
Predictive Dynamic Thermal Management for Multicore
Systems

Inchoon Yeo, Chih Chun Liu, and Eun Jung Kim
Department of Computer Science

Texas A&M University
College Station, TX 77840

{ryanyeo, chihchun, ejkim}@cs.tamu.edu

ABSTRACT
Recently, processor power density has been increasing at an
alarming rate resulting in high on-chip temperature. Higher
temperature increases current leakage and causes poor re-
liability. In this paper, we propose a Predictive Dynamic
Thermal Management (PDTM) based on Application-based
Thermal Model (ABTM) and Core-based Thermal Model
(CBTM) in the multicore systems. ABTM predicts future
temperature based on the application specific thermal be-
havior, while CBTM estimates core temperature pattern by
steady state temperature and workload. The accuracy of our
prediction model is 1.6% error in average compared to the
model in HybDTM [8], which has at most 5% error. Based
on predicted temperature from ABTM and CBTM, the pro-
posed PDTM can maintain the system temperature below
a desired level by moving the running application from the
possible overheated core to the future coolest core (migra-
tion) and reducing the processor resources (priority schedul-
ing) within multicore systems. PDTM enables the explo-
ration of the tradeoff between throughput and fairness in
temperature-constrained multicore systems. We implement
PDTM on Intel’s Quad-Core system with a specific device
driver to access Digital Thermal Sensor (DTS). Compared
against Linux standard scheduler, PDTM can decrease av-
erage temperature about 10%, and peak temperature by
5◦C with negligible impact of performance under 1%, while
running single SPEC2006 benchmark. Moreover, our PDTM
outperforms HRTM [10] in reducing average temperature by
about 7% and peak temperature by about 3◦C with perfor-
mance overhead by 0.15% when running single benchmark.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Reliability, Avail-
ability, and Serviceability

General Terms
Design, Experimentation, Temperature, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

Keywords
Dynamic Thermal Management, Operating System, Tem-
perature

1. INTRODUCTION
Chip multiprocessors (CMPs) have already been employed

as the main trend in new generation processors. A CMP in-
cludes multiple cores within one single die area to increase
the microprocessors’ performance. However, the increased
complexity and decreased feature sizes have caused very high
power density in modern processors. The power dissipated
is converted into heat and the processors are pushing the
limits of packaging and cooling solutions. The increased op-
erating temperature potentially affects the system reliability.
Moreover, leakage power increases exponentially with oper-
ating temperature. Increasing leakage power can further
raise the temperature resulting in a thermal runaway [3].
Hence, there is a need to control temperature at all levels of
system design.

Recently, many hardware and software-based Dynamic
Thermal Management (DTM) [3, 5, 6, 13, 14] techniques
have been proposed in sense of that they, except [14], start
to control the temperature after the current temperature
reaches at the critical temperature threshold. Dynamic Ther-
mal Management can be characterized as temporal or spa-
tial. Temporal management schemes, such as Dynamic Fre-
quency Scaling (DFS), Dynamic Voltage Scaling (DVS), clock
gating, slowdown the CPU computation to reduce heat dis-
sipation. Although they could effectively reduce tempera-
ture, they incur significant performance overhead. On the
other hand, spatial management schemes, such as thread
migration, can reduce the temperature without throttling
the computation [10]. However, neighboring thermal effect
and application thermal behavior are not considered in prior
works. Due to packaging technology in CMP, the tempera-
ture of each core will be affected by other cores. The temper-
ature differential between cores can be as much as 10 ∼ 15
◦C [11]. There are significant variations in the thermal be-
havior among different applications [11, 14].

Motivated by these facts, we propose a Predictive Dy-
namic Thermal Management (PDTM) in the context of mul-
ticore systems. Our PDTM scheme utilizes an advanced
future temperature prediction model for each core to esti-
mate the thermal behavior considering both core tempera-
ture and applications temperature variations and take ap-
propriate measures to avoid thermal emergencies. To the
authors’ best knowledge, no prior attempt has been made

734

41.2

to implement the temperature prediction model along with
the thermal-aware scheduling on a real four-core product
under Linux environment. The experimental results on In-
tel’s Quad-Core system running two SPEC2006 benchmarks
simultaneously show the proposed PDTM lowers temper-
ature by about 5% in average and reduces up to 3◦C in
peak temperature with only at most 8% performance over-
head compared to Linux standard scheduler without DTM.
Moreover, to validate the presented PDTM, we also rebuilt
HRTM [10], and our PDTM outperforms HRTM in reducing
average temperature by about 7%, performance overhead by
0.15%, and peak temperature by about 3◦C, while running
single benchmark. The main contributions of this paper are
summarized as follows:

• We propose an advanced future temperature predic-
tion model for multicore systems with only 1.6% error
in average.

