Adaptive Prefetching Scheme Using Web Log Mining in Cluster-based Web
Systems

Heung Ki Lee, Baik Song An, and Eun Jung Kim
Department of Computer Science and Engineering
Texas A&M University
TAMU 3112 College Station, TX, USA
{hklee, baiksong, ejkim} @cs.tamu.edu

Abstract

The main memory management has been a critical is-
sue to provide high performance in web cluster systems.
To overcome the speed gap between processors and disks,
many prefetch schemes have been proposed as memory
management in web cluster systems. However, inefficient
prefetch schemes can degrade the performance of the web
cluster system. Dynamic access patterns due to the web
cache mechanism in proxy servers increase mispredictions
to waste the I/0 bandwidth and available memory. Too ag-
gressive prefetch schemes incur the shortage of available
memory and performance degradation. Furthermore, mod-
ern web frameworks including persistent HTTP make the
problem more challenging by reducing the available mem-
ory space with multiple connections from a client and web
processes management in a prefork mode. Therefore, we
attempt to design an adaptive web prefetch scheme by pre-
dicting memory status more accurately and dynamically.

First, we design Double Prediction-by-Partial-Match
Scheme (DPS) that can be adapted to the modern web
framework. Second, we propose Adaptive Rate Controller
(ARC) to determine the prefetch rate depending on the
memory status dynamically. Finally, we suggest Memory
Aware Request Distribution (MARD) that distributes re-
quests based on the available web processes and memory.
For evaluating the prefetch gain in a server node, we im-
plement an Apache module in Linux. In addition, we build
a simulator for verifying our scheme with cluster environ-
ments. Simulation results show 10% performance improve-
ment on average in various workloads.

1. Introduction

Cluster systems have been widely accepted as a cost ef-
fective solution for various applications such as web ser-

vices and file/database management. However, web clients
experience long and unpredictable delays when retrieving
web pages from the cluster systems. To solve the delay
problem, there have been many studies [22, 18, 29, 37] on
the main memory management such as web cache schemes
and web prefetch schemes. Although web cache schemes
reduce the network and I/O bandwidth consumption, they
still suffer from a low hit rate, stale data and inefficient
resource management. [2] shows that an inefficient web
cache management caused a major news web site crash, also
called the Slashdot effect.

Web prefetch schemes overcome the limitation of web
cache mechanisms through pre-processing contents before
a user request comes. Web prefetch schemes expect future
requests through web log file analysis and prepare the ex-
pected requests before receiving it. Compared with web
cache schemes, web prefetch schemes focus on the spatial
locality of objects when current requests are related with
previous requests. Web prefetch schemes increase the band-
width utilization and reduce or hide the latency due to bot-
tleneck at web server. However, despite these benefits, three
difficulties prevent prefetch schemes from being exploited
in web cluster systems. First, it is difficult to find which ob-
jects are related with the incoming requests. At the server
side, web access patterns are dynamic because of the web
cache mechanism. Second, it is difficult to find an optimal
prefetch rate. Too aggressive prefetch schemes may hurt
overall performance due to the shortage of memory. Finally,
a prefetch scheme in a web cluster system should be con-
sidered along with an efficient resource management. The
inappropriate resource management drains the resource of
one backend server, while other backend servers have the
available resource.

To overcome these difficulties, we propose an adaptive
web prefetch scheme. To the best of our knowledge, our
scheme is the first attempt to provide an adaptive prefetch
scheme in web cluster environments to support the modern

web framework. Our prefetch scheme decides which web
objects are to be prefetched by considering memory status
of the web cluster system. Our adaptive scheme consists
of three components; Double Prediction-by-Partial-Match
Scheme (DPS), Adaptive Rate Controller (ARC) and Mem-
ory Aware Request Distribution (MARD).

First, we propose a dynamic web prediction scheme
called Double Prediction-by-Partial-Match Scheme (DPS).
Web access patterns are dynamic depending on the location
of a client. When web objects are stored in an intermedi-
ate node, requests to those cached objects do not reach the
web server. The DPS scheme solves the problem by provid-
ing the adaptiveness that handles the client’s random access
pattern.

