The History of the Microcomputer—Invention

and Evolution

STANLEY MAZOR, SENIOR MEMBER, IEEE

Invited Paper

Intel’s founder, Robert Noyce, chartered Ted Hoff s Applications
Research Department in 1969 to find new applications for silicon
technology—the microcomputer was the result. Hoff thought it
would be neat to use MOS LSI technology to produce a computer.
Because of the ever growing density of large scale integrated (LSI)
circuits a “computer on a chip” was inevitable. But in 1970 we
could only get about 2000 transistors on a chip, and a conventional
CPU would need about 10 times that number. We developed two
“microcomputers” 10 years ahead of “schedule,” by scaling down
the requirements and using a few other “tricks” described in this

paper.

I. INTRODUCTION

Intel’s first microcomputer ad appeared in November
1971: :
“Announcing a new era in integrated electronics.”

Intel delivered two different microcomputers five months
apart: the MCS-4, emphasizing low cost, in November
1971, and the MCS-8, for versatility in April 1972. “The
MCS-4 and MCS-8 CPU chip sell in quantity for less than
$100 each, and are powerful alternatives to random logic”
[1]. These two Micro Computer Systems (MCS) were
aimed at two very different markets. One would eventually
lead to the under $1 controller, the other would be the
engine for a versatile personal computer (PC). By analogy
it was like creating the “motorbike” and the “station wagon”
at the same time. The advertised prophecy of “a new era”
became fulfilled over the subsequent 20 year period.

A. Automobile Analogy

Our challenge was how to scale down a general purpose
computer to fit on to a chip. Imagine that the only passenger
vehicle in existence is an eight-passenger van costing
$50 000. At first it would be difficult to imagine a $1000
version of this vehicle. The specifications would need to
be drastically reduced to meet the price goal. Some ideas
to consider:

Manuscript received January 12, 1995; revised August 17, 1995.
The author is with C-ATS Software, Palo Alto, CA 94303 USA.
IEEE Log Number 9415184.

1) reducing capacity by 75%

2) reducing speed by 90%

3) reducing range by 75%.

The golf cart might be the result. However, if golf carts
are unknown at the time, it is not easy to envision how to
scale down a van. ’

What features of a computer can be scaled down? That
depends on what it will be used for. Fortunately for us, our
first customer’s application was for a desktop calculator;
we scaled down the computer’s speed and memory size to
meet the needs of this particular application. As computers
go, the microcomputer was not very capable; some would
say that we set the computer industry back 10 years. We
thought we were moving the LSI world ahead by 10 years
[2]. I will share some of my recollections of the early days
of Intel microprocessors.

II. INTEL MCS-4 4-B CHIP SET

Although Intel began as a memory chip company [3],
in 1969 we took on a project for Busicom of Japan to
design eight custom LSI chips for a desktop calculator.
Each custom chip had a specialized function—keyboard,
printer, display, serial arithmetic, control, etc. With only
two designers, Intel didn’t have the manpower to do that
many custom chips. We needed to solve their problem with
fewer chip designs. Ted Hoff chose a programmed computer
solution using only one complex logic chip (CPU) and two
memory chips; memory chips are repetitive and easier to
design. Intel was a memory chip company, so we found a
way to solve our problem using memory chips!

In 1970 Intel designers implemented a 4-b computer on
three LSI chips (CPU, ROM, RAM) housed in 16-pin pack-
ages [4]. Reducing the data word to 4-b (for a BCD digit)
was a compromise between 1-b serial calculator chips and
conventional 16-b computers. The scaled down 4-b word
size made the CPU chip size practical (~ 2200 transistors).
We used the 16-pin package, because it was the only one
available in our company. This limited pin count forced us
to time multiplex a 4-b bus. This small bus simplified the
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printed circuit board (PCB), as it used fewer connections.
However, the multiplexing logic increased chip area of
the specialized ROM/RAM memory chips, which then had
to have built-in address registers. Increasing the transistor
count to save chip connections was a novel idea. In school
we learned to minimize logic, not interconnections! Later,
LSI “philosophers” would preach “logic is free” [5].