• We demonstrate that our scheme outperforms the ex-
isting DTM schemes (HRTM and HybDTM) and pro-
vides thermal fairness among cores.

• The proposed PDTM incurs low performance overhead
which is only 1% when running single benchmark, and
8% when running two benchmarks simultaneously.

• Most importantly, there is no additional hardware unit
required for our prediction model and thermal-aware
scheme. It means that our model and scheme is scal-
able for all the multicore systems and can be applied
to real-world CMP products.

The remainder of the paper is organized as follows : The
existing DTM will be introduced in Section 2. Section 3
provides the explanation of proposed temperature prediction
model-ABTM and CBTM in detail. In Section 4, we explain
the system overview of PDTM and how to apply PDTM in
multicore systems. In Section 5, the implementation and
analysis results are discussed and conclusions are provided
in Section 6.

2. RELATED WORK
Several thermal control techniques have been proposed

and applied in modern processors via either hardware-based
or software mechanisms [3, 12]. Hardware-based DTM mech-
anisms, such as Dynamic Frequency Scaling (DFS) and Dy-
namic Voltage Scaling (DVS), as well as clock gating, are
able to effectively reduce processor’s temperature and guar-
antee thermal safety, but with high execution performance
overhead. Therefore, as the multicore processors become
popular, some software-based mechanisms, such as power
density management in a CMP has been studied in [10].
The proposed mechanism, called heat-and-run, has two key
components: SMT thread assignment and CMP thread mi-
gration. Within heat-and-run the SMT thread assignment
attempts to increase processor-resource utilization by co-
scheduling threads which use complementary resources; on
the other hand, the CMP thread migration cools overheated
cores by migrating threads away from overheated cores and
assigning them to free SMT contexts on alternate cores to
maintain throughput while allowing cooling overheated cores.
They showed that for four cores CMP running five threads,
heat-and-run thread assignment (HRTA) and heat-and-run

thread migration (HRTM) achieve 9% higher average through-
put than stop-go and 6% higher average throughput than
DVS. Moreover, when performance is constrained by tem-
perature, the performance gains brought by thread migra-
tion and the importance of limiting the migration frequency
to reduce performance overhead has been confirmed in [9].
In [9], a new migration method for temperature-constrained
multicore is proposed to exchange threads whenever the si-
multaneous occurrence of a cold and a hot core is detected.
The authors demonstrate that their method yields the same
throughput with HRTM, but requires much less migrations.
However, both of these two works above are based on sim-
ulated results, and neglect the thermal-correlation between
cores. The power dissipated by the rest of the chip is as-
sumed to be negligible. Most importantly, the migration
action in [9] above is triggered by the current tempera-
ture (when the temperature is higher than maximum al-
lowed temperature) in these two papers; however, instead of
considering the current temperature, we believe that an ac-
curate future temperature prediction model could perform
better in lowering the peak temperature.

In [8], HybDTM, a methodology for fine-grained, coor-
dinated thermal management using both software (prior-
ity scheduling) and hardware (clock gating) techniques, is
proposed. In order to estimate temperature, HybDTM pro-
posed a regression-based thermal model based on using hard-
ware performance counters. However, HybDTM can not ef-
fectively reduce overheat temperature without performance
overhead, because real temperature cannot be estimated
solely by hardware performance counter, and both of pri-
ority scheduling and clock gating will introduce high perfor-
mance overhead. Their performance overhead is 9.9% com-
pared to the case without any DTM. Therefore, we propose
PDTM which includes an advanced future temperature pre-
diction model with very low performance overhead for the
real-world product (Intel’s Quad-Core). Rather than us-
ing the performance counter for temperature, we utilize the
regression analysis for application-based thermal behavior
as fine-grained scheme, and core-based thermal behavior as
coarse-grained scheme to provide very accurate temperature
prediction model for DTM.