Second, we suggest Adaptive Rate Controller (ARC) that
provides an adaptive prefetch rate at run time. There is a
trade-off between consuming memory space and the per-
formance of a web cluster system in modern web frame-
works. In multiprocessing environments, web processes al-
locate memory by their needs. However, we cannot provide
the system with unlimited memory, so aggressive prefetch
schemes can interfere with demand requests from the same
client or other clients. For improving the performance of
prefetch schemes, the ARC scheme prefetches web objects
depending on the memory status.

Our last contribution is Memory Aware Request Dis-
tribution (MARD) which distributes incoming requests to
the prefetch-enabled backend servers efficiently. Locality-
based distribution is commonly accepted to improve the
performance using the locality of incoming requests. How-
ever, non-uniform distribution can use up the memory at the
selected backend server and an aggressive prefetch scheme
also consumes the memory for prefetching useless objects
at the selected server. It can cause the delay in the overall
web cluster system. MARD avoids the skewed distribution
of requests at the web cluster system.

In this paper, we design a prefetch scheme for cluster en-
vironments that is well adapted to the modern web frame-
work and workloads. In Section 2, we discuss the existing
prefetch technologies in detail. Section 3 describes our mo-
tivation in prefetch at the web cluster system. Section 4 ex-
plains the detailed design of the proposed prefetch scheme.
Section 5 shows the simulation model and results, while
Section 6 concludes the paper.

2. Related Work

Web prefetch schemes are roughly classified into two
groups; short-term and long-term prefetches. Short-term
prefetch schemes predict future requests based on the recent
history information. [26] proposes the prefetch algorithm
for a general file system. [5, 13] predict the next incoming
requests using the N-th order Markov model. [13] suggests

heuristic schemes to reduce high complexity at a multi-level
Markov model.

The Prediction-by-Partial-Match (P.P.M.) model [9, 12,
6, 15] complements N-th Markov models. Order of Markov
model increases not only the accuracy but also the complex-
ity at the same time. The P.P.M. schemes predict the future
incoming requests based on the top-n schemes [12, 6] or a
confident threshold [25, 9]. In [12], they search the long
sequences for frequently accessed patterns. [4] suggests
dynamic P.P.M. models. The recent research evaluates the
latency of existing prediction schemes [15, 14].

The long-term prefetch scheme defines clusters of web
objects using access pattern, then prefetches web objects
in the unit of the cluster. [10, 28] provide replacement
policies for Content Distribution Network (CDN) platform,
while [35, 16] suggest the replacement algorithm for mo-
bile environments. [17] provides a hierarchical cluster-
ing system that groups search results into several folders.
In [11], a divide-and-merge scheme creates the cluster
of web objects by combinational approaches between top-
down and bottom-up schemes. [33] suggests the modified
proxy model to prefetch the embedded objects from the web
server. [24] provides a web cluster scheme using a vector
model and semantic power.

Hybrid prefetch scheme integrates the short-term
prefetch based on the Markov model and the long-term
prefetch using cluster scheme. [20] suggests the com-
binational prediction scheme of existing models including
Markov models, sequential association rules, association
rules and cluster schemes. [23] generates Significant Usage
Patterns based on abstraction techniques and also provides
the path between Significant Usage Patterns using Markov
model. [38, 8, 19] create the cluster based on their pol-
icy including Expectation-Maximization [8], CitationClus-
ter [38] or K-means cluster scheme [19]. After generat-
ing the cluster, they use the Markov model to find the rela-
tionship between clusters of web objects. Although hybrid
scheme provides the benefit of both short-term and long-
term schemes, it does not support the memory-consuming
modern web framework.

[21] provides Non-interfering Prefetch System (NPS)
that manages the web prefetch rate based on the response
time. [36] considers web prefetch in cluster environments.
However, both of them are not proper to find the adaptive
prefetch rate.

3. Motivation

Many studies [25, 10, 15, 14, 4, 28, 33] have been car-
ried out to design effective web prefetch mechanisms. How-
ever, existing prefetch schemes fail to provide a solution
that is suitable for modern web framework. They do not per-
form well in conjunction with persistent HTTP, web cache

scheme or request distribution policy in a cluster environ-
ment.