1) MCS-4 Features [6], [7]:

256 x 8 Read Only Memory (2 kb ROM)
with 4-b I/O port
80 x 4 Random Access Memory (320 b RAM)
with 4-b output port
4-b CPU chip with:
16 x 4-b index registers
45 1 and 2 byte instructions
4-level Subroutine Address Stack
12-b Program Counter (4 k addresses).

A. ROM Chip (4001)

Conventional calculators utilized specialized custom
chips for keyboard, display, and printer control. With the
MCS-4 all control logic is done in firmware, program stored
in ROM [8]. A single ROM chip design is customized
(with a mask during chip manufacturing) for a customer’s
particular program. The CPU’s 12-b Program Counter
addresses up to 16 ROM chips. Simple applications use
only one ROM chip; the desktop calculator used four. The
same chip mask also configured each ROM port bit as an
input or output.

Additionally, the ROM chip had an integrated address
register, an output data register, multiplexors, and control
and timing logic. The specialized RAM chip had similar
resources.

B. RAM Chip (4002)

Calculators need to hold several 16-digit decimal floating
point numbers. We organized the RAM accordingly, and
ended up with a 20-digit word (80 b):

16 digits for the fraction

2 digits for the exponent

2 digits for signs and control
20 digits x 4 b/digit

The RAM chip stored four 80-b numbers and additionally
the chip had an output port. The use of three-transistor
dynamic memory cells made the RAM chip feasible [9]. A
built-in refresh counter was used to maintain data integrity.
Refresh took place during instruction fetch cycles, when the
RAM data was not being accessed. Dynamic RAM memory
cells were also used inside the CPU for the 64-b index
register array and 48-b Program counter/stack array. Intel
expertise in dynamic memory was an enabling factor for
the MCS-4!
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C. Input/Output Ports

To conserve chip count and to utilize -existing
power/clock pins, the 16-pin ROM and RAM chips
also had integrated 4-b ports for direct connection of
/O devices. To activate an output, a program selected
a particular RAM/ROM chip (using an index register)
and sent 4-b of Accumulator data from the CPU to the
selected output port. In the desk calculator application,
the display, keyboard, and printer were connected to these
ports. Keyboard scanning, decoding, ‘and debouncing [10]
were all done under program control of the I/O ports; all
printer and display refresh was done in firmware [11].
A small shift register (4003) was used for output port
expansion. External transistors and diodes were used for
amplification and isolation.

D. Microprocesor—CPU Chip (4004)

In the calculator application, each user key stroke caused
thousands of CPU instructions to be executed from ROM.
We wrote many subroutines which operated on 16-digit
numbers stored in RAM. As an example, a 10-byte loop for
digit serial addition took about 80 ps/digit (similar speed
as IBM 1620 computer sold in 1960 for $100 000). In this
add routine a CPU index register would address each of the
16 digits stored in the RAM memory. The program would
bring in one digit at a time into the CPU’s accumulator
register to do arithmetic. A Decrement and Jump instruction
was used to index to the next RAM location.

One major difference compared to most computers, was
the MCS-4’s separate program and data memories. Conven-
tional computers ran programs from RAM (core) memory.
However, our application firmware needed to be perma-
nently stored in ROM. A major change was needed for
subroutine linkage. Normally, as part of a minicomputer
[12] subroutine call instruction execution (PDP-8, HP 2114)
the calling program’s return address would be saved at the
top of the subroutine in RAM. Since MCS-4 routines were
in ROM (can’t write into it) we could not use this method.
Instead, we used a push down stack inside the CPU for
saving up to three return addresses. This was not a new idea.
Stacks had been used in Burrough’s computers and the IBM
1620, which Ted Hoff and I had programmed—we used
our experience with large scale computers. Ultimately this
limited depth of four levels (which was all we could squeeze
on to this small chip) was frustrating for programmers
and succeeding generations went to eight or more levels
(8008, 4040, 8048). Today’s computers have stacks of many
megabytes; but their usage is very similar to their use in
the 4004.

