in Section 6, using the SOAR al-

gorithm (see Section 5.2) to find optimal restrictions.

4 Related Work
The literature on mechanism design through action space
restrictions is sparse. Apart from Pernpeintner, Bartelt, and
Stuckenschmidt (2021), who use end-to-end Reinforcement
learning to design restrictions of discrete action spaces, there
is, to our best knowledge, no prior work on action space
shaping as a means of aligning user equilibria and social op-
tima in a multi-agent setting.

Mittelmann et al. (2022) propose a logic-based method
(Automated Synthesis of Mechanisms) for automated mech-
anism design, but focus on optimizing the transition func-
tion of a game while keep the action space. This is, in a way,
a complementary approach to our Restricted Games. Kan-
ervisto, Scheller, and Hautamäki (2020) use action space
shaping to improve learning, focusing on the observation
and action spaces of a single agent in video games such as
Atari, StarCraft and Dota. Kalweit et al. (2021) shape the
action space of a DQN agent in the domain of autonomous
driving by defining a cost function for actions and then re-
stricting the action space to those actions whose cost is be-
low a fixed threshold. A similar approach is used by Achiam
et al. (2017) to directly shape the policy space of an RL
agent. Tang (2017) and Cai et al. (2018), on the other hand,
use Reinforcement Mechanism Design to automate the de-
sign of e-auctions, restricting bidders’ actions based on past
behavior. Therefore, their restrictions are imposed from an
outside entity (as in our approach), but they are not opti-
mized over a social utility function.

As an alternative to the action space shaping approach, re-
ward shaping (Mataric 1994) addresses the agents’ rewards
to change their behavior, relying on the fact that optimizing
the expected new reward will result in a different action pol-
icy. Centralized reward shaping can follow the structure of,
for example, a Vickrey–Clarke–Groves (VCG) mechanism
(Nisan and Ronen 2004). However, instead of letting the
agents optimize their policies, a VCG mechanism performs
the outcome selection itself, computing concrete best actions
to the agents. This leads to well-known computability is-
sues, for example when solving the NP-hard problem of op-
timal allocation in a combinatorial auction. The VCG-based
method of Marginal-Cost Pricing (MCP) (Turvey 1969) has
been successfully applied to Braess’ Paradox (Ding and
Song 2012) and real-world traffic networks (Sharon et al.
2017a,b, 2018, 2019; Hanna et al. 2019). While presenting
promising theoretical and experimental results, these solu-
tions rely on the assumption that agents’ utility functions
can be manipulated in a discriminatory way.

Normative Systems (Andrighetto et al. 2013; Chopra, van
der Torre, and Verhagen 2018) go one step further by defin-
ing norms from which rewards and sanctions (i.e., negative
rewards) are then derived by the agents. Whether this nor-
mative reward is imposed onto the agents from an outside
entity (Morales et al. 2013; Neufeld et al. 2021) or emerges
from within the agent community (Morris-Martin, De Vos,



and Padget 2021), there is a need for the agents to be norm-
aware and to use normative capabilities in their action policy
(Cramton 2006).

5 Finding Optimal Restrictions
Next, we present the Socially Optimal Action-Space Re-
strictor (SOAR) algorithm for continuous-action games with
a finite action space A. SOAR defines a search tree of in-
creasingly constrained restrictions by identifying and testing
subsets of existing restrictions, starting from the unrestricted
action space. The theoretical results and conclusions in this
section hold for arbitrary social utility functions u.

5.1 Restricting the Action Space
For a given joint action, a, we say that a restriction, R, in-
validates a if a /∈ R, i.e., at least one individual action is
not allowed. In general, a restriction R which invalidates an
existing NE does not simply cause a new NE to appear at
the boundary of R (i.e., as close to the old NE as allowed by
R)—instead, a new NE might appear anywhere else in the
joint action space, or the restriction might not allow for an
NE at all. However, a restriction that does not invalidate any
existing NE (we call such a restriction irrelevant), leaves the
existence of those NE unchanged. More formally:
Proposition 1. Given some x ∈ R, let Uϵ(x) := [x−ϵ, x+ϵ)
denote the half-open ϵ-neighborhood of x, and for a vector
x ∈ RN , let Uϵ(x) := ∪i∈NUϵ(xi) ⊆ R (note that this
neighborhood is still one-dimensional!). Assume that a ∈ A
is a joint action such thatN ⊆ R with R := A\Uϵ(a). Then

N ⊆ N|R ,

which means that invalidating actions within the ϵ-
neighborhood of a removes none of the Nash Equilibria
from G.