3.1. HTTP 1.1 Framework

Generally, an HTML file contains a number of embedded
objects. Web clients request main HTML file to a server,
then receive it. After analyzing the received main HTML
file, web clients make the list of its embedded objects in
the received main HTML file and request them to the web
server. With HTTP 1.0, web client establishes new connec-
tion every time it requests an object. A client with HTTP
1.1 reuses a connection for multiple requests using persis-
tent HTTP. In Figure 1, a web client with HTTP 1.0 has in-
tervals between requests, while there is only one interval be-
tween the main object and its embedded objects with HTTP
1.1. These intervals between requests allow the web server
to predict and prefetch the next requested web objects. In
HTTP 1.0, there are intervals between consecutive requests
that give the chance to prefetch the predicted embedded ob-
jects, while HTTP 1.1 makes it difficult to prefetch them.
Web server with HTTP 1.1, therefore, prefetches embedded
objects in the interval between the request to main object
and the requests to embedded objects.

TCP Parse the main R blist Re-establist TCP
Establishment web object of TCP connection of TCP connection Termination
Main Em1 Em 2 Em 3
HTTP 1.0.
TCP Parse the main TCP

Establishment web object HTTP Keep-alive Time Termination

Main Em1|Em2 | Em3
HTTP 1.1.

Main: Main web object
Em: Embedded web object

Figure 1. Persistent HTTP and Web Pipeline

3.2. Web Cache Scheme in Proxy Server

In general, web client requests the embedded objects af-
ter processing main object. However, we observe that not
all embedded objects are requested after main object. Only
a part of embedded objects have been requested after main
object. Table 1 shows the request frequencies of 12 embed-
ded objects after requesting main.html in Computer Science
and Engineering at Texas A&M University. 5 embedded ob-
jects are frequently requested, while others have less than
100 requests.

One reason is that proxy servers provide some objects
to the client directly if they are in the cache. The requests

replied by proxy server will not be transferred to the web
server. In addition, the configuration of web documents
such as duration time and random objects can make the in-
equality of web access pattern. This random access pattern
causes the misprediction. The misprediction does not only
lose the chance to enhance the performance but also wastes
the I/O and network bandwidth.

Table 1. The Frequency of Request to The
Embedded Objects

[Index || Name | Request |
1 /html4/front.css 517
2 /html4/global.css 517
3 /images/bin.jpg 477
4 /images/header.jpg 473
5 /images/LOOK.gif 446
6 /images/random/01 75
7 /images/random/06 69
8 /images/random/07 66
9 /images/random/09 66
10 /images/random/010 62
11 /images/random/03 59
12 /images/random/04 58

3.3. Prefetch in Web Cluster

The distribution policy in a web cluster system plays a
crucial role in system performance [27, 3, 30]. Especially,
the locality-based request distribution schemes [27, 3] en-
hance the performance of web cluster systems through ef-
ficient memory management of backend servers. A web
cluster handles multiple connections from the same client
independently. Therefore, different backend servers in the
web cluster reply to the same client. When a backend server
prefetches web objects, it is not guaranteed that the next
incoming request will be forwarded to the backend server
which has the web objects through prefetch. To handle mul-
tiple connections, distributor should keep the prefetch infor-
mation in the backend server of the web cluster system.

Moreover, the locality-based schemes with prefetching
fail to achieve load balancing. The more files are prefetched
at the backend servers, the more requests are forwarded to
them. It results in consuming available memory space in
the backend servers, and degrading the performance of the
web cluster systems. A simply aggressive prefetch scheme
in web cluster systems increases the inequality of request
distribution, and drops performance dramatically.

4. Adaptive Web Prefetch Scheme in Web
Cluster System

4.1. Double P.P.M. Scheme (DPS)

Although the previous work [19, 8, 38] provides hybrid
schemes which lie between short-term and long-term ap-
proaches, they do not consider the modern web framework
and cluster environments. At server side, access patterns
are dynamic depending on the location of web clients and
configuration of objects. The prefetch scheme at server side
must be able to tolerate the randomness of access patterns.