E. Distributed Logic Architecture

The time division multiplexing of the 4-b bus, the on-
chip dynamic RAM memories, and the CPU’s address stack
are the highlights of the MCS-4 architecture. However,
there is another interesting feature—distributed decoding of
instructions. The ROM/RAM chips watched the bus, and
locally decoded port instructions, as they were sent from
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the ROM. This eliminated the need for the CPU to have
separate signal lines to the /O ports, and also saved CPU
logic. This is not a feature used in conventional computers.

F. MCS-4 Applications

The smallest system would contain two chips—a CPU
and a ROM. A typical calculator had 4 ROM’s and a
RAM chip—with five I/O ports, (20) wires for connecting
peripheral devices. A fully loaded system could have 16
ROM and 16 RAM chips, and obviously a plethora of I/O
ports. Typical applications included:

digital scales taxi meters

gas pumps traffic light
elevator control vending machines
medical instruments

Busicom of Japan produced several calculator models
using the MCS-4 chip set. Ted Hoff and I made the original
proposal for the MCS-4 and did the feasibility study for
the first calculator. Federico Faggin did all of the logic and
circuit design and implemented the layout; Busicom’s M.
Shima wrote most of Busicom’s firmware. (Later Shima
joined Intel as the 8080 designer.) The Intel patent on the
MCS-4 (Hoff, Faggin, Mazor) has 17 claims, but the single
chip processor is not claimed as an invention.

Intel supported the MCS-4 with a Cross assembler and
later with a stand alone development system, the Intellec
“blue” box. Intel’s marketing efforts of H. Smith, R.
Graham, and Ed Gelbach gained attention.

The MCS-4 evolved into the single chip microcomputers
8048/8051 [13]. These chips emphasized small size and low
cost. These, along with a variety of other manufacturer’s
parts have evolved into the under $1 computer on a chip
used in toys, automobiles, and appliances [14]. These chips
are very pervasive—almost invisible.

III. INTEL 8008 MICROPROCESSOR

Intel made a custom 512-b shift register memory chip
[15] for use in (their customer) Datapoint’s low cost bit-
serial computer. This 8-b CPU, implemented with TTL
MSI, had around 50 data processing instructions. In re-
sponse to their inquiry about an 8 x 16 stack chip, and
based upon our progress with the MCS-4, I proposed an
8-b parallel single chip CPU in 12/69 [16]. This custom
chip design was never used by Datapoint, and it became a
standard Intel product, which marketing dubbed the 8008
(twice 4004!).

Although the arithmetic unit and registers were twice as
large as in the MCS-4, we expected that the control logic
could be about the same if we deleted a few Datapoint de-
fined instructions. Unlike the MCS4’s two memory address
space, the 8008 had one memory address space for program
and data [17]. The symmetric and regular instruction set
was attractive. However, the only memory addressing was
indirect through the High-Low (HL) register pair. Today’s
computers have huge amounts of memory, and a plethora
of memory addressing instructions.

The 8008 CPU had six 8-b general purpose registers
(B,C,D,EH,L) and an 8-b accumulator. The push down
program counter stack had 8-levels. Both of these register
arrays were implemented with dynamic memory cells and
the CPU had built-in “hidden” refresh during instruction
fetch cycles, similar to the MCS-4.

We decided that the 8008 would utilize standard memory

components (not custom ROM’s and RAM’s as in the
MCS-4). This increased the parts count on a minimum
system because separate address registers, multiplexors
and I/O latch chips would need to be added to make
the system work; in practice about 40 additional small
chips were needed. But standard memories were available
in high volume at low cost, and in a larger system the
extra chip overhead could be tolerated. Using memory
chips with different access times requires a synchronizer
scheme, and therefore ready/wait signal pins were provided
to perform a handshake function. These interface signals
are more sophisticated in today’s processors, but the 8008
demonstrated the idea.
- The availability of Electrically Programmed ROM’s
(EPROM) was significant in allowing - customers to
experiment with their software. A product synergy evolved
between Intel’s memory component business and the
microprocessor.

