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Abstract—The explosion of data availability and the demand
for faster data analysis have led to the emergence of applica-
tions exhibiting large memory footprint and low data reuse
rate. These workloads, ranging from neural networks to graph
processing, expose compute kernels that operate over myriads
of data. Significant data movement requirements of these
kernels impose heavy stress on modern memory subsystems
and communication fabrics. To mitigate the worsening gap
between high CPU computation density and deficient memory
bandwidth, solutions like memory networks and near-data
processing designs are being architected to improve system
performance substantially.

In this work, we examine the idea of mapping compute ker-
nels to the memory network so as to leverage in-network com-
puting in data-flow style, by means of near-data processing. We
propose Active-Routing, an in-network compute architecture
that enables computation on the way for near-data processing
by exploiting patterns of aggregation over intermediate results
of arithmetic operators. The proposed architecture leverages
the massive memory-level parallelism and network concurrency
to optimize the aggregation operations along a dynamically
built Active-Routing Tree. Our evaluations show that Active-
Routing can achieve upto 7× speedup with an average of
60% performance improvement, and reduce the energy-delay
product by 80% across various benchmarks compared to the
state-of-the-art processing-in-memory architecture.

Keywords-memory network; data-flow; in-network comput-
ing; near-data processing; processing-in-memory

I. INTRODUCTION

With the improvement of technology and advent of nu-

merous network connected devices, the amount of data

generated has been exploding. This leads to an increasing

demand for fast data analysis to extract values from these

humongous amount of data. Hence, data analytic applica-

tions that process these bulk of data exhibit large memory

footprint and low data reuse rate. These workloads, ranging

from neural networks to graph processing [1], [2], have

simple compute kernels that operate over myriad of data. The

simple computations of these kernels and the large amounts

of data to be processed cause significant data movements

across the memory hierarchy. As a result, modern memory

subsystems and communication fabrics are under enormous

pressure. Furthermore, due to the gap between dense CPU

computation power and deficient data supply, computer

systems fail to achieve their peak computational capability.

Therefore, architectural innovations are imperative to reduce

data movement for gaining substantial improvements in

terms of system performance as well as energy efficiency.

Recently, a significant amount of research efforts have

been made for designing data-centric computer systems. To

keep pace with processors’ computation capabilities, new

memory designs such as Hybrid Memory Cube (HMC) [3]

and High Bandwidth Memory (HBM) [4] provide higher

bandwidth by utilizing 3D stacking [5]. In addition, the tra-

ditional processor-centric design is not cost-effective to scale

memory capacity and is suboptimal for system bandwidth

provision [6]. On the other hand, memory-centric designs

are proposed to connect memory modules to form a memory

network as a large memory pool as well as to fully utilize

processor and memory bandwidth [6], [7]. These design

adoptions may alleviate the data response bottleneck, but

still require considerable amount of data movement due to

imposing heavy stress on the communication fabrics and

consuming excessive energy.

Previous research has proposed various techniques to

reduce data movement across the memory hierarchy to

improve the system efficiency. Near-data processing (NDP),

as a promising compute paradigm, has driven new archi-

tectures to move computations near data-resident locations,

such as cache and memory. Aga et al. proposed compute

cache [8] that uses bit-line circuit technology to perform

simple computation in the cache to enable in-place com-

puting. Processing-in-memory (PIM) [9], [10], [11], [12],

[13], [14], [15], [16], [17] is an alternative NDP design that

introduces compute elements in memory for data processing.

Recent studies [18], [19] have proposed to integrate PIM

architectures within modern systems in a seamless fashion.

They extended the instruction set to offload computations to

data-resident memory modules. These mechanisms achieve

better efficiency compared to conventional computing due to

reduced data movements. They are most effective in the case

of irregular memory accesses and atomic write operations.

However, they are suboptimal when performing simple tasks

over a large size of raw data, such as dot product, since they

need to fetch part of the data across the memory network

for further processing when data are not located in the same

module that incurs communication and energy overhead.

Prior research [20], [21], [22] has advocated to provide

computation power as well as routing functionalities in com-

munication fabrics. The NYU Ultracomputer [23] introduced
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adders in routers to combine fetch-and-update requests for

the same shared variable. Panda [24] and Chen et al. [25]

proposed similar hardware to optimize reduction in the

network interface for MPI collective communications. These

mechanisms only support pure reduction operations and

cannot accelerate operations like dot product, thus require

significant data movements across memory hierarchy to first

compute the intermediate results. Recently, Kwon et al.

proposed MAERI [26] to improve efficiency for data-flow

computations in deep neural network accelerators, which

does not target general applications. The multiply operations

require data to be brought to local SRAM and are calculated

only at leaf nodes in the tree-based network topology.

These in-network compute solutions have limited adaptivity

since the reduction tree/ring is statically tied to the network

topology. As part of our proposal, we redesign the inter-

connect fabric to support more diverse compute operations

and to provide topology-oblivious dynamic routing tree for

reduction acceleration.
We propose Active-Routing, an in-network compute ar-

chitecture that enables compute on the way for near-data

processing. We examine the idea of mapping compute ker-

nels to the memory network for data-flow style processing

by exploiting the pattern of aggregation over intermediate

results of arithmetic operators. It seeks to schedule compu-

tations at routers attached to memory so as to take advan-

tage of the massive bandwidth and parallelism in memory.

Meanwhile, it dynamically builds topology-oblivious Active-
Routing trees and leverages the network concurrency to

optimize reduction operations along the routing path. We

also categorize the memory access patterns of the operands

for arithmetic operators and propose optimizations to exploit

both regular and irregular memory accesses.
The major contributions of this paper are as follows.