3. PREDICTIVE THERMAL MODEL
In this section, we present a thermal model to predict the

future temperature at any point during the execution of a
specific application. The model is based on our observation
that the rate of change in temperature during the execu-
tion of an application depends on the difference between
the current temperature and the steady state temperature
of the application1. Moreover, the thermal behavior is dif-
ferent among applications. Since the system temperature
is affected by both each application’s thermal behavior and
each processors thermal pattern, we define the application-
based thermal model and the processor-based thermal model
in this paper.

3.1 The Application-based Thermal Model
The Application-based Thermal Model (ABTM) accom-

modates short-term thermal behavior in order to predict the

1The steady state temperature of an application is defined
as the temperature the system would reach if the application
is executed infinitely.

735

0 50 100 150 200 250 300
55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Figure 1: Real temperature of one core on running
bzip2 benchmark

future temperature in fine-grained. As shown in Figure 1,
there are rapid temperature changes even when the workload
is statically 100%. Specifically, this model first derives the
thermal behavior from local intervals (short term temper-
ature reactions) and then predicts the future temperature
by incorporating this behavior into a regression based ap-
proach that is known as the Recursive Least Square Method
(RLSM). In the general least-squares problem, the output
of a linear model y is given by the linear parameterized ex-
pression

y = θ1f1(u) + θ2f2(u) + · · ·+ θnfn(u), (1)

where u = [u1 ,u2 ,· · · ,un] is the model’s input vector,
f1,...,fn are known functions of u, and θ1, θ2,...,θn are un-
known parameters to be estimated. In our study, let the
input vector, u, and the output vector, y, be time units and
working temperature respectively. To identify the unknown
parameters θi, experiments usually have to be performed to
obtain a training data set composed of data pairs (ui ;yi),
i = 1,· · · ,m}. Expressed in matrix notation, the following
equation can be obtained: Y = Xθ where X is an m × n
matrix:

X =

f1(u1) · · · fn(u1)
...

...
...

f1(um) · · · fn(um)

 (2)

θ is a n × 1 unknown parameter vector:

θ = [θ1, θ2, ..., θn]T (3)

and Y is a n×1 output vector:

Y = [Y1, Y2, ..., Yn]T (4)

If XT X is nonsingular, the least square estimator can be
derived as

θ = (XT X)−1XT Y, (5)

Denote the ith row of the joint data matrix [X : Y] by
[XT

i : Yi]. Suppose that a new data pair [XT
k+1 : Yk+1]

becomes available as the (k + 1)th entry in the data set.
To avoid recalculating the least squares estimator using all
input and output data samples, let Pk = (XT X)−1 for the
kth in Equation (5). Likewise, the recursive least square
method at (k + 1)th can be developed as

Pk+1 = Pk − Pkxk+1x
T
k+1Pk

1 + yT
k+1Pkyk+1

, (6)

ti+△t

temperature
trigger

threshold

migration
threshold

△t

ti

temperature

time

current
temperature

future
temperature

Figure 2: The calculation of ∆t(migration time) us-
ing ABTM

where yk+1 is the output vector and xk+1 is input vector of
of fk+1.

θk+1 = θk + Pk+1xk+1(yk+1 − xT
k+1θk) (7)

where matrix P is an intermediate variable in the algorithm.
Eventually, we get future temperature, yn, by an application
thermal behavior using the current θ vector. Detailed de-
scriptions of the Least Square Method and Recursive Least
Square Method can be found in the literatures [4]. With
Equation (1), ABTM can predict future temperature for an
application as shown in Figure 2. How the ABTM applied
in PDTM is explained in 3.3

3.2 The Core-based Thermal Model
The heat transfer equations model the steady state tem-

perature of systems with heat sources [7]. It has been ob-
served in those models that the temperature changes expo-
nentially to the steady state starting from any initial tem-
perature. In other words, the rate of temperature change is
proportional to the difference between the current tempera-
ture and the steady state [7]. We initially assume that the
steady state temperature of the application is known. Later
we will relax this constraint. Let Tss be the steady state
temperature of an application. Let T (t) represent the tem-
perature at time t and let Tinit be the temperature when an
application starts execution (T (0)=Tinit). The prediction
model assumes that the rate of change of temperature is
proportional to the difference between the current temper-
ature and the steady state temperature of the application
[15]. Thus

dT

dt
= b× (Tss − T). (8)