Intel had an 18-pin package in volume production for
the 1k dynamic RAM chip (1103); this gave two more
pins for the 8008 than we had on the MCS-4, but we
still had to time-multiplex an 8-b bus. By reducing the
Program Counter width to 14-b we saved two package pins.
The jump instruction contained a 16-b address, but two of
the bits were ignored. The 8008 could have 16 k bytes of
memory, and at the time, this seemed enormous. (Today,
users want 16 meg.)

A. Little Endian

Some have wondered why the addresses in the 8008 were
stored “backward” with the little end first, e.g., the low
order byte of a two byte address is stored in the lower
addressed memory location. 1 (regrettably) specified this
ordering as part of the JUMP instruction format in the spirit
of compatibility with the Datapoint 2200. Recall that their
original processor was bit serial; the addresses would be
stored low to high bit in the machine code (bit-backward).
Other computer makers organize the addresses with the “big
end” first. The lack of standardization has been a problem
in the industry.

B. Applications

One of the first users of the 8008 was Seiko in Japan for a
sophisticated scientific calculator. Other uses included busi-
ness machines and a variety of general purpose computers.

Most of the 8008 instruction set was defined by Data-
point’s H. Pyle and V. Poor [16]. Hoff and I wrote the
specification for the 8008 single chip CPU. Hal Feeney did
all of the chip design under Faggin’s supervision. I did
the logic simulation for Feeney. Les Vasdasz [18] was our
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overall manager. Sandy Goldstein wrote a cross assembler;
Gary Kildall (Digital Research) created PLM-8 and then
CP/M. This operating system is famous and helped lead to
the development of Microsoft’s DOS.

Intel did not apply for a patent on the 8008. Datapoint
contracted with Texas Instruments in 1970 to get a second
source for this chip. TI patented their design, but never got
into production [19].

After about one year of experience with programming
the 8008 CPU chip [20], we had a number of requested
enhancements from our users. We proposed to build the
8080 as a follow on chip; this chip was very popular
and led to the microcomputer revolution and the Personal
Computer. It is ironic that Datapoint ultimately competed
in the marketplace with PC products based upon their own,
Datapoint defined, architecture!

IV. 8080—MORE AND NO MORE

A. More

Based upon Intel’s success with their new microcomputer
product line Faggin convinced Vasdasz in 1972 to fund a
project to convert the P-MOS 8008 into the newer N-MOS
technology. This technology offered about a 2x speedup
without making logic changes. After a short study, it was
determined that a new mask set was needed because of the
incompatibility of transistor size ratios. Faggin reckoned
that since a new mask set was needed, he would fix some
of the 8008’s shortcomings [21].

We evolved the 8080 specification [22] to improve per-
formance 10x. We used the greater demsity to put in
more logic (~4500 transistors) and do more in parallel;
the on chip control logic grew by 50%. We put the stack
in memory, did 16-b operations, and improved memory
addressing. Now 40-pin plastic packages were available,
and the address bus and data bus could be brought out in
parallel. This design also simplified the external circuitry
and TTL voltage compatible signals were provided.

Deleting the on-chip stack saved chip area, but was a net
advantage to the user—now the stack had unlimited size.
I defined the stack as growing downward from the high
end of memory; this facilitated indexing into the stack and
simplified displaying the stack. This was abandoned on the
8086.