• We propose an in-network compute architecture,

Active-Routing, which moves computation closer to

data in the memory network, and aggregate compute

results on the way along the routing path.

• We present a novel mechanism with three-phase packet

processing: Active-Routing Tree construction, Update
Phase for data processing, and Gather Phase for Active-
Routing reduction. It dynamically builds topology-
oblivious routing trees to optimize reduction opera-

tion following data processing by exploiting massive

memory-level parallelism and network concurrency.

• We categorize memory access patterns of processed

data into three groups, and propose enhancement tech-

niques with various offloading granularities to amortize

offloading overhead by leveraging their characteristics.

• Our evaluations show that Active-Routing can achieve

up to 7× speedup with an average of 60% performance

improvement and reduce energy-delay product by 80%

on average across various benchmarks over the state-

of-the-art processing-in-memoryarchitecture.

The rest of the paper is organized as follows. Section II

presents the background for this research. In Section III we

introduce Active-Routing followed by Section IV describing

its implementation. We present the evaluation methodology

in Section V and analyze our experiment results in Sec-

tion VI. The related work is detailed in Section VII. Finally,

we conclude our work in Section VIII.

II. BACKGROUND

In this section, we first introduce die-stacked memory

and its support for processing-in-memory (PIM). Then we

explain the memory network and the potential of in-network

computing for enhancing near-data processing.

Figure 1. Hybrid Memory Cube

A. Die-Stacked Memory

Advancements in memory technology have facilitated the

integration of logic and memory dies using 3D stacking [5].

In die-stacked memory, DRAM layers are stacked on top

of a logic layer. The DRAM layers are connected with the

logic layer using high bandwidth, and low-latency Through-

Silicon Vias (TSV). Hybrid Memory Cube (HMC) [3] and

High Bandwidth Memory [4] are two popular examples of

die-stacked memory. Without loss of generality, we demon-

strate Active-Routing using HMC in this paper. Note that it

can also be applied to other memory technology and inter-

connects like HBM and active interposers. Figure 1 shows

the organization of HMC, which is partitioned vertically into

several vaults consisting of multiple TSV connections to the

logic layer. Each vault is controlled by a vault controller

implemented on the logic die. The vault controllers are

sparsely placed and that leave ample amount of unused

silicon area to deploy more complex functional logics. It

has been used to implement computation capability ranging

from limited functionality [18], [12], [11] to full-fledged

processors [9], [15]. HMC communicates with processor or

other memory cubes through four ports. Inside the cube’s

logic die, an intra-cube network is used to route the packets

between the vaults and ports. HMC also enables larger

memory size per package and provides abundant internal

and external bandwidth with TSVs and high-speed link

protocol. These advantages are leveraged in many existing

PIM studies [9], [15].

B. Memory Network

Conventional systems with DDR memory have capacity

limits and bandwidth bottleneck due to the limited number
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(a) Host CPU (b) Memory Network

Figure 2. System Configuration with (a) a Host CPU Connected to (b) a
Memory Network with an Active-Routing example.

of pins per processor chip. Therefore, it requires more

processor sockets in such systems to scale their memory ca-

pacity. However, the overweight data movement with respect

to light computation in emerging data-centric applications

can lead CPU to be under-utilized. In contrast, HMCs

can be chained together to form a cost-effective memory

network using packet switching and provide large memory

capacity. In addition, commonly adopted processor-centric

design optimizes processor-to-processor communication but

overlooks the overall system bandwidth utilization. A recent

study [6] has shown that memory-centric designs can achieve

better bandwidth utilization as compared to processor-centric

designs.

C. In-Network Compute Potential

Supported by the advanced die-stacked memory tech-

nology, PIM architectures have been widely studied to

realize near-data processing. With high-bandwidth and large

memory capacity provision, a memory network is adopted to

scale PIM architectures for accelerating data-centric appli-

cations [9]. One unsolved problem of such a system is how

to determine the compute point for data located remotely.

This computation can be mapped to a data-flow graph and

naturally scheduled as network flows along with compu-

tation. In-network computing, which takes communication

into account, can further reduce data movement and improve

system efficiency by exploiting memory-level parallelism

as well as network concurrency. In this paper, we propose

Active-Routing as a step towards in-network computing.

III. ACTIVE-ROUTING ARCHITECTURE

In this section, we first illustrate Active-Routing by walk-

ing through an example. Then we describe its three-phase

packet processing procedure. Lastly, we categorize the mem-

ory access patterns of the data to be processed and propose

enhancements to reduce offloading overhead by leveraging

their characteristics.

A. Architectural Overview

Figure 2 presents the system configuration, where host

processors are connected to a memory network formed by

chaining HMCs. In this system, we show an example of

Active-Routing in the memory network that computes sum

+= A[i]×B[i] over a large loop with loop-index i. Each

computation of A[i]×B[i] is offloaded from host CPU to

memory network as an Update packet. Update packets are

scheduled for computation at the memory cubes near to the

operand locations to compute the partial sum through NDP.

After Update offloading, a Gather packet is sent to collect

the partial results from each cube, and reduce them in the

network routers on the way back to the host.

Figure 3 shows the three phases of Active-Routing as it

progresses in the timeline for this example, namely ARTree
Construction, Update and Gather Phase.