Solving Equation (8) with T (0) = Tinit and T (∞)=Tss, we
get

T (t) = Tss − (Tss − Tinit)× e−bt (9)

where b is a processor-specific constant. The value of b is de-
termined using Equation (8) by observing heating and cool-
ing curves corresponding to all SPEC2006 benchmarks on the
core. Also, since the value of b is different to the amount
of workload, b should be determined by the workload on
each processor. Running several benchmarks, we obtained
b = 0.009 when the workload is 100%. We precompute the
steady state temperature of an application offline. Then by
rearranging Equation (9), we get the steady state tempera-

736

Workload

Digital

thermal

sensor

Application-based

thermal model

Core-based

thermal model

Migration

scheduling

Priority

scheduling

Predictive DTM

Monitoring Future temperature
prediction model

Thermal-aware scheduler

HardwareSofrware

Figure 3: System Overview

ture Tss of the application.

Tss =
T (t)− Tinit × e−bt

(1− e−bt)
(10)

Therefore, with Equation (9) and (10), we get the future
temperature after time t and the steady state temperature,
Tss, of each core.

3.3 The Predictive Thermal Model
Our approach, which towards characterizing the thermal

contribution of individual processor, uses ABTM and CBTM
at run-time as the input for the overall thermal model to
directly estimate the future temperature. For each appli-
cation, we exploit both short-term (ABTM) and long-term
(CBTM) future temperature values to prevent Ping-Pong
effect2. The application-based temperature Tapp predicts
the transient variations in application temperature which in-
cludes the temperature contribution at the running period
on the core before being migrated into other core. On the
other hand, the core-based temperature Tcore is calculated
with the aggregated temperature by workload. The overall
predictive temperature is then given as:

Tpredict = wsTapp + wlTcore (11)

where Tpredict is determined as the overall predictive tem-
perature, ws is a weighting factor of ABTM, and wl is a
weighting factor of CBTM. Note that ws and wl should be
adjusted according to the application workload. Since the
benchmarks we used in this study maintain 100% workload
in most time, we found that the optimal values for ws and
wl are 0.7 and 0.3 respectively based on our experimental
results.

4. PDTM SCHEDULER
The Linux standard scheduler is designed to compromise

two opposing aspects: response time and throughput. Inter-
active processes such as shell programming are built to run
in a satisfactory response time. On the other hand, CPU-
intensive programs needs to ensure throughput. To keep
up with this corollary in multi-cores, a certain process is
rarely migrated into another core in Linux standard sched-
uler. This is mainly because an active process uses running
information like TLB for the process through cache memory
[2]. However, when the workload is noticeably unbalanced,

2Process is migrated among several cores very frequently.

△t
m

ti

temperature

time

ABTM+CBTM

ti+△tm

CBTM

T
cur

Tpred

Migration threshold(T
tmt

)

Figure 4: PDTM utilizes ABTM and CBTM simul-
taneously to predict both short-term and long-term
future temperature for multicore

Algorithm 1 PDTM scheduler algorithm

1: Tcur ← CalcT(processi)
2: for Tcur ≥ Tttt do
3: ∆tm ← ABTM−1(Ttmt)
4: for j = 1 to MAXcores do
5: Tcbtm ← CBTM(∆tm)
6: Tabtm ← ABTM(∆tm)
7: T [j] ← ωs·Tabtm+ωl·Tcbtm

8: end for
9: Migrated Core ← MIN CORE(T [])

10: Tpred ← MIN TEMP(T [])
11:
12: if Current Core �= Migrated Core then
13: MIGRATION(processi → Migrated Core)
14: end if
15:
16: if Tpred ≥ Tpst then
17: Decrement priority(processi)
18: else
19: Increment priority(processi) until priority = 0
20: end if
21: end for

the Linux standard scheduler initiates process migrations
despite migration overhead. However, the Linux standard
scheduler does not take the temperature behavior into ac-
count. To resolve this issue, the proposed PDTM enables
the scheduling policy to accommodate the temperature be-
havior as well as workloads in a multicore environment.