In the 8080, the registers were arranged as pairs of 8 b,
to provide 16-b data handling. The three register pairs were
designated as: BC, DE, HL—The High/Low register pair
was the only way to address memory in the older 8008.
This was limiting to programmers, so in the 8080 direct
memory addressing instructions were added, as well as
several specialized instructions for the HL register pair.
One instruction XTHL provided for exchanging the top
of stack with HL; another instruction, XHLD swapped
the contents of HL with the DE register pair. As these
special instructions were not very symmetric, applying only
to HL, we optimized their logic implementation. One of
Ted Hoff’s tricks was the use of an exchange flip/flop for

1604

DE/HL This flip flop designated one of the pairs as HL and
the other register pair as DE. Simply toggling this flip/flop
affected an apparent exchange! This saved a lot of logic;
but by mistake, the reset pin had been connected to this
flip/flop. An early 8080 user manual stated: “after reset, the
HL/DE register contents may be exchanged” (later the reset
connection was cut). The lack of instruction set symmetry
was a nuisance to programmers and later CPU’s instruction
sets were considerably more regular; of course there were
more ftransistors “to burn.”

B. No More

M. Shima [21] was the 8080 project manager under
Faggin. My specification used all 256 operation codes, and
12th from the bottom of my list was an obscure instruction
(XTHL) for exchanging the top of stack with the HL
register pair. This instruction required five memory cycles
to execute, and would be used to pass arguments to subrou-
tines. I carefully explained each instruction to Shima, whose
patience was tested as I detailed the XTHL operation. He
drew a line under this instruction, and declared:

“No more.”

This is why the last 12 instructions were never imple-
mented and why there was room in the instructions set for
the 8085 microprocessor’s added instructions [23].

The 8080 was very successful in the market. Meanwhile,
competition blossomed and a variety of great processors
developed [24] including the Motorola 6800 and the MOS
Technology 6502. Shima and Faggin (with R. Ungerman)
formed Zilog, and competed with an enhanced processor,
the Z-80 [25]. The 8080 CPU chip was patented by Intel
(Faggin, Shima, Mazor) and has three claims [26].

C. 8085

To meet competition in 1976, Intel decided to develop a
more integrated version of the 8080. This chip contained
~6500 transistors. The new N-MOS was more TTL com-
patible and this chip needed few external parts. There were
12 unused operation codes in the 8080 which provided
room to expand the CPU’s function. At Intel, a committee
studied, argued, and finally decided after many months
which instructions to add [27]. Although, all of these new
codes were utilized by the 8085 designers, by the time this
product got to market it was almost obsolete. To reduce
compatibility requirements with the 8086 which was in
design, 10 of the new 12 instructions were never announced
in the data sheet. They have only been an interesting
historical anomaly and a lesson about design by committee.

D. 8086

In 1978, Intel’s W. Davidow, vice president of. the
microcomputer group, rushed to staff a 16 b microcomputer
development project. It was to have around 30 000 transis-
tors [28], 12 times more than the 4004. This new computer
had multiplication and division and a host of other new
features [29]. However, it was constrained to be upwardly
compatible with the 8080 (and 8008). Accordingly, the
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Fig. 1. MOS transistor per chip—1966 forecast (solid line) and
actual (dots).

designers decided to keep the 16 b basic addresses and
to use segment registers to get extended 20 b addresses.
Two versions were created—the 8088 had an 8-b data
bus for compatibility with 8-b memory systems, and the
16 b 8086 [30].! With 1 megabyte of memory addressing,
this processor was a serious contender in the computer
market place. This chip density required to match the 16-b
minicomputers was “arriving” as had been predicted [31].

The decision by IBM to use the 8088 in a word processor
and personal computer created enormous market momen-
tum for Intel. The 186, 286, 386, 486 followed over the next
15 years, with some shadow of 8008 features still apparent.
These components would be “truly pervasive” [32].