Proof. Let x ∈ N be an NE over the action space A, and let
R be defined as in the statement of the proposition. Then

xi ∈ Bi(x−i) ∀i ∈ N

=⇒ ui(x) ≥ ui(a
′,x−i) ∀a′ ∈ A ∀i ∈ N

R⊆A
===⇒ ui(x) ≥ ui(a

′,x−i) ∀a′ ∈ R ∀i ∈ N

x∈R
===⇒ xi ∈ Bi|R(x−i)∀i ∈ N =⇒ x ∈ N|R .

As a direct consequence, any restriction that improves the
MESU of a game must invalidate all existing minimum Nash
Equilibria.

5.2 The SOAR Algorithm
Starting from an unrestricted action space, the idea is to
define successively more constrained restrictions and then
search for the best of those restrictions in terms of their
MESU (see Algorithm 1). Basically, we can check every
possible restriction of the form shown in Equation 1 (see
Assumption 1), starting from A and ending with maximally
constrained restrictions. Of course, this brute-force method

is not practical, since it requires computing the MESU of
infinitely many restrictions.

Given a current restriction R, we propose the following
improvement: Calculate the minimum NE, a∗ := N−|R,
and derive all relevant actions, i.e., the set Ω :=

⋃
i∈N a∗

i of
all (individual) actions that are used inN−|R. For each ω ∈
Ω, define a new restriction by removing an ϵ-neighborhood
Uϵ(ω) from R (see Figure 2).

Figure 2: Tentative restrictions for a set Ω of relevant actions

It follows from Proposition 1 that, in the setting of Fig-
ure 2, any restriction R′ ⊂ R which includes ω1, ω2 and
ω3, would not eliminate N−|R, and therefore cannot have
a higher MESU than R. Hence, it is not necessary to check
those restrictions, effectively pruning them from the search
tree. As we show experimentally in Section 6, this can lead
to a significant reduction in the number of NE calculations
required compared to uniformly checking all restrictions.

For each of the tentative restrictions, we repeat the process
of computing the NE and relevant actions and subsequently
restrict them further until the action space is empty. Of all
those restrictions, we then select the one which gives the
highest MESU, resulting in a breadth-first search over the
restriction space. To ensure that restrictions are not consid-
ered multiple times, we keep a set (a closed/duplicate list)
of already explored restrictions. Moreover, the state space
size can be controlled via the hyperparameter ϵ (the resolu-
tion of SOAR) which defines the size of the interval around
a relevant action that is removed for tentative restrictions.

5.3 Equilibrium Oracle
To add restrictions purposefully, we need to know where the
current equilibria are. For now, we assume that there is an
oracle function µ which, for a given RG G|R, returns a joint
action a ∈ R which is an equilibrium of G|R with minimum
social utility. In Section A of the appendix, we show how to
implement such an oracle for quadratic utility functions.

5.4 Complexity and Correctness
Proposition 2. Let A = [a, b) and ϵ > 0. Then any restric-
tion chain A = R0 ⊐ R1 ⊐ ... ⊐ Rδ = ∅ consists of at
most ⌈ b−a

ϵ ⌉ elements, where R ⊐ R′ means that R′ is a ten-
tative restriction over R as created by Algorithm 1. In other
words, the depth of the search tree is bounded by ⌈ b−a

ϵ ⌉.

Proof. For any subsequent pair Ri ⊐ Ri+1 in the restriction
chain, let us denote by ωi the action whose ϵ-neighborhood
was removed at this step. We see that |ωi − ωj | ≥ ϵ ∀ i <
j (otherwise, ωj would have been already forbidden before
its removal). There cannot be more than ⌈ b−a

ϵ ⌉ points with
pairwise distance ≥ ϵ on the interval A which has length
(b− a).