Our PDTM mainly composes of three components as shown
in Figure 3. In the monitoring part, application workload
(CPU utilization) is monitored for application’s migration
to balance workload by Linux standard scheduler. However,
it is not aware of temperature. Our PDTM uses Digital
Thermal Sensor (DTS) to detect temperature at run-time.
The detected temperature information will be used in the
future temperature prediction model.

As shown in Algorithm (1), PDTM determines that mi-
gration is necessary when the predicted temperature exceeds
the migration threshold (Ttmt). When the current tempera-
ture (Tcur) reaches the temperature trigger threshold (Tttt),
∆tm, the time to which the migration threshold, is calcu-
lated by ABTM. PDTM begins to calculate the future tem-
perature via ABTM and CBTM for other cores after ∆tm.
The core with minimum value among future temperature

737

Table 1: A set of benchmarks list
Benchmarks Temperature Memory Usage

perlbench+hmmer Low Low
perlbench+bzip2 Low High
libquantum+hmmer High Low
libquantum+bzip2 High High

(T []) is selected as new core for migration. As shown in Fig-
ure 4, our goal is to find the future coolest core after ∆tm

with our prediction. If the prediction temperature, Tpred is
also larger than priority scheduling temperature(Tpst), the
priority of application should be adjusted as well as migra-
tion.

5. IMPLEMENTATION AND ANALYSIS
In order to estimate working temperature through Dig-

ital Thermal Sensor (DTS) for multicore systems, we de-
velop a specific driver to access them in runtime. In a chip-
multiprocessor (CMP) silicon die, each core has a unique
thermal sensor that triggers independently. The trigger point
of these thermal sensors is not programmable by software
since it is set during the fabrication of the processor [1].
In our experiments, we set temperature trigger threshold
as 60◦C to start PDTM, and the migration threshold as
70◦C to migrate applications when the predicted tempera-
ture exceeds the migration threshold. Also, priority schedul-
ing threshold is 82◦C. When predicted temperature is reached
at priority scheduling threshold, the priority of application
can be adjusted as lower value. All experiments are tested
under ambient temperature control and fixed fan speed.

5.1 Digital Thermal Sensor for Core 2 Quad
In Intel’s Core Architecture, the DTS can be accessed by

a Machine Specific Register (MSR). The value in the MSR
is an unsigned number and the unit is Celsius (◦C).

In MSR, we use IA32_THERM_STATUS register in order to
get temperature of each core. Within the register, it uses 7
bits where the value of DTS is stored. We can get temper-
ature for four cores by Equation (12).

Tcore = Tjunction −DTSvalue (12)

Tjunction is a manufactural value by Intel.

5.2 Experimental Analysis
To demonstrate the proposed PDTM, we conduct our ex-

periments with a single SPEC2006 benchmark and a set of
two SPEC2006 benchmarks as shown in Table 1. Running
the single benchmark, the presented PTDM can decrease 8%
temperature in average (Figure 5), and reduces up to 5◦C in
peak temperature with only under 1% performance over-
head compared to Linux standard scheduler without DTM
as shown in Figure 7. Running two benchmarks simultane-
ously, the proposed PDTM can even lower about 10% tem-
perature in average and reduces up to 3◦C in peak tem-
perature while running a set of benchmarks with only un-
der 8% performance overhead compared to Linux standard
scheduler without DTM (Figure 6). It means PDTM can be
more effective to control temperature than Linux standard
scheduler when temperature and workload is higher.

In order to make comparison, we also rebuilt HybDTM
[8] (the software scheme-changing priority) and HRTM [10]

0
0

200

400

600

800

1000

1200

1400

1600
PERFORMANCE OVERHEAD

Benchmark

tim
e

(s
ec

)

perlbmk bzip2 gcc mcf gobmk hmmer sjeng libqt h264ref astar

w/o DTM
HybDTM
HRTM
PDTM

Figure 7: Performance Overhead:PDTM incurs only
under 1% performance overhead in average while
running single benchmark

0 50 100 150 200
55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Real Temperature
Predict Temperature

Figure 8: The prediction model can estimate future
temperature with only less than 1.6% error on run-
ning bzip2 benchmark

on our Quad-Core system. HybDTM uses priority-based
scheme and HRTM uses migration-based scheme. HybDTM
scheme relies on hardware performance counter, while HRTM
relies on current temperature information. The experimen-
tal results show our PDTM outperforms HRTM in reducing
average temperature by about 7%, performance overhead by
0.15%, and peak temperature by about 3◦C. Additionally,
our future temperature prediction model provides more ac-
curate prediction with only less than 1.6% error as shown
in Figure 8; on the other hand, the estimation model, in-
troduced in HybDTM, has at most 5% average error. The
main reason of the accuracy in our prediction model is that
we consider not only the core-based temperature at each
core, but also the application thermal behavior. Therefore,
PDTM is capable to manage the temperature fairness and
controls the overall temperature lower than other schemes
even in CPU intensive situation.