V. HISTORICAL PERSPECTIVE

A. Technology Predictions

The promises of high density solid state circuitry were
becoming apparent in the 1950’s. In 1959, Holland con-
templated large scale computers built with densities of 108
components per cubic foot [34]. The integrated circuit was
developed in parallel at both TI and Intel. Technology
forecasts were made by Fairchild’s Gordon Moore and
Robert Noyce in the mid-1960’s—the density of IC’s was
doubling every year [35]. “Entire subsystems on a chip”

were predicted if a high volume standard chip could be

defined. By 1966 Petritz of TI was forecasting about 10 k
transistors per chip for 1970 and 100 k (optimistically)
by 1976 [31]. See Fig. 1 for a 1966 forecast of chip
complexity. It was then estimated that abut 10 k-20 k gates
would fit on a chip and that a good portion of a CPU would
therefore be on one chip.

In 1966, Hobbs forecasted the reduced cost of arrays,
predicting that the CPU cost would become “negligible”
[5]. Practical people recognized that the issues were the

I The 8086 had a large staff. If a few names are to be mentioned they
are S. Morse, W.- Pohlman, B. Ravenel, J. McKevitt, J. Bayliss, and in
Marketing, D. Gellatly [33].

“number of unique part numbers and the production vol-
ume” after all only a few thousand computers were made
each year [36].

B. SSI, MSI, LSI Chips

By 1968 16-b minicomputers utilized a single printed
circuit board CPU containing around 200 chips. These
were medium scale integrated circuits (MSI) with ~ 100
transistors per chip, and small scale IC’s (SSI). Obviously,
the more transistors that could be put on a chip, the fewer
chips needed on a PCB. Since manufacturers were trying
to reduce costs, there was a constant battle to reduce the
number of chips used—could a CPU be built, with 150,
80, or 25 chips?

By 1970 there were a few projects to build a 16 b
minicomputer CPU using multiple LSI chips. A 1000
transistor chip would be called large scale (LSI). These
projects were being done with military sponsorship at
Raytheon and RCA. The air force was especially interested
in light weight airborne minicomputers. These were full
16-b minicomputers and did not have a scaled down spec-
ification (like the MCS-4), except for their physical size
[37], [38]. They utilized 4-b or 8-b arithmetic and register
“slices”; a minimum CPU would require 8-12 LSI chips
with about 6-8 different part numbers. These were R&D
projects [39], [40].

C. LSI Economics

The use of custom LSI in an application required
very high production volume to commercially justify the
significant tooling costs. One would need to produce around
100 000 systems for commercial feasibility. The only
high volume commercial applications in the early 1970’s
were calculators; almost every calculator manufacturer
was designing custom LSI chips. These chips were
invariably very specialized for arithmetic, printers, and
keyboards—(Busicom’s original request). '

Besides tooling costs, another problem is to get an
economic die size. If a die is too small it does not contain
enough circuitry to justify a fair price. If a die is too
ambitious and large, the manufacturing yield will be too
low and the chip will be too expensive [41]. See Fig. 2 for
an illustration of complexity, cost, and yield. Worst of all,
at the beginning of a complex chip project it is not easy
to accurately forecast the final die size. Defining standard
high volume LSI chips is challenging [36], [42].

Consequently, in 1970, no one had defined general pur-
pose LSI building blocks that were usable in a variety of
applications. The only LSI building blocks available were
memory chips. Honeywell tried to get multiple sources
for a 64-b bipolar LSI memory chip, but that was on
the leading edge of bipolar technology, and not many
vendors could make them [43]. Metal gate MOS ROM’s
and 200-b shift registers were available from a few sources:
AMI, Electronic Arrays, MOS Technology, and General
Instruments. See Table 1 for 1965 LSI chip examples.
Although these chips had around 1000 transistors, they were
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Table 1 MOS Chip Availability in 1965

Manufacturer Type Transistors Power, Pads
mw
GME 100-b shift 600 200 12
register
GI 21-b static 160 150 11
shift register
TI Binary-to- 150 25 26

digital decoder

very regular in structure and easy to design. Because their
internal wiring was minimal, they were 22 — 5z more dense
than “random logic” chips.