Algorithm 1: Socially Optimal Action-Space Re-
strictor (SOAR)

Data: Social Game G = (N,A,u, u), equilibrium
oracle µ, resolution ϵ

Result: Socially optimal restriction R̂∗ ⊆ A

1 (R̂∗, û∗)← (A, u(µ(A)))
2 Q← Queue with content A
3 while Q is not empty do
4 R← Q.dequeue()

// Loop through relevant actions
5 for ω ∈ Ω(µ(R)) do
6 R′ ← R.remove(Uϵ(ω)) // Tentative

restriction

7 if R′ is not empty and has not been explored
before then

8 Q.enqueue(R′)
9 if u(µ(R′)) > û∗ then

10 (R̂∗, û∗)← (R′, u(µ(R′)))
11 end
12 end
13 end
14 end
15 return R̂∗

As a result of Proposition 2, we can bound the runtime
of SOAR by |Ωmax|d, where d = ⌈ b−a

ϵ ⌉, and Ωmax is the
largest set Ω(µ(R)) we encounter in the for loop (line 5).

Definition 7. A restriction R∗ is called optimal for G if
SG(R∗) ≥ SG(R) ∀R ⊆ A, and an optimal restriction
R∗ is called minimally restrictive if no proper superset of
R∗ is an optimal restriction.

Assumption 2. We assume that there is always a Nash Equi-
librium for a restricted game, i.e., Ω(R) ̸= ∅ ∀R ⊆ A.

Proposition 3. Let R∗ be an optimal restriction for a game
G. Then, under Assumption 2,

R∗ ⊂ R ⇒ ∃ω ∈ Ω(R) : ω /∈ R∗ .

Proof. Assume that ∀ω ∈ Ω(R) : ω ∈ R∗. Then N−|R ∈
R∗, and since R∗ ⊂ R,N−|R ∈ N|R∗ according to Propo-
sition 1. Therefore, S(R∗) ≤ S(R), which, together with
R∗ ⊂ R, contradicts the optimality of R∗.

Proposition 4. Throughout Algorithm 1, (at least) one of
the following two conditions holds true:

(i) The restriction queue Q contains a restriction R which is
a superset of an optimal restriction R∗

(ii) R̂∗ is already set to an optimal restriction

Proof. After the initialization step, condition (i) holds since
any optimal restriction R∗ is a subset of A, which is in Q.

From Definition 7, we see immediately that the update
step (R̂∗, û∗) ← (R′, u(µ(R′))) in line 10 satisfies two

properties: A non-optimal restriction never replaces an opti-
mal one, and an optimal restriction always replaces a non-
optimal one. Therefore, once condition (ii) is satisfied, it
stays satisfied until SOAR terminates. Let us therefore as-
sume that (ii) does not hold yet.

Whenever a restriction R is dequeued from Q, (i) either
still holds (this is the case if there is another such restric-
tion still in Q), or R is a superset of an optimal restriction
R∗. Since (ii) is not satisfied, we know that R itself is not
optimal. Proposition 3 asserts that there is a relevant action
ω ∈ Ω(R) which is not in R∗. Hence, at the respective pass
of the for loop, we will have R′ := R \ Uϵ(ω), and, for a
sufficiently small ϵ, R′ ⊇ R∗.

If R′ has been explored before, it was enqueued then,
meaning that (i) still holds. Otherwise, R′ is enqueued now.
If R′ ⊃ R∗, (i) holds, and if not, R′ is optimal, such that (ii)
becomes true.

Theorem 1. Let G = (N,A,u, u) be a social game. If As-
sumption 2 holds, and for a sufficiently small ϵ > 0, Algo-
rithm 1 finds an optimal restriction R∗.

Proof. SOAR terminates after finitely many steps: Any ten-
tative restriction R′ produced by a reduction of some R ∈ Q
continues a chain of increasingly constrained restrictions, as
in Proposition 2, and the length of such a chain is bounded
by ⌈ b−a

ϵ ⌉.
At the point of termination, Q is empty. Condition (i) in

Proposition 4 does not hold anymore, which means that R̂∗

is indeed an optimal restriction.