• While offloading Update packets, an Active-Routing
Tree (ARTree) is being constructed along the packets’

paths to the scheduled compute memory cubes. For

example, in Figure 2 (b), an Update packet is sent from

CPU through memory cube 0 to cube 8. It records the

tree nodes and builds a tree branch along its path to

cube 8. Update packets scheduled at different cubes

construct different branches. These branches altogether

form an ARTree, as abstracted in Figure 3 (a).

• The offloaded computations drive near-data processing

during the Update Phase as shown in Figure 3 (b).

Each operation A[i]×B[i] needs to request its source

operands A[i] and B[i] to finish the computation and

update the partial sum in the scheduled cube. Figure 3

(b) also shows a case where two operands do not reside

in the same cube. In such scenarios, the Update packet

will be sent to the scheduled compute point that is

the last common cube of the minimum routes (cube

12) for both operands: 1 it replicates to issue two

operand requests for Ak and Bk to the resident memory

cube 13 and cube 15, respectively. 2 Then, the two

operand responses are replied to cube 12 to complete

the computation. All the intermediate results in the

same compute cube are reduced to a partial sum in

the cube during this phase.

• Figure 3 (c) shows the Gather Phase when Gather
packet is issued after sending all the Update packets. It

is replicated from the root to each node of the ARTree.

Then Gathers at leaf nodes initiate network reduction of

partial sums computed in the previous phase in dataflow

manner to the root along the ARTree.

B. Three-Phase Packet Processing

In general, Active-Routing maps a compute kernel in

memory network to optimize reduction over intermediate

results of arithmetic operators. We name such a mapping as

an Active-Routing flow. A unique identification (flow ID) is
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(a) Active-Routing Tree Construction. (b) Update Phase. (c) Gather Phase.

Figure 3. Active-Routing Consists of Three Phases: (a) Active-Routing Tree Construction on-the-fly; (b) Near-Data Processing in Update Phase; and (c)
Network Aggregation along the Active-Routing Tree in Gather Phase.

(a) Update Packet. (b) Operand Response.

(c) Gather Request. (d) Gather Response.

Figure 4. Active Packet Processing Flow Chart for (a) Update Packet,
(b) Operand Response Packet, (c) Gather Request Packet and (d) Gather
Response Packet.

assigned for each flow and its corresponding ARTree. Each

flow involves a three-phase packet processing procedure as

shown in Figure 4.

ARTree Construction. For each flow, an ARTree is built

dynamically while processing its Update packets, as shown

in Figure 4 (a). Upon receiving an Update packet, each cube

registers its flow ID. If the Update packet is not scheduled

to compute at the current cube, the packet is forwarded

to its child based on its routing to the scheduled compute

cube. Therefore, an ARTree is built by recording parent and

children information at each node.

Update Phase. This phase starts in parallel with the

ARTree construction phase. It involves processing of Update
packets, and operand request/response packets as shown in

Figures 4 (a) and (b). While processing Update packets,

operand requests are sent out to the memory from the sched-

uled compute node. When the operand responses arrive,

the arithmetic operations are scheduled to compute partial

aggregation result.

Gather Phase. Figures 4 (c) and (d) show the packet

processing in Gather Phase to commit Active-Routing flow.

This phase has one forward pass to spread the Gather
requests from the root to leaf nodes, and a backward pass to

reduce the results from leaf nodes to the root node. Once a

node’s subtree finishes Update Phase, it replies to its parent

and deallocate the flow record. A parent receives Gather
responses from all its children to indicate the completion

of their Update Phase. When the root node finishes its

own Update Phase and receives all its children’s Gather
responses, it commits the flow.

C. Memory Access Patterns

Instruction offlaoding and operand fetching incur over-

head using packet switching due to meta data in the packet

header and packet internal fragmentation. Memory access

patterns of operand fetching can be exploited to amortize the

overhead by offloading multiple operations at a time. Active-
Routing aims to optimize reduction on massive intermedi-

ate results of arithmetic operators, such as sum =
∑n

i=1

*Ai×*Bi, where Ai and Bi store the operand addresses.

Memory access patterns of operands can be regular when

vector A store array addresses. When it stores addresses of

graph nodes or sparse matrix elements, the access pattern

tends to be irregular. Therefore, the combined memory

access pattern for the two operands can be categorized

into three groups: regular-regular, regular-irregular, and

irregular-irregular. Based on these three categories, we

propose three different ways to leverage data locality.

For regular-regular access pattern, we offload the compu-

tation in cache block granularity as vector processing. While
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for regular-irregular access pattern, we fetch the irregular

data and send them to regular data resident location for

processing. The above two methods maximize the locality

benefit and reduce the memory accesses. For irregular-
irregular memory access pattern, we simply fetch single

operand pairs to the scheduled compute node as scalar

operations. Active-Routing can co-operate with previous

study [15] to further optimize irregular-irregular access

pattern, which we leave for future work.

// baseline implementation
global diff = 0.0;
local loc_diff = 0.0;
for (v: v_start to v_end) {

loc_diff += abs(v.next_pagerank - v.pagerank);
v.pagerank = v.next_pagerank;
v.next_pagerank = 0.15 / graph.num_vertices;

}
atomic diff += loc_diff;

// active optimization
global diff = 0.0;
local temp = 0.15 / graph.num_vertices;
for (v: v_start to v_end) {

Update(&v.next_pagerank, &v.pagerank, &diff, abs);
Update(&v.next_pagerank, nil, &v.pagerank, mov);
Update(temp, nil, &v.next_pagerank, const_assign);

}
Gather(&diff, num_threads);

Figure 5. Pseudocode of Thread Worker for Parallel PageRank.