6. CONCLUSION
In this paper, we propose the Predictive Dynamic Ther-

mal Management with an advanced future temperature pre-
diction model for multicore systems, and implement PDTM
on Intel Quad-Core with a specific device driver to access the
Digital Thermal Sensor. We demonstrate that our scheme
is able to reduce the overall temperature and provide ther-
mal fairness among four cores. The proposed temperature
prediction model can provide more accurate prediction and

738

0 200 400 600 800
50

55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(a) Without DTM

0 200 400 600 800
50

55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(b) HRTM

0 200 400 600 800
50

55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(c) PDTM

Figure 5: Comparisons among without DTM, HRTM, and PDTM using libquantum benchmarks

0 200 400 600 800
50

60

70

80

90

100

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(a) Without DTM

0 200 400 600 800
50

60

70

80

90

100

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(b) HRTM

0 200 400 600 800
50

60

70

80

90

100

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(c) PDTM

Figure 6: Comparisons among without DTM, HRTM, and PDTM using bzip2 and libquantum benchmarks

more efficient temperature management by using ABTM
and CBTM with lower performance overhead compared to
other schemes (HRTM and HybDTM). Most importantly,
there is no additional hardware unit required for our predic-
tion models and scheduler. For the future work, we will test
our schemes in different platforms with various benchmark
such as JBB2005, and WEB2005 to verify their scalability
in more general environment.

7. REFERENCES
[1] “Intel 64 and IA-32 Architectures Software

Developer’s Manual,”
http://support.intel.com/design/processor/manuals/.

[2] D. Bovet and M. Cesati, Understaning the Linux
Kernel. O’Reilly Media, Inc, 2005.

[3] D. Brooks and M. Martonosi, “Dynamic Thermal
Management for High-Performance Microprocessors,”
in HPCA, 2001.

[4] X. Chen, “Recursive Least-Squares Method with
Membership Functions,” in International Conference
on Machine learning and Cybernetics, 2004.

[5] S. Gunther, F.Binns, D.Carmean, and J.Hall,
“Managing the Impact of increasing Microprocessor
Power Consumption,” Intel Technology Journal, 2001.

[6] S. Heo, K. Barr, and K. Asanovic, “Reducing Power
Density through Activity Migration,” in ISLPED,
2003.

[7] F. Kreith and M. S. Bohn, Principles of Heat
Transfer. CENGAGE-Engineering, 2000.

[8] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha,
“HybDTM: A Coordinated Hardware-Software
Approach for Dynamic Thermal Management,” in
DAC, 2006.

[9] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and
T. Constantinou, “A Study of Thread Migration in
Temperature-Constrained Multicores,” ACM
Transactions on Architecture and Code Optimization,
vol. 4, no. 2, 2007.

[10] M. D. Powell, M. Gomaa, and T. N. Vijaykumar,
“Heat-and-Run: Leveraging SMT and CMP to
Manage Power Density Through the Operating
System,” in ASPLOS, 2004.

[11] K. Skadron, M.Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan,
“Temperature-Aware Microarchitecture: Modeling and
Implementation,” ACM TACO, vol. 1, no. 1, 2004.

[12] K. Skadron, M. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan,
“Temperature-Aware Microarchitecture,” ISCA, 2003.

[13] K. Skadron, “Hybrid Architectural Dynamic Thermal
Management,” in DATE, 2004.

[14] J. Srinivasan and S. Adve, “Predictive Dynamic
Thermal Management for Multimedia Applications,”
in ICS, 2003.

[15] S. Wang and R. Bettati, “Reactive Speed Control in
Temperature-Constrained Real-Time Systems,” in
ECRTS, 2006.

739