6 Experiments
We have shown that the SOAR algorithm finds an optimal
restriction for a given NFG under some assumptions. How-
ever, these assumptions are not always satisfied in real-world
settings. Our experimental study is therefore set to address
the following open questions:

Q1 If Assumption 2 is not guaranteed to hold, does SOAR
still find (close to) optimal restrictions?

Q2 Does the state-space pruning technique used by SOAR
allow for reasonable run-times, despite the fact that the
size of the search tree is exponential in b−a

ϵ ?

To answer these questions, we examine parameterized
continuous-action versions of the Cournot Game (CG) and
Braess’ Paradox (BP). First, we use domain knowledge
about both games to establish theoretical results for their so-
cial optimum and optimal restriction (see appendix). After-
wards, we compare these findings with the results of SOAR
for a range of parameters to obtain insights into SOAR’s
scaling behavior. The values of ϵ were empirically chosen to
provide a good balance between run-time and accuracy, but
the results are actually reasonably insensitive to this choice:
Varying ϵ by a factor of 5 caused the MESU to change by
less than 1% in both games.

6.1 Quadratic Utility Functions
Let us start by observing that many interesting problems, in-
cluding the continuous Braess Paradox, the Cournot Game,



and the continuous version of any 2x2 Matrix Game, can be
represented as NFGs with quadratic utility functions. They
have the convenient property of being convex or concave (or
both, i.e., linear) in each variable xi, depending on the sign
of the coefficient of x2

i . They allow for efficient computa-
tion of BR and NE, and therefore lend themselves well to
the examination of RGs and the optimization of restrictions.
Definition 8 (Quadratic Utility Function). A utility function
u : A → R is called quadratic if it is polynomial in the
players’ actions xi and has a maximum degree of 2. This
means that, for n players,

u(x) =
∑
α∈Nn

cα · xα1
1 · · ·xαn

n

with cα ∈ R and maxcα ̸=0 (
∑n

i=1 αi) ≤ 2.
For two players, quadratic utility functions have the form

u(x1, x2) = ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f

with real coefficients a, b, c, d, e, f ∈ R.
Quadratic utility functions allow us to construct an equi-

librium oracle µ for SOAR without any specific knowledge
about the game (see Section A in the appendix).

6.2 Definition of Parameterized Games
Definition 9 (Cournot Game). A parameterized Cournot
Game (CG) with parameter λ := pmax − c is defined by
N = {1, 2}, A = [0, λ], u1(x1, x2) = −x2

1 − x1x2 + λx1

and u2(x1, x2) = −x2
2 − x1x2 + λx2.

In the continuous version of Braess’ Paradox, players do
not choose one of the available routes, but decide which frac-
tion of their flow they send through each route (see Section D
of the appendix for the derivation of the utility functions):
Definition 10 (Continuous Braess Paradox). A parameter-
ized continuous Braess Paradox (BP) with parameter b ≥ 0
is defined by N = {1, 2}, A = [0, 1], u1(x) = −4x2

1 +(b−
5)x1−4x2+17 and u2(x) = −4x2

2−4x1+(b−5)x2+17.
Varying b changes the attractiveness of taking the “social”

routes, compared to the “selfish” route. This degree of free-
dom is sufficient to change the structure of the game and its
equilibria.

6.3 Metrics
To measure the performance of SOAR, we use the following
metrics:
Definition 11. For an action space A and a restriction R ⊆
A, the degree of restriction is defined as r(R) := 1− |R|

|A| .

Definition 12. The relative improvement of a restriction R
is

∆(R) :=
minx∈N|R u(x)−minx∈N u(x)

|minx∈N u(x)|
.

Moreover, we measure the number of oracle calls in
SOAR as a proxy for the cost of finding an optimal restric-
tion, implying that µ is assumed to have constant run-time
(see also the oracle complexity of an algorithm as defined by
Nemirovsky and Yudin (1983)).