IV. IMPLEMENTATION

In this section, we describe the programming interface

and instruction set architecture (ISA) extension. Then we

introduce the hardware components that work in synergy

to realize Active-Routing, including Network Interface (NI)

support and Active-Routing Engine (ARE). Lastly, we discuss

system integrity considerations and several enhancements in

Active-Routing.

A. Programming Interface and ISA Extension

We provide simple programming interfaces (Update and

Gather) to translate the program semantics into extended

instructions. The ISA extensions are used to communicate

with Network Interface to offload computations to memory

network or Active-Routing processing.

UpdateRR(void *src1, void *src2, void *target, int op);
UpdateRI(void *src1, void *src2[], void *target, int op);
UpdateII(void *src1, void *src2, void *target, int op);
Gather(void *target, int num_threads);

The above Update and Gather APIs are defined to offload

Active-Routing flows. The Update API carries two source

memory addresses of an arithmetic operation. The postfix

RR, RI and II of Update API are used for three memory

access pattern categories, respectively. The op parameter is

the opcode indicating the type of arithmetic and reduction

operation (e.g. floating point multiply-and-accumulate). The

target field in both APIs is the address of the reduced

variable, which is hashed to a unique identification for each

flow. In Gather API, the num_threads parameter indicates

the number of threads working on the flow. It is used for

an implicit barrier at the root of ARTree to guarantee all the

Updates have been initiated. We generalize Update API with

opcode op to support simple operations such as assignment.

These APIs are translated to extended instructions by the

compiler. During execution, instruction fields are written to

a set of dedicated registers in the Network Interface (NI).

NI can assemble this information into an Update or a Gather
packet and send it to the memory network.

Figure 5 shows the baseline and Active-Routing imple-

mentations of the thread worker pseudocode of pager-
ank calculation kernel. In the baseline implementation, the

atomic update for diff needs to fetch the pagerank and

next_pagerank values for each vertex in the graph. This

consumes large amount of bandwidth due to irregular graph

access patterns. It also needs to reduce diff value atomi-

cally for each thread, which causes high overhead and limits

thread scaling. In contrast, Active-Routing allows updates of

diff near the data location to save bandwidth. In addition,

the Gather requests from all the threads of same flow are

synchronized at the root of ARTree as an implicit barrier.

Then reduction is initiated along the ARTree. Note that the

read-write dependencies between instructions are enforced

as same as normal instructions. The read-write dependencies

can be tracked and resolved by memory controllers similiar

to read-write requests dependencies handling with simple

extension.

B. Network Interface

Programming interfaces are used in application for Active-
Routing offloading. Compiler takes the API and translates

it into extended instructions. Extended instructions are as-

sembled to packets and offloaded to the memory network

for processing. This functionality can be added to Network

Interface (NI), connecting core and on-chip network, with

marginal change. In NI, we add dedicated registers that can

be written by extended instructions to convey the opcode and

operand information. NI reads these registers to assemble

an Update or a Gather packet and issue it into the memory

network.

C. Active-Routing Engine

The Active-Routing functionalities are implemented in

Active-Routing Engine (ARE) on the HMC logic layer as

shown in Figure 6 (a). It is integrated as an attached module

to the router switch. ARE consists of 1) a packet processing

unit to process and generate packets, 2) a flow table to keep

track of Active-Routing flows, 3) a pool of operand buffers
to store operands, 4) an ALU for computation.

1) Packet Processing Unit: Packet processing unit is

responsible for decoding the Update and Gather packets and

schedule actions correspondingly as shown in Figure 4. It
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(a) HMC Logic Layer for Active-Routing Engine.

(b) Flow Table Entry. (c) Operand Buffer Entry.

Figure 6. Active-Routing Microarchitecture: (a) Engine Implementation in HMC Logic Layer with (b) Flow Table Entry and (c) Operand Buffer Entry.

can generate operand request packets to fetch the data and

Gather response to commit partial result to its parent.

2) Flow Table: Flow table keeps track of both the struc-

ture and states information of each flow. Figure 6 (b) shows

a flow entry. Each entry in the table is a tree node record

that maintains the structure of the tree by keeping a unique

flow ID, an opcode for computation, and its parent and

children. It also keeps the flow’s state, including the partial

result, the req_count and rep_count, as well as Gflag.

The req_count and rep_count counters are used to keep

the number of issued requests and committed operations.

A Update Phase is considered finished when these two

counters are same. The Gflag is set by a Gather request

indicating that the flow can start reduction once Update
Phase completes.

3) Operand Buffers: Update packets are processed to

generate request(s) to fetch operands and perform the com-

putation with the response. Operand buffer is used as a

temporary storage for the operands waiting to be processed,

therefore maintaining the pending Update operations. We

make a pool of operand buffers shared by different flows so

as to improve the throughput and reduce the overhead. An

operand buffer entry is reserved before sending out operand

request(s) since co-existing flows can easily cause deadlock

due to wait-and-hold condition especially for two-operand

operations. Figure 6 (c) shows an operand buffer entry,

which keeps the flowID and opcode, two operand fields

and two ready flags to indicate the operand’s availability.

To reduce the operand buffer access time, we use a free and

a ready queue to keep IDs of free and ready operand entries,

respectively, for ease of direct lookup.

4) ALU: A light-weight ALU is implemented in ARE to

compute arithmetic operations. Active-Routing supports var-

ious operations on different data types, including reduction

operations such as sum, xor, and, min, and max, as well

as multiply-accumulate on floating point and integer data.

We plan to generalize our approach and implement more

powerful logics to support complex program accelerations.