We propose a two-level hybrid scheme, referred to as
DPS. DPS handles main and embedded objects in differ-
ent ways. Figure 2 shows how DPS finds the relationship
between web objects from web traces. For the first step,
DPS classifies web objects into a number of groups, which
consists of one main object and its related embedded ob-
jects. During the grouping of web objects, DPS records the
intra-section relationship defined by the request frequency
of embedded objects after the request of the main object.
DPS differentiates main objects from embedded objects ac-
cording to the file extension. Web objects with file exten-
sion such as "html’, *php’ and ’jsp’ are classified into main
objects. In Figure 2, gray circles, white circles and ar-
rows denote main objects, embedded objects and relation-
ship, respectively. Each arrow has a prediction value, which
shows the probability that the request of an embedded ob-
ject will follow that of a main object. In Figure 2, DPS
finds three groups including A’, ’B’ and ’C’. In the second
step, it searches for the inter-section relationship between
groups. DPS focuses on only the access to main objects
that is representative of the group. In this step, DPS defines
the access to main objects as the access to their correspond-
ing groups. In Figure 2, DPS detects two access patterns to
main objects including ’A — B — C’ and ’A — C — B’.
We can make the graph based on access patterns.

Although access patterns are changed by the web cache
or configuration of web objects, DPS can find access pat-
terns of objects. Intra-section relationship finds related em-
bedded objects, while inter-section relationship can find the
related main objects.

4.2. Adaptive Rate Controller

Using the relation information provided by DPS, Adap-
tive Rate Controller (ARC) calculates the prefetch rate dy-
namically. It determines which objects should be prefetched
considering memory status. Memory is one of critical re-
sources in web server system. Aggressive prefetching does
not always guarantee the performance enhancement.

Figure 3 shows the response time over the variable hit
rate of the prefetched data. We use 100 file groups for each

() Main Obect () Embedded Obect — » ItraRelaion -+ Inter Relation
1% Step

Client 1:

(&) (ay) (a2) (B) (B (©) (CD) o B

Client 2: o @ @

Intra-section Relationship

274 Ste|
T
@)| (@ T

EEElcior)

Inter-section Relationship

N A

Figure 2. Double P.P.M. Scheme

x 10"

[N 1V File [100K File [0 10K File [1K File|

Response Time (Micro Sec)
N

No-P 0.0 0.1 02 03 04 05 06 0.7 0.8 09 10
Hit Rate

Figure 3. Prefetch Efficiency

file size; 1MB, 100KB, 10KB and 1KB. A file group in-
cludes 20 files of the same size. A client selects one group,
and then generates requests to two files in the group at an
interval of 2 seconds. After processing the first incoming re-
quest, the web server prefetches one file from the disk. The
client creates the requests to the prefetched object or non-
prefetched object according to the test configurations. With
less than 10% hit rates, it takes longer than non-prefetch
scheme. This result proves that the inefficient memory man-
agement degrades the performance in the web server sys-
tem. It is a critical problem to figure out which files are
prefetched in the memory.

We should formulate system improvements considering
disk workloads and memory status. The following equation
shows the access improvement.

P =RT - RT, (1

where RT and RT are the average response time with-
out prefetching the predicted object and the average re-
sponse time with prefetching the predicted object, respec-

tively. ARC manages the prefetch memory for P in equation
(1) to be positive. A web server is modeled by employing an
M/G/1 round-robin queuing system where web server pro-
cesses share one CPU and disk. Also, all cached pages in
buffer cache have the same access probability in the future.
First, the average response time (R1") in a web system is

RT = Hsys X Tinem + (]- - Hsys) X Tdisky (2)

where Hy s, Tyyem and Ty, are the hit rate of memory,
memory transmission and disk response time, respectively.
Taisk is the disk response time denoted by 1’2 S where DS
is the disk service time and p is the disk utilization. Disk
utilization, p, is the miss rate of memory multiplied by the
disk service time, D.S. The miss rate of memory is A X
(1 — Hgys), where A is the request rate to a page.

When requests hit on memory, requested pages are lo-
cated in the prefetch memory or the buffer cache. Thus,
Hgys is Hprey + Hypyp, where Hp,or is the hit rate of
prefetch memory and Hy, s is the hit rate of buffer cache.
We drive equation (2) to equation (3) as follows.

RT:(Hpref+Hbuf) ><,I‘me'm""_F‘sys X %Sy (3)
where F}, is the miss rate of memory, the same as 1—H .
Ais1l— A x Fyye x DS. Hppeyr and Hy, are hit rates
of prefetch memory and buffer cache, respectively. When
the requested page misses on memory, the response time
becomes %S, which is greater than zero. Also, DS and A

are greater than zero.

A=1-AxFy,xDS>0 @)

When there is not enough space to prefetch related files, OS
kicks out some cached objects in buffer cache to increase
available memory space. It increases the hit rate of prefetch
memory, while decreasing the hit rate of buffer cache. After
prefetching related files, the average response time (RT/) is
defined as below.