6.4 Theoretical Expectation
Cournot Game The optimal restriction R∗ for the CG
with parameter λ is R∗ = [0, λ

4 ) ∪ [λ2 , λ) with a constant
degree of restriction r(R∗) = 25% (see Section B in the
appendix for details). We expect the result of SOAR to fluc-
tuate around these values, depending on the size of ϵ. The
value of λ does not change the structure of the game, merely
scaling the action space size, the equilibria and the restric-
tions.

Braess’ Paradox The unique unrestricted NE (user equi-
librium) is

(
b−5
8 , b−5

8

)
, while the social optimum is(

b−9
8 , b−9

8

)
. This means that for b /∈ [5, 17], both joint ac-

tions coincide, and restricting the action space cannot im-
prove the MESU. Within the interval [5, 17], however, the
players’ actions need to be pushed down (toward 0) to match
the social optimum, giving the optimal restriction R∗ =
A \

[
b−9
8 , b−5

4

]
with a degree of restriction of r(R) = b−5

4

on [5, 9] and r(R) = 17−b
8 on [9, 17] (see Section E of the

appendix for the formal analysis).

6.5 Experimental Results
Cournot Game Figure 3 shows the results of SOAR for
λ ∈ {10, 11, ..., 200} with ϵ = 0.1. The MESU of the re-
strictions found by SOAR is consistently ≈ 12.5% larger
than the unrestricted MESU, which matches the theoretical
prediction. Together with a degree of restriction of ≈ 25%,
this answers Q1 affirmatively for this setting. The number
of oracle calls (i.e., tentative restrictions) increases quadrat-
ically in |A| (see Section C of the appendix), as opposed
to the exponential bound shown in Section 5.4. Regarding
Q2, this indicates that the pruning technique can eliminate a
large part of the possible restrictions.

Braess’ Paradox Figure 4 shows the results of SOAR for
b ∈ [4, 18] in steps of 0.1 with ϵ = 0.001. Let us have a
look at b ∈ [5, 9] first: While the user equilibrium decreases
when b exceeds 5 (players find it increasingly advantageous
to take the center route, causing more and more congestion),
this effect can be completely eliminated using restrictions
(as we see, the restricted MESU stays at 34). For b > 9, the
optimal restriction stops pushing the players to choose ac-
tion 0 but allows an interval of [0, b−9

8 ]. Hence, both social
optimum and user equilibrium have increasing social utility,
eventually joining at b = 17. Again, the degree of restriction
and the restricted MESU approximately match the theoret-
ical optimum (Q1). Since the action space has a constant
size, the number of oracle calls is asymptotically constant,
only impacted by the required degree of restriction and the
subsequent pruning (Q2).

6.6 Reproducibility
The experiments were designed and executed in a
Google Colaboratory notebook and are fully repro-
ducible with zero configuration. The notebook is pub-
licly available on the authors’ GitHub repository at
https://github.com/michoest/aaai-2023.



Figure 3: Unrestricted and restricted MESU, relative im-
provement, degree of restriction and oracle calls for the CG

7 Discussion
After showing experimentally that the SOAR algorithm
reaches the theoretical expectation in practice and is ro-
bust against relaxed assumptions, we discuss three fur-
ther aspects: Limitations of SOAR, restriction learning, and
Stochastic Games.

7.1 Limitations of SOAR
We distinguish two types of limitations: Fundamental limi-
tations (inherent boundaries of our approach), and practical
limitations due to the implementation of the oracle.

Fundamental Limitations (a) In coordination games, so-
cial welfare is maximized when players choose the same ac-
tion. Contribution games, in contrast, require the players to
choose different actions to maximize social welfare, which
means that uniform restrictions are unlikely to suffice for
socially optimal outcomes; (b) Action spaces with multiple
dimensions require a different approach for defining tenta-
tive restrictions, which respects the space’s topology and the
correlation between dimensions; (c) Lifting the assumption
of finite interval-union restrictions could allow for better re-
strictions, but they might not have a compact representation.

Practical Limitations (a) SOAR currently only deals with
pure strategies and equilibria. Mixed equilibria can be han-
dled similarly, but the set of relevant actions will generally
be infinite, such that sampling or discretizing actions will be
necessary; (b) Other types of stable actions can be used in-
stead of NE. In fact, NE are not the only concept for stable
actions in multi-player interactions, and they do not always
coincide with experimental results taken from RL agents
(Nowé, Vrancx, and De Hauwere 2012).