5) Putting It All Together: Upon receiving an Update
request packet, ARE processes it in the Packet Processing

Unit. If the corresponding flow has not yet registered in the

flow table, an entry is allocated for the new flow. The flow is

registered and fields are initialized by recording the flow ID
and the packet’s previous hop as parent in the entry. If the

packet is not scheduled for the current cube, it is forwarded

based on the computed route to next hop, which is recorded

in the children flags. Otherwise, the req_count is

incremented and an operand buffer entry is allocated from

free queue. Meanwhile, operand request packets embedding

the operand address and buffer entry ID are also generated.

If all operand buffer entries are busy, the packet processing

unit is stalled until an operand buffer entry is available.

When a response for the operands arrives, the corresponding

oeprand buffer entry is updated. If operands are ready, the

operand entry ID is push to ready queue for processing.

ALU is directed by ready queue for computation. After the

computation finishes, the resp_count is incremented and

result is updated in the corresponding flow entry. The

operand buffer is deallocated for reuse by pushing back its

ID to free queue. While processing Gather request packets,

the Gflag of the corresponding flow table entry is set to

initiate Gather Phase after the completion of the Update
Phase of the subtree. If the cube has children cubes, the

packet is replicated and sent to its children. Upon receiving

a Gather response from a child for partial result update, its

corresponding child field is cleared. Note that every time the

result is updated by either computation in current cube or

Gather packet from a child, if Gflag is set and children

flags are cleared, a Gather packet is generated to send the

partial result back to its parent and release the flow table

entry.

D. Integrity Considerations

There are two important design considerations to seam-

lessly integrate Active-Routing into current computer sys-

tems: (1) virtual memory support and (2) cache coherence.

1) Virtual Memory: Since Active-Routing is implemented

by ISA extension, the offload instructions are treated as

extended active loads/stores. Therefore, they can perform

the same virtual to physical address translation as normal
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load/store instructions. With this design principle, we can

avoid overhead for address translation units in the directo-

ries, or memory.

2) Cache Coherence: To offload instructions for Active-
Routing optimization, it should ensure that the offloaded

flow is using the up-to-date data in memory. A naı̈ve way is

allocating uncacheable memory for the data that may be used

in the optimization. However, it may hurt the performance

in other program execution phases which can use the deep

cache hierarchy to exploit locality. To work around with

coherence, offloaded packets are first sent to the directory

based on their address, and query for back-invalidation if

data is cached on-chip similar to [18]. Then it will be issued

to the memory for Active-Routing processing. Since Update
packets are issued in parallel, the back-invalidation overhead

is amortized across massive concurrent packets. We observe

that back-invalidation rarely happens in our experiments.

E. Enhancements in Active-Routing

We observe two critical points that have significant impact

on the Active-Routing performance: (1) the decision for

choosing the root of a tree affects the network congestion,

and (2) the overhead of offloading computations widely

varies with the change in its granularity. To improve Active-
Routing performance further, we address each of these points

as follows.

Since the computations are offloaded from host CPU

through the memory ports, we naturally consider the cubes

that are attached to the four channel ports as root node

candidates. We start with a static approach that we always

assign the root node to be cube 0. In order to balance the

load better in the network, we propose two enhancement

techniques that can consider all four corner cubes as roots

and is able to create multiple trees for one flow. The first

one uses thread ID to interleave the candidate cubes so as

to balance the trees rooted from four corners among multi-

thread applications, named as ART-tid. Since the scheduling

is oblivious to the data location, it can create deep trees

and lead to more hop traversals for Update request packets.

Another enhancement technique takes the operand addresses

into account and sends the Update packet through the port

nearest to its destination. This creates shallow trees with

respect to ART-tid, we name it as ART-addr. Since these

two schemes can create multiple ARTrees for one flow, the

extended HMC memory controllers that manage the trees

are coordinated to merge the subflows at the end of Gather
Phase. On the contrary, Naı̈ve-ART constructs only one

ARTree for each flow.

To reduce offloading overhead and number of memory

accesses, we adapt the offloading granularity, to exploit the

data locality of different memory access patterns discussed

in Section III-C. This optimization is applied to both ART-

tid and ART-addr, whereas Naı̈ve-ART does not consider

granularity, which simply offloads every single operand pair

Figure 7. Runtime Speedup of ART Variants over HMC Baseline.

without considering data locality. This Naı̈ve-ART may ex-

perience contention in operand buffer resources, and network

contention in addition to high offloading overhead due to

static manner for tree construction and simple offloading.

Figure 7 shows the improvement impacts of enhancements

over Naı̈ve-ART. We take the log scale of speedup that

is normalized to HMC conventional system baseline (not

shown). It shows that with naı̈ve way of static tree formation

and offloading, Naı̈ve-ART is worse than HMC baseline, es-

pecially when there is some locality in accesses. In contrast,

by constructing the trees dynamically and exploiting the

memory access patterns, we can achieve better performance.

In the following sections, we only present ART-tid and ART-

addr for detail analysis.

V. METHODOLOGY

A. System Modeling and Configuration

We use an execution-driven simulator McSimA+ [27] with

detailed microarchitecture models as backend for cores and

cache hierarchy. For HMC memory modeling, we integrate

a cycle-accurate simulator CasHMC [28] with McSimA+

to replace its memory system. We leverage McSimA+’s

Pin [29] based front end to implement Active-Routing in-

struction extensions. The microarchitectural behaviors of

Active-Routing are implemented on the crossbar switch in

HMC logic layer.