’ ’ ’ ’ DS
RT = (Hpref +Hbuf) X Tmem +Fsys X T

4)
where Hp,., f/, Hy, f, and Fsysl are the hit rate of prefetch
memory, the hit rate of buffer cache and the miss rate of
memory, respectively. Ais1 -\ x Foys x DS, where
X is the request rate to a page. When the requested page

mi he r nse tim mes ————==———_ which
sses, the response time becomes 17/\,XFW,X[3$,W C

is greater than zero. Also, DS and A are greater than zero.

A'=1-) xF,, xDS>0 (6)

The access time to cached object in memory is negligible,
therefore T,.,, becomes zero. We rewrite equation (1) as
below.

DS x (Fgys X A — Fsysl x A)
Ax A

P=RT—RT = (7)
For P in equation (7) to be positive, A, Al, DS and F,ys x
A — Fsys/ x A should be also positive. In equation (4) and
(6), A and A are greater than zero. D.S is positive, because
it is the disk service time. Therefore, Fl, s X A — Fsysl x A
should be greater than zero. In equation (5), Ais1—)\ x
Fsys, x DS. Fgys % A — Fsys, x A > 0 is rewritten as
below.

E@ys - >\/ X Feys/ X Fsys X DS - F‘sys/
+ AX Fays X Faye x DS >0 (8)

Web prefetch system processes not only demanded re-
quests but also prefetch requests. Therefore, X' is the sum
of A for demanded requests and A, ¢ for prefetch requests.
We rewrite inequality (8) to (9).

€))

Fyys is1—Hppef —Hpys » where Hp,c; and Hy,f are hit
rates of prefetch memory and buffer cache, respectively. We
assume the cached objects have the same probability to be
accessed in the future. Therefore, all pages in buffer cache
contribute uniformly to the Hy, ;. When N(B) pages are

Hyuy .
N(B) to the cache hit

ratio. When more objects are prefetched, H),.s increases.

in buffer cache, each page contributes

Hpref/ is the sum of Hp,.r and Hp,cq Where Hp,.cq is the
prediction value of prefetched files.

N(B) — N(R)

H, e 1 —
pred > N(B)

Hpref - Hbuf X

Fsys
14 Apref X Fsys x DS’

(10)

where N (B) and N (R) are the buffer cache size and the
released buffer size for prefetched object, respectively. To
maximize the performance improvement, our web predictor
monitors the hit rate and size of the buffer cache, and then
prefetches web objects which satisfy inequality (10). We
get prediction values from DPS, while the hit rate and size
of buffer cache are obtained using PAPI [32] and meminfo
in Linux Kernel.

4.3. Memory Aware Request Distribution

There are two groups of nodes in a web cluster system;
web distributor and backend nodes. A web distributor for-
wards incoming requests to backend servers based on its
policy. In our simulation, web distribution process uses a
locality-based distribution and TCP splicing scheme.

In process-based web servers such as Apache or ISS,
there are several idle processes waiting for new requests.
When there are no more idle processes, the web server cre-
ates a new web process and consumes the memory space
which could be used to cache file otherwise. Therefore, too
many web processes can decrease the benefit of the buffer
cache in the web server. To avoid the skewed distribution,
MARD checks the number of idle web processes in each
of backend servers. Distributor does not forward a new re-
quest to those with no more idle process. MARD prevents
the memory shortage due to too many web processes.

5. Experimental Results
5.1. System Configuration in Simulation

Our simulator is composed of 2 days of web traces, a
web analyzer and a web cluster simulator. The Web ana-
lyzer gets the relation information based on the first day’s
web traces. Then, the web cluster simulator simulates
prefetch schemes using the second day’s web traces and the
information from web analyzer.

We design the memory management module in the web
cluster system based on the Linux kernel 2.6. When the web
server processes access files through the kernel, a number
of kernel components work for improving I/O performance.
The buffer cache releases the overhead of disks by reducing
the number of on-demand I/O requests. The I/O prefetch
module reads consecutive blocks in advance, and I/O cluster
module reads a cluster of blocks at a time. We design I/O
operation in our simulator based on the Linux kernel’s I/O
prefetch and cluster schemes. LRU scheme is employed
as a cache replacement policy in our simulation. The web
cluster system in our simulation is configured with one web
distributor and four backend servers. Each backend server
has its own disk that contains the whole web objects. In
addition, the disk simulator, DiskSim [7], is embedded in
our simulator for accurate low-level I/O simulation. The
simulation system parameters are shown in Table 2.