Figure 4: Unrestricted and restricted MESU, relative im-
provement, degree of restriction and oracle calls for the BP

7.2 Restriction Learning
The mechanism design problem of finding an optimal re-
striction for a given NFG with static utility functions re-
quires upfront knowledge about the game. If, on the other
hand, the utilities are unknown, it is necessary to derive
them from observations and find restrictions through on-line
learning. This represents a promising line of future work on
SOAR.

7.3 Stochastic Games
Multi-agent systems are usually modeled as sequential de-
cision processes with a changing environmental state. The
presented version of SOAR explicitly calculates an optimal
restriction for a given NFG; when generalizing to Stochas-
tic Games, the utility (i.e., reward) functions depend on the
state. As a consequence, the optimal restriction needs to be
re-calculated for each time step. For a future extension of
SOAR, we propose a restriction policy π : S → R which
maps states to restrictions, and which can be trained to max-
imize the expected social utility.

8 Summary
In this paper, we have introduced the problem of designing
optimal restrictions for Normal-Form Games with contin-
uous action spaces. The SOAR algorithm can significantly
improve a game’s minimum equilibrium social utility by
aligning user equilibrium and social optimum. Therefore,
this work sets the scene for future work on more general
restriction-based mechanism design approaches (e.g., Re-
stricted Stochastic Games), which we conjecture to be a
crucial step to building powerful governance entities for an
emergent multi-agent society.
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A Equilibrium Oracle for Quadratic Utilities

For a quadratic utility function u and a restriction R, the best
response B1|R(x2) can be found by a straight-forward case
analysis: Let u be defined as

u(x1, x2) = ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f ,

and define five “candidate points” xl := minx∈R x, xu :=
maxx∈R x, x∗ := cx2+d

−2a , x− := maxx∈R,x<x∗ x, and
x+ := minx∈R,x>x∗ x. Then

• if u is constant in x1 (i.e., a = 0 and cx2 + d = 0),
B1(x2) = R

• if u is linear in x1 with positive slope (i.e., a = 0 and
cx2 + d > 0), B1(x2) = {xu}

• if u is linear in x1 with negative slope (i.e., a = 0 and
cx2 + d < 0), B1(x2) = {xl}

• if u is convex in x1 (i.e., a > 0), B1(x2) =
argmaxx∈{xl,xu} u(x)

• if u is concave in x1 (i.e., a < 0) and x∗ ∈ R, B1(x2) =
{x∗}

• if u is concave in x1 (i.e., a < 0) and x∗ /∈ R, B1(x2) =
argmaxx∈{x−,x+} u(x).

Note that B1(x2) is not necessarily unique (or even a fi-
nite set). To find the NE, observe that the unrestricted best
response functions B1(x2) = − c1x2+d1

2a1
and B2(x1) =

− c2x1+e2
2b2

lead to the unique unrestricted NE

x∗ = (x∗
1, x

∗
2) =

(
c1e2 − 2d1b2
4a1b2 − c1c2

,
c2d1 − 2e2a1
4a1b2 − c1c2

)
.

If this point exists and is allowed by R, i.e., 4a1b2−c1c2 ̸= 0
and x∗ ∈ R2, then N|R = {x∗}. Otherwise, we use ficti-
tious play (i.e., successive mutual best responses) to find the
fixed points, repeatedly calling the restricted best response
functions while maintaining a list of candidate solutions.

Copyright © 2022, Association for the Advancement of Artificial
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B Expected Results for the Cournot Game
For the (unrestricted) PCG, the unique best responses are
B1(q2) =

λ−q2
2 and B2(q1) =

λ−q1
2 . Therefore, we get

D(q) =

(
q1 −

λ− q2
2

)2

+

(
q2 −

λ− q1
2

)2

=
5

4
(a2 + b2) + 2ab− 3

2
λ(a+ b) +

1

2
λ2

which has a unique global minimum q∗ = (λ3 ,
λ
3 ) with

D(q∗) = 0.
If we allow interval union restrictions for the PCG, best

responses are not unique anymore, but still follow a simple
pattern: If the unrestricted best response q∗ is not part of an
allowed interval, the restricted best responses are the closest
allowed actions on either one or both sides of q∗.