For power and latency modeling, we use CACTI [30] for

on-chip cache power estimation, assume 5pJ/bit for each

hop in memory network [31], 12 pJ/bit for HMC memory

access and 39 pJ/bit access for DRAM [3]. We implemented

the ARE in verilog and synthesized it using TSMC 45 nm

library. The multiplication takes the longest time, which

is 6.61 ns, and operand buffer takes 0.59 ns access time.

As we use 1250 MHz for ARE and pipeline the arithmetic

operations, it takes 9 cycles for each mult and 1 cycle for

buffer access. At full load, ARE’s ALU can compute 1

FLOP/cycle. The area and power estimation is 0.02 mm2 and

17.8 mW for ALU, 0.026 mm2 and 16.9 mW for operand

buffer, 0.05 mm2 and 33.2 mW for Flow Table.
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We configure the host CPU as a CMP with on-chip

network and two level cache hierarchy with MESI coherence

protocol. The 16 off-chip HMCs are connected to form a

Dragonfly topology [6]. The system configuration evaluated

in this work is shown in Figure 2 and described in Table I.

Table I
SYSTEM CONFIGURATIONS

Parameter Configuration

CPU

Core
16 OoO cores @ 2GHz

issue/commit width: 4, ROB: 128
L1I/D Cache Private, 32KB, 4 way

L2 Cache S-NUCA 16MB, 16 way, MESI
NoC 4x4 mesh, 4 MC at 4 corners

Memory

DRAM Timing
tCK = 0.8 ns, tRAS = 21.6 ns, tRCD = 10.2 ns

tCAS = 9.9 ns, tWR = 8 ns, tRP = 7.7 ns

HMC
4GB/cube, 4 layers

32 vaults, 8 banks/vault

HMC Network

16 cube DragonFly, 4 controllers
Minimal routing, virtual cut-through

16 lanes link, 12.5 Gbps/lane
CrossbarSwitch clock @ 1250 MHz

Flow Table 16 flow entries
Active-Routing Operand Buffer 128 buffer entries

Engine
Processing Element

1250 MHz clock frequency
An arithmetic logic unit

B. Workloads

Active-Routing targets applications that have abundant

reduction on data processing operations such as multiply-

accumulate or pure reduction operations over a large mem-

ory footprint. We study five kernels from several benchmark

suites. These kernels are widely used in diverse application

domains such as scientific computing, graph analytics, lan-

guage modeling and deep learning. We also develop four

data-intensive microbenchmarks for case study. In order to

support execution with McSimA+ frontend, all the applica-

tions are re-implemented using Pthread library. We choose

sufficent large input data so as to stress the last level cache

and memory as well as to account for reasonable simulation

time. The working set sizes are vary from 80 MB to 0.5

GB. The memory requirements of these kernels used in

various applications tend to grow significantly larger as

data scales [32]. We summarize the workloads and applied

optimization region as well as input data in Table II.

VI. EVALUATION

In this section, we evaluate ART-tid and ART-addr with

respect to PEI [18], implemented by adding a computation

unit at each vault controller supporting PEIs. It can compute

a dot product of 2 4D vectors in a cycle, one of the

vector opearnds (either regular or irregular) are brought

to cache and send to the memory location of the other

half (should be regular) for processing in memory. We

first present performance evaluation followed by power and

energy analysis. Then we show the potential of dynamic

offloading through a case study.

A. Performance

1) Speedup: Figures 8 (a) and (b) show the execution

time speedup of benchmarks and microbenchmarks, respec-

tively. Both ART-tid/addr schemes create multiple trees from

all memory ports for massive flows in the benchmarks.

The results show more than 6% performance improvement

across various of applications with respect to PEI except

lud. Specifically, ART-addr improves sgemm, a dense matrix

multiplication kernel upto 7× speedup. In sgemm, almost all

the execution time is spent in matrix multiplication. During

the kernel execution, PEI needs to fetch one of the source

matrices and also update the target matrix, causing read and

write contention on the limited cache, which results in cache

trashing. In contrast, ART has no contention between source

matrices and target matrix since both source matrices are

processed in memory, thus outperforms PEI significantly.

In geomean, ART-tid and ART-addr improve performance

by 15% and 60% over PEI, respectively. For lud, PEI

performs slightly better than both ART-tid and ART-addr. In

case of spmv, PEI outperforms ART-tid but performs worse

than ART-addr. This is because in these two applications,

the computation distribution is not balanced, which causes

contentions in compute/buffer resources.

Note that the PEI implementation is optimistic since we

have no limit on operand buffers. For spmv, ART-addr is

better than ART-tid due to more balanced work distribution,

which will be discussed in short. In microbenchmarks, the

whole execution is region of interest for optimization. Both

ART-tid/addr alternatives work well across all microbench-

marks. Compared with PEI, ART-tid/addr achieves 7×/10×
speedup, respectively.

Figure 11 shows a heatmap of spmv for ART-tid and ART-

addr. In the heatmap darker colors are used for denoting

higher number of event occurrences. Each big square depicts

the whole memory network and each small square block

represents one cube in the memory network. In the memory

network, the work is evenly scheduled in each cube which

can have better resource utilization. While in ART-tid,

computations are centered in a few cubes which leads to

compute/operand resources contention and less parallelism1.

To evaluate scalability, we also run experiments for mac
on 64-cube dragonfly memory network. With the same

problem size, ART-tid and ART-addr acheive 4.6× and 6.3×
speedup compared to PEI on 16-cube memory in-network,

wheras on 64-cube memory network, ART-tid and ART-

addr outperform PEI for 4.7× and 6.4× improvements,

respectively. As we scale the problem size four times as

the memory capacity scales, ART-tid and ART-addr improve

the performance over PEI by 4.6× and 7.1×, respectively.