We measure the size of kernel memory and web server
processes while running Apache 2.2 on the Linux kernel
2.6.18. Web cluster distributor and backend servers are con-
nected to the local area network that operates at the speed of
100 Mbps. A web client can create up to 4 connections for
delivering web documents, and each backend server main-
tains 5 to 10 idle web processes for new requests.

Table 2. Simulation Parameters

Backend Server
Parameter Value
Physical Memory 512 MB
Kernel Space 100 MB
Web Process Size 20 MB
Disk Latency Provided by DiskSim [7]
Memory Latency (Hit) | 500 Mbps
Network Latency 100 Mbps

Web Distributor
Splice Hit 160 us per packet [31]
Splice Miss 182173 us per packet [31]
Session Time 15 Seconds [1]

Web Client

Concurrent Connection | Up to 4

Table 3 shows real traces from 2 web sites includ-
ing Department of Computer Science and Engineering in
Texas A&M University, ClarkNet and synthetic traces from
SPECweb2005 benchmark [34]. Although web clients use
HTTP1.0 in the ClarkNet, we assume that they work based
on the persistent HTTP.

Table 3. Requests to The Embedded Objects

’ Name \ Day 1 \ Day 2 \ HTTP ‘
CS TAMU 25479 | 20018 | HTTP 1.1
ClarkNet 210908 | 229944 | HTTP 1.0
SPECweb2005 | 6304 116302 | HTTP 1.1

5.2. Evaluation Results

We compare the performance of our adaptive prefetch
scheme with existing PP.M. [9, 12] and cluster schemes
[10, 28]. Our adaptive scheme uses DPS to get the rela-
tion information of web objects and ARC to dynamically
calculate the threshold value for prefetching. P.P.M. and
cluster schemes use 6 different static threshold values. For
the completeness of our study, we also include results of
non-prefetching scheme. In Figure 4, Y axis denotes the re-
sponse time from web cluster system and X axis represents
prefetch schemes. First 12 entries in X axis show results
of PPM and cluster schemes using 6 static threshold val-
ues. Each of them has a character, P or C, followed by a
number. P, C and the number stands for P.P.M. scheme,
cluster scheme and threshold value which means minimum
prediction rate in order to be prefetched, respectively. NO-
P and ADA are non-prefetching and our adaptive prefetch
schemes. 3 different orders are used for each scheme.

Adaptive prefetch scheme outperforms others by max-
imum 40 percent. DPS has a great advantage in modern

I st order [2nd order [___]3rd order
T T T T T

T 15,000 T

: 10,000
: 5,000 -
}

o

P_0.0 C00 P02 C02 P04 C04 P06 CO6P08CO8PL0C_L0NO-P ADA
Prefetch Scheme

TAMU

—

T 40,000
: "ClarkNet

) 300001

% 20,000 Bl
; 10,000 B
i

P Jl[t

P_00 C00 P02 C02 P04 C04P06CO06 P08 CO8PL0C_L0NO-P ADA
Prefetch Scheme

—

1 10,000
100 SPECWeb2005
7,500 -

¥ 5000

} 25001

=
—

P_00 C00 P02 C02 P04 C04 P06 CO6PO08CO8PL0CLONOP ADA
Prefeich Scheme

Figure 4. Web Response Time in Prefetch
Schemes

T T T T T T T T T
| I 1t order [2nd order] 3rd order]

Request Distribution

P_0.0C_0.0P_0.2C_0.2P_0.4C_0.4P_0.6C_0.6P_0.8C_0.8P_1.0C_1.0NO-P ADA
Prefetch Scheme

Figure 5. Standard Deviation of Distribution

web framework compared with PP.M and cluster schemes.
It can tolerate the randomness of access pattern caused by
web cache or client. ARC monitors the hit rate and the
size of buffer cache and calculates optimal prefetch thresh-
old dynamically. It makes a decision of prefetching using
the dynamic threshold and relation information provided by
DPS. Since optimal prefetch rate keeps changing over time
depending on the system condition, using static threshold
values is not a good solution to manage the system prop-
erly. Too high prefetch rate drops the performance through
the shortage of memory and I/O bandwidth, and too low
prefetch rate loses the chance to improve the performance
through prefetching.