More formally: Let q∗ := λ
3 be the unrestricted optimal

quantity, and define, for a given restriction R ⊆ [0, λ], the
two closest allowed quantities q+ := minq∈R({q > q∗})
and q− := maxq∈R({q < q∗}). Setting ∆+ := q+− q∗ and
∆− := q∗ − q−, the Nash Equilibria N|R of the restricted
PCG are:

N|R =



{(q+, q+)} if ∆+ < 1
2∆

−

{(q+, q+), (q+, q−), (q−, q+)} if ∆+ = 1
2∆

−

{(q+, q−), (q−, q+)} if 1
2∆

− < ∆+ < 2∆−

{(q−, q−), (q+, q−), (q−, q+)} if ∆+ = 2∆−

{(q−, q−)} if ∆+ > 2∆−

.

This suggests the following sequence of successive re-
strictions for the SOAR algorithm:
• Identify λ

3 as the unique relevant action of the unre-
stricted game and therefore exclude R :=

[
λ
3 − ϵ, λ

3 + ϵ
)

from the action space
• Identify both boundary actions as relevant and exclude

one of them, increasing the excluded region R around λ
3

• Whenever R becomes imbalanced by a factor of > 2
around λ

3 , a symmetric equilibrium appears at one end
of it

• Finally, R is large enough to produce the symmetric equi-
librium (λ4 ,

λ
4 )

• This occurs when R = [λ4 ,
λ
2 ), and therefore R =

[0, λ
4 ) ∪ [λ2 , λ)



• The algorithm goes on to enlarge R until the set of al-
lowed actions becomes empty

• Since no further restriction produces a socially better sta-
ble solution, the largest (i.e., least restrictive) R with
(λ4 ,

λ
4 ) ∈ N|R is finally returned as the optimal restric-

tion R∗

• The resulting degree of restriction is r(R∗) = 25%

The optimal restriction R∗ has the unique equilibrium
(λ4 ,

λ
4 ) which gives the SSU S(R∗) = u(λ4 ,

λ
4 ) = 1

4λ
2.

In contrast, the unrestricted game produces a unique equi-
librium of (λ3 ,

λ
3 ), such that S(A) = u(λ3 ,

λ
3 ) = 2

9λ
2. The

resulting relative improvement is ∆rel =
1
8 .

C Number of Oracle Calls in the Cournot
Game

To show that the number of oracle calls for SOAR’s solu-
tion of the Cournot Game grows quadratically rather than
exponentially, let us fit the two curves f1(λ) = aebλ + c
and f2(λ) = aλ2 + bλ + c to the data and check their de-
viation. Recall that the experimental data is f(10) = 912,
f(11) = 1095, f(12) = 1294, f(13) = 1513, and so on
(the full data set can be reproduced using the Colab note-
book in the supplementary material).

As can be seen from Figure 1, the quadratic interpolation
polynomial f2 gives a close-to-perfect fit with parameters
a = 8.33, b = 8.00, and c = −1.45. In contrast, the expo-
nential fit with f1 produces the degenerate parameter values
a = 0.00, b = 1.00, and c = 1.12 · 1062.

D Continuous Braess’ Paradox
In the original (discrete) version of Braess’ Paradox (see
Figure 1a in the main paper), each agent has three route
options, of which they choose exactly one. The travel time
from 0 to 3 is then used as their cost function (i.e., it is to be
minimized).

When transforming this into a one-dimensional continu-
ous NFG, we have to address two points: (a) There has to be
a continuum of actions, and (b) we need utility functions in-
stead of cost functions. Therefore, we define the action space
as A = [0, 1] and give it the following meaning: Agent 1
routes a flow of x1 through route 0-1-2-3, and the remain-
ing flow of (1− x1) through route 0-2-3. Similarly, agent 2
routes a flow of x2 through route 0-1-2-3, and the remain-
ing flow of (1 − x2) through route 0-1-3. This means that,
for both agents, 0 is the “cooperative” action, while 1 is the
“competitive” action. The edge weights are adjusted such
that full utilization (which is now a flow of 2 along an edge)
gives the same travel time as utilization of 1 in the original
setting (see Figure 2).