When comparing each technique’s performance on the two

differnet memory network for the same problem size, PEI
1The operand distribution are different due to the dynamic memory

allocation.
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Table II
WORKLOADS

Workloads Optimization Region Input Data Size

Benchmarks

backprop [33] activation calculation in feedforward pass 2097152 hidden units
lud [33] upper and lower triangular matrix decomposition 4096 matrix dimension

pagerank [2] ranking score calculation web-Google graph [34]
sgemm [35] matrix multiplication 4096x4096 matrix
spmv [35] matrix-vector multiplication loop 4096 matrix dimension and 0.7 sparsity

Microbenchmarks

reduce sum reduction over a sequential vector 6400K dimension
rand reduce sum reduction over random elements 6400K elements

mac multipy-and-accumulate over two sequential vectors two vectors with 6400K dimension
rand mac multiply-and-accumulate over two random element lists two lists with 6400K elements

(a) Benchmarks

(b) Microbenchmarks

Figure 8. Runtime Speedup over PEI.

(a) Benchmarks

(b) Microbenchmarks

Figure 9. Update Roundtrip Latency Break-
down into Request, Stall and Response La-
tency.

(a) Benchmarks

(b) Microbenchmarks

Figure 10. On/Off-chip Data Movement Nor-
malized to PEI.

incurs 2% performance degradation on 64-cube network

compared to its performance on 16-cube memory network.

Wheras both ART-tid and ART-addr have less than 0.1%

performance difference, either better or worse, on the two

memory networks. Since PEI has more on/off chip data

transfer than ART, it is more sensitive to the increased mem-

ory access latency due to higher average network latency in

larger scale memory network. On the contrary, ART benifits

from both memory parallelism and network concurrency,

therefore it tends to scale better for larger memory network.

2) Update Offloading Roundtrip Latency: In Figure 9,

round-trip latency is broken into request, stall and response

to understand the contribution of different communication

components for Update offloading. As expected, the total

latency is inversely proportional to the performance shown

in Figure 8. In general, ART-tid and ART-addr dynami-

cally distribute the Updates across all available ports for

tree construction. The ART-tid/addr schemes can balance

the load evenly and utilize the memory network resources

more efficiently. Compared to ART-tid, ART-addr has lower

round-trip latency across all benchmarks. ART-tid constructs

trees by interleaving memory ports using thread IDs. There-

fore, the tree root is not necessarily close to the directory

where Update packets check for coherence. In contrast, ART-

addr distributes Updates based on addresses, which makes

the tree root physically close to directory, thus incurs less

request latency. The stalls are mostly due to queuing in HMC

controllers.

3) Data Movement: We evaluate data movement as the

data size transfered between the host processor and memory

network. The data movement breakdowns for normal data

and active data transfer are shown in Figure 10. For most

applications, ART-tid/addr can reduce the memory requests

fetching the data, mostly source operands, compared to PEI.
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Figure 11. SPMV Compute Point and Operand Distribution.

In pagerank, the region of interest for optimization is the

code segment that has reduction on large amount of data

processing tasks. In the benchmarks, only parts of the whole

parallel phase that we evaluate are our optimization targets.

The other phases still require data movement. Another

overhead comes from massive fine-grained offloading in

this benchmark due to the irregular memory access pattern.

Further preprocessing on the data [15] can solve this problem

to gain performance and reduce data movement further.

In the microbenchmarks, the whole parallel phase can

be optimized and hence the data movement decreases sig-

nificantly. In reduce, the majority of its execution time is

spent on summing up all the elements of a large array as it

accesses the array elements sequentially. Similarly, mac op-

erate multiply-and-accumulate over two large vectors. Both

of them exhibit very good spatial locality in their memory

accesses, which is exploited in cache-block grained offload-

ing for vector processing. However in PEI, it needs to bring

part of the data on chip and offload with the instruction,

causing data movements. For rand reduce and rand mac,

ART-tid/addr have more data movements compared to the

sequential accesses due to offloading overhead. Since PEI

still needs to bring the data for random multiplication on

chip before atomic write, it incurs more data movement.

B. Power and Energy

1) Power Consumption: We present the power consump-

tion breakdowns into cache, memory and memory network

in Figure 12. We observe that ART-tid/addr consume similar

memory power and less network power than PEI except for

pagerank. In ART-tid/addr, data are fetched from memory

and communicate in the network. However in PEI, part

of the operands need to be brought across the network to

on-chip cache and be sent with the offloaded instruction,

leading to cache contention even cache trashing. For exampe,

sgemm has cache contention between reading of large source

matrix and writing to target matrix. The cache trashing

leads to more memory accesses. As a result, PEI and ART

have similar memory access intensities. For regular memory

accesses in terms of network power, ART feeds the data in

network with minimum route while PEI brings data all the

way to CPU, thus PEI consumes more power. One exception

is pagerank, which has irregular memory access patterns.

ART offload computation flows in single operand granularity,

causing high overhead in offloaded packets and operand

packets, thus consumes more network power.

Microbenchmark mac has similar power characteristics as

the benchmarks behaving regular memory access patterns.

For reduce, ART-tid/addr can massively process the reduc-

tion near-data in memory cubes without moving data around,

which leads to more intensive memory accesses and more

offloading. For irregular memory access patterns such as

rand reduce and rand mac, PEI exhibts no reuse of the data

and can only optimizes atomic updates, leading to intensive

memory accesses which consumes more power.