Although high-order prediction scheme gives more ac-
curate prediction of future requests, performance gap be-
tween high and low order is not distinguishable. High-
order scheme even shows worse performance than low-
order scheme, as in threshold 1 of TAMU or threshold 0.8

and 1 of ClarkNet.

Although locality-based request distribution increases
the performance using the locality in processing requests,
skewed distribution incurs excessive process creation in
some backend nodes and drains them of memory space.
MARD distributes incoming requests considering the num-
ber of idle web processes in each backend node. It enables
fair request distribution and efficient memory usage. Fig-
ure 5 shows request distribution in backend nodes under
ClarkNet workload. X axis represents prefetch schemes and
Y axis denotes standard deviation of incoming requests. In
the case of aggressive prefetch schemes, they try to prefetch
more objects in some of backend nodes, which results in
skewed request distribution. However, MARD distributes
requests almost as fairly as non-prefetch scheme.

6. Conclusions

Rapid growth in the number of web users and current
HTTP frameworks makes it difficult to improve the perfor-
mance through a prefetch scheme. Also, the access pattern
of a web server system is not easily predictable because of
the web cache mechanism and web object configuration.
For proper web prefetching in a cluster environment, we
introduce the DPS scheme to obtain the relation informa-
tion of objects and increase the hit rate of prefetched data.
Also, we propose the ARC scheme to perform an efficient
management of prefetch memory in cluster environments.
Finally, we suggest the MARD to distribute web workload
to improve the efficiency in web prefetch.

For evaluation, we implement the prototype of web
prefetch engine using PAPI and Apache web server in the
Linux. Also, we perform the simulation for verifying
the benefit of our scheme in cluster environments. Our
experimental results show that our prefetch scheme im-
proves the performance of web cluster system up to 40%
in various web workloads. There are three reasons for the
improved performance of our scheme. i) Although our
prefetch scheme loses the chance to increase the hit rate on
the prefetch memory, it avoids the memory saturation and
performance degradation caused by an excessive prefetch-
ing. ii) Our prefetch scheme provides the adaptive prefetch
rate at run time to maximize the prefetch benefit. iii) Our
prefetch scheme is adopted to the modern web framework
and workloads. We expect that our prefetch scheme can
be expanded into the modern web-based applications; e-
learning and digital library.

References

[1] Apache Software Foundation. http://httpd.apache.org/.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. Long.
Managing flash crowds on the internet. In Proc. of
MOSCOTS, 2003.

M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scal-
able content-aware request distribution in cluster-based net-
work servers. In Proc. of USENIX 2000 Annual Technical
Conf., 2000.

Z.Ban, Z. Gu, and Y. Jin. An online ppm prediction model
for web prefetching. In Proc. of Web Information and Data
Management, 2007.

J. Borges and M. Levene. Data mining of user navigation
patterns. In Proc. of WebKDD, pages 92-111, 1999.

C. Bouras, A. Konidaris, and D. Kostoulas. Predictive
prefetching on the web and its potential impact in the wide
area. In Proc. of World Wide Web: Internet and Web Infor-
mation System, 2003.

J. Bucy and G. Ganger. The disksim simulation environment
version 3.0. 2003.

I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White.
Model-based clustering and visualization of navigation pat-
terns on a web site. In Proc. of Data Mining and Knowledge
Discovery, 2003.

X. Chen and X. Zhang. A popularity-based prediction model
fore web prefetching. In Proc. of IEEE Computer, 2003.

Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz. Effi-
cient and adaptive web replication using content clustering.
In Proc. of IEEE Journal on Selected Areas in Communica-
tions, 21:979-994, 2003.

D. Cheng, R. Kannan, S. Vempala, and G. Wang. A divide-
and-merge methodology for clustering. In Proc. of SIG on
Management of Data, 2005.

B. D. Davison. Learning web request patterns. In Proc. of
Web Dynamics: Adapting to Change in Content, Size, Topol-
ogy and Use, pages 435-460, 2004.

M. Deshpande and G. Karypis. Selective markove models
for predicting web page accesses. In Proc. of ACM Transac-
tions on Internet Technology, 4:163—-184, 2004.