We calculate the expected travel time ci(x) for both
agents and subtract them from a virtual baseline of 32 in
order to get the utility functions ui(x). The expected travel
time along a route is the flow on the route, multiplied by the
sum of the edge weights wi(x), given this flow. For agent 1,

Figure 1: Exponential and quadratic interpolation of the
number of oracle calls in the Cournot Game

Figure 2: Continuous version of Braess’ Paradox

this calculation is:

c1(x) = x1(w01 + w12 + w23) + (1− x1)(w02 + w23)

= x1(w01 + w12) + (1− x1) · w02 + w23

= x1(4(1 + x1) + 1) + 11(1− x1) + 4(1 + x2)

= 4x2
1 − 6x1 + 4x2 + 15 ,

and the corresponding utility function is

u1(x1, x2) = −4x2
1 + 6x1 − 4x2 + 17 .

In the same way, we get

u2(x1, x2) = −4x2
2 − 4x1 + 6x2 + 17 .

To generalize this setting, let us assume affine the weight
functions w0-2(x) = w1-3(x) = a(x1 + x2) + b and



w0-1(x) = w2-3(x) = c(x1 + x2) + d, while leaving the
constant weight w1-2(x) = 1 unchanged. This gives the pa-
rameterized utility functions

u1(x) = −(a+c)x2
1+(2a+b−c−1)x1−cx2+(4c+d+1)

and

u2(x) = −(a+c)x2
2−cx1+(2a+b−c−1)x2+(4c+d+1) .

To obtain a one-dimensional range of experiments, we fix
a = 0, c = 4 and d = 0 and vary b (intuitively, we vary the
attractiveness of taking the social routes, compared to the
selfish route). The parameterized utility functions ui(x) are
therefore

u1(x) = −4x2
1 + (b− 5)x1 − 4x2 + 17

and
u2(x) = −4x2

2 − 4x1 + (b− 5)x2 + 17 .

E Expected Results for the Braess Paradox
From u1 and u2 as defined above, we can immediately de-
rive the best response functions Bi(xj) = b−5

8 , resulting
in N =

{(
b−5
8 , b−5

8

)}
. Moreover, since u(x) = u1(x) +

u2(x) = −4x2
1 − 4x2

2 +(b− 9)x1 +(b− 9)x2 +34, we get
the social optimum x∗ =

(
b−9
8 , b−9

8

)
.

Finally, we conclude from A = [0, 1] that, for b ≤ 5 and
b ≥ 17, N = {x∗} such that the unrestricted and the re-
stricted MESU are equal. For b ∈ (5, 17), however, the two
values differ, such that restricting A can improve the MESU.

Let us first assume that b ∈ (5, 9]. To make b−9
8 a best

response for a player, we have to exclude any action from A
that this player would prefer over b−9

8 . It is easy to see that
the range of actions that needs to be excluded is (0, b−5

4 ),
giving the unique optimal restriction R∗ = {0} ∪ [ b−5

4 , 1].
For b ∈ [9, 17), a similar analysis yields that ( b−9

8 , 1)

needs to be excluded, and therefore R∗ = [0, b−9
8 ].

From the optimal restriction R∗, we can calculate the un-
restricted and restricted MESU as well as the degree of re-
striction:

S(A) =


34 for b ≤ 5
1
8

(
b2 − 18b+ 337

)
for b ∈ [5, 13]

2b+ 8 for b ≥ 13

,

S(R∗) =


34 for b ≤ 9
1
8 (b− 9)2 + 34 for b ∈ [9, 17]

2b+ 8 for b ≥ 17

,

and

r(R∗) =


0 for b ≤ 5
b−5
4 for b ∈ [5, 9]

17−b
8 for b ∈ [9, 17]

0 for b ≥ 17

.