2) Energy Consumption: Figure 13 shows the energy

consumptions for cache, memory and memory network.

ART-tid/addr reduces the energy consumption across all

the benchmarks with regular memory access patterns and

microbenchmarks. For application that has irregular access

pattern such as pagerank, the main contribution is from

network energy that has high overhead due to fine-grained

offloading. For sgemm and microbenchmarks, energy con-

sumptions are reduced dramatically due to significant run-

ning time speedup. We gain enormous benefit as most parts

of these applications can be optimized by Active-Routing.

3) Energy-Delay Product: Figure 14 shows the normal-

ized energy-delay product (EDP) over PEI in logarithmic

scale to show the energy efficiency. We observe that ART-

tid/addr has lower EDP for all applications except for spmv
with ART-tid. The reductions in execution time as well as

energy consumption contribute jointly to EDP reduction,

achieving significant energy efficiency improvements. In

spmv with ART-tid, the imbalanced work distribution leads

to worse execution time. Since the energy saving is offset

by the performance degradation, ART-tid on spmv has lower

EDP. To summarize, ART-tid and ART-addr reduce the EDP

by 80% on average compared to PEI.

C. Dynamic Offloading: A Case Study

In this section, with the help of an example we show

that the performance can be further improved using a run-

time knob. The runtime knob decides whether to offload

computations (Updates) dynamically on the basis of memory

access and communications patterns to achieve more perfor-

mance gains. Execution phases that exhibit good locality of

data accesses experience performance benefits by exploiting

cache hits when scheduled on the host processor. In lud,

it decomposes a matrix into upper and lower triangular

matrices. Computations for these two matrices can be broken
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(a) Benchmarks

(b) Microbenchmarks

Figure 12. Normalized Power Consumption
over PEI.

(a) Benchmarks

(b) Microbenchmarks

Figure 13. Normalized Energy Consumption
over PEI.

(a) Benchmarks

(b) Microbenchmarks

Figure 14. Logarithmic Scale of Normalized
Energy-Delay Product over PEI.

Figure 15. LUD Phase Analysis and Dynamic Offloading

into two different phases. The first phase is for computations

of the upper triangular matrix and the other is for those of

the lower triangular matrix and they are executed iteratively.

These two phases have different locality of data accesses.

The second phase has a good data locality since its data

access pattern is row-major order, whereas the data access

pattern of the first phase is column-major order.

For such a program behavior, the best execution model

is to use Active-Routing for the first phase and process the

second phase in the host processor. We analyze lud’s phase

behaviors as shown in Figure 15. In the ARTtid that always

offloads computations to memory regardless of data locality,

the number of cycles for first and second phases in each

iteration dramatically increase and decrease. However, when

we run ARTtid-adaptive in which computations of the first

phase is offloaded to the memory and that of the second

phase is processed in the host processor, we achieve 2×
speedup.

VII. ADDITIONAL RELATED WORK

Near-Data Processing. Recently, NDP architectures is

becoming an active research area in architecture commu-

nity [18], [9], [19], [36], [11], [10], [12], [37]. Ahn et al.

proposed Tesseract [9], a programmable PIM accelerator for

large-scale graph processing. Nair et al. [36], [10] proposed

Active Memory Cube (AMC) by leveraging HMC to place

vector processing units in the logic layer. AMC suffers from

delays due to instruction pre-loading as well as delay and

energy overhead of its complex interconnection network.

Most recently Fujiki et al. [38] propose a programmable in-

memory processor architecture, and data-parallel program-

ming framework using non-volatile memory. Mondrian [15]

takes an algorithm-hardware co-design approach to sequence

irregular accesses for better locality. Recent study [39] ana-

lyzed Google workloads and discovered the data movement

as the bottleneck for performance and energy efficiency,

which is also the problem Active-Routing tries to solve.

Processing in the Interconnection Network. Previous

research [20], [21], [22] has encouraged interconnection

network to offer more functionalities other than just routing

packets. Active Message [20] embeds the function pointer

and arguments across the network to perform tasks in

remote compute nodes. Pfister et al. [21] and Ma [40]

proposed mechanisms to combine messages so as to reduce

network traffic. Recently, IncBricks [22] implements an in-

network caching middlebox for key-value acceleration in
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router switches. Several studies [23], [24], [25] proposed

mechanisms to optimize shared value update or, reduction

in the network. The NYU Ultracomputer [23] implemented

adder in network switches to coalesce the atomic fetch-

and-update for same target address along their way to

memory. Panda [24] and Chen et al. [25] describe similar

mechanisms that provides network interface functionality

as well as hardware support for MPI collective reduction

communication in a static manner. All of these mechanisms

present varied solutions to support data processing in the

network but still suffer the burden of data movement from

memory to CPU, while Active-Routing solves this issue.

VIII. CONCLUSION

We propose Active-Routing, an in-network compute ar-

chitecture, to accelerate reduction on data processing oper-

ations in data-intensive applications for near-data process-

ing. Active-Routing is implemented as a novel three-phase

processing schedule, which offloads the compuation near

data in the memory network for execution and aggregates

the results along their routing path. We categorize memory

access patterns of compute kernels of interest and offload

the computations in various granularities by exploiting their

locality characteristics to reduce offloading overhead. Com-

pared to the state-of-the-art PIM architecture, Active-Routing
can achieve up to 7 × speedup with a geometric mean

of 60% performance improvement and reduce energy-delay

product by 80% on average, showing promising potential for

in-network computing and data-flow processing.
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