J. Domenech, A. Pont, J. Sahuquillo, and J. A. Gil. A user-
focused evaluation of web prefetching algorithmsa. in Proc.
of the Computer Communications, 2007.

J. Domenech, J. Sahuquillo, J. A. Gil, and A. Pont. The im-
pact of the web prefetching architecture on the limits of re-
ducing user’s perceived latency. in Proc. of IEEE/WIC/ACM
Int’l Conf. on Web Intelligence, 2006.

S. Drakatos, N. Pissinou, K. Makki, and C. Douligeris. A
context-aware prefetching strategy for mobile computing
environments. In Proc. of Int’l Conf’ CMC, pages 1109—
1116, 2006.

P. Ferragina and A. Gulli. A personalized search engine
based on web snippet hierarchical clustering. In Proc. of
World Wide Web, 2005.

B. S. Gill and L. A. D. Bathen. Optimal multistream se-
quential prefetching in a shared cache. In Proc. of ACM
Transactions on Storage, 3, October.

F. Khalil, J. Li, and H. Wang. Integrating markov model
with clustering for predicting web page accesses. In Proc.
of Australasian World Wide Web, 2007.

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(37]

(38]

D. Kim, N. Adam, V. Alturi, M. Bieber, and Y. Yesha.
A clickstream-based collaborative filtering personalization
model: Towards a better performans. In Proc. of WIDM,
2004.

R. Kokku, P. Yalagandula, A. Venkataramani, and
M. Dahlin. Nps: A non-interfering deployable web prefetch-
ing system. In Proc. of the USENIX Sym. on Internet Tech-
nologies and Systems, 2003.

C. Li and K. Shen. Managing prefetch memory for data-
intensive online servers. In Proc. of USENIX Conf.e on File
and Storage Technologies, 2005.

L. Lu, M. Dunham, and Y. Meng. Discovery of significant
usage patterns from clusters of clickstream data. In Proc. of
WebKDD, 2005.

E. Meneses and O. Rodriguez-Rojas. Using symbolic ob-
jects to cluster web documents. In Proc. of World Wide Web,
2006.

A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data
mining algorithm for generalized web prefetching. In Proc.
of IEEE Transaction on Knowledge and Data Engineering,
2003.

V. N. Padmanabhan and J. C. Mogul. Using predictive
prefetching to improve world wide web latency. In Proc.
of Computer Communication Review, 26:22-36, 1996.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware request dis-
tribution in cluster-based network servers. In Proc. of ASP-
LOS, 1998.

G. Pallis and A. Vakali. Insight and perspectives for content
delivery networks. In Proc. of Communications of the ACM,
49:101-106, 2006.

C. G. Quinones, C. Madriles, J. Sanchez, P. Marcuello,
A. Gonzalez, and D. M. Tullsen. = Mitosis compiler:
An infrastructure for speculative treading based on pre-
computation slices. In Proc. of PLDI, 2005.

K. Rajamani and C. Lefurgy. On evaluating request-
distribution schemes for saving energy in server clusters. In
Proc. of IEEE Int’l Sym. on Performance Analysis of Systems
and Software, 2003.

M. Rosu and D. Rosu. An evaluation of tcp splice benefits
in web proxy servers. In Proc. of Int’l Conf. on World Wide
Web, 2002.

S. Browne and C. Deane and G. Ho and P. Mucci. Papi: A
portable interface to hardware performance counters. 1999.

A. Serbinski and A. Abhari. Improving the delivery of mul-
timedia embedded in web pages. In Proc. of Int’l Conf. on
Multimedia, pages 779-782, 2007.

SPECweb2005. http://www.spec.org/web2005/.

N. Tuah, M. Kumar, and S. Venkatesh. Resource-aware
speculative prefetching in wireless networks. In Proc. of
Wireless Networks, 9:61-72, 2003.

C. Yan, J. Shen, and Q. Peng. Parallel web prefetching on
cluster server. In Proc. of Canadian Conf. on Electrical and
Computer Engineering, 2005.

Z.Zhang, X. M. K. Lee, and Y. Zhou. Pfc: Transparent op-
timization of existing prefetching strategies for multi-level
storage systems. In Proc. of ICDCS, 2008.

J.Zhu, J. Hong, and J. G. Hughes. Using markov models for
web site link prediction. In Proc. of Hypertext, 2002.