D. Partitioning into Packages

One difficulty implementing any system on a set of LSI
chips is partitioning [44] into pieces with a reasonable
number of /O pins on each. It was very expensive to
get more than 20 pins. Around 1970 there were very
few commercially available low cost packages. The most
common had only 14-pins and sold for around $1. Cost
sensitive applications such as desk calculators could not
afford 48-pin packages which were then selling for around
$10.

Optimization consists of maximizing the number of gates
inside compared to the number of pins outside—the gare
to pin ratio. Memory chips with 1 kb in an 18-pin package
gave an excellent gate/pin ratio of about 100:1. Each time
the technology allowed a doubling of bits on a chip, only
one more address pin was needed. A shift register was even
better, because regardless of the number of bits added, the
input/output pin count stayed constant.

If a CPU were to be built of LSI chips it was not obvious
how to break it into pieces with a small number of VO pin
connections and a high gate/pin ratio. Simply put, if you cut
an ordinary CPU into two pieces you would have hundreds
of signals which would need to cross the chip boundaries.

Each package pin also required a lot of MOS chip “real
estate” for amplifiers to drive the heavy off chip capacitive
loads and for the wire bonding pads which go from the
chip to the package. Besides the cost, placing more pins
on an LSI chip also lowered the reliability. Hence, most
commercial LSI applications were constrained by the few
leads available on IC packages. This is why the early
microprocessors were in 16 and 18 pin packages.

E. Semiconductor Technology

On-chip interconnections are also a major problem. A
CPU chip contains “random logic” requiring many inter-
connection wires. Prior to 1980 most semiconductor chips
had only one layer of metal. This metal was used for
global connections such as power, ground, clocks, and
major busses. Local connections were made using poorer
quality, higher resistance, lines of poly-silicon or diffusion.

The silicon gate process [18], developed originally at
Fairchild Semiconductor in around 1967, provided slightly
better local interconnections and crossovers. This tech-
nology also offered lower capacitance, smaller size (self-
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Cost per fungtion

Chip Area

lllustration of: Complexity, Cost, Yield

Fig. 2. Relationships of complexity, cost, and yield to chip area.

aligned structures) and lower voltage operation. This was a
key technology enabler for microprocessor development at
Intel. The 8008 chip for Datapoint was implemented using
silicon gate technology. In contrast, TI, was at that time,
using metal gate MOS technology and used about twice the
amount of silicon area for a similar chip.

Silicon gate P-MOS needed a 14 V supply, and was
often biased between +5 V and —9 V to give pseudo-
TTL compatibility. This relatively high voltage aggravated
the severe power budget facing the circuit designer. Small
IC packages cannot dissipate more than 1/2 W of power
in normal air cooled systems. The compromise was to use
dynamic logic operating at low duty cycles to reduce heat.
In 1995, power dissipation is still a major design factor in
commercial system design. It has been one of the driving
factors toward 1.5-2.5 V technology; battery operation is
another factor.

F. Circuit Factors

The P-MOS transistors in 1970 required 14 V to operate.
To reduce the overall power dissipation most of the circuits
were operated dynamically in a two phase operation. First a
circuit was precharged using an on-chip amplifier, and then
the circuit was conditionally discharged, based upon logic
decisions. Previously, “bootstrap” amplifiers were built
using the gate “overlap capacitance” as part of the circuit.
However, silicon gate self-aligned geometry eliminated this
capacitor. F. Faggin innovated a new and efficient bootstrap
amplifier as part of his early circuit design of Intel’s chips.

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 12, DECEMBER 1995



Another element which made micro’s feasible was the
dynamic RAM cell. The memory storage is obtained by
storing a charge on a small capacitor. This capacitor is
usually integrated into a three-transistor memory cell. How-
ever, the memory starts to fade after about 5 ms, so that
an external “refresh” circuit needs to read, test, and restore
the charge on a periodic basis. Static memory cells required
twice the chip area and used much more power; they were
impractical for use inside the CPU. Recall that Intel was
only a memory company in 1970. Hoff had done research
on memory cell design and, proposed to use dynamic RAM
inside the CPU for index registers and stack. Hoff’s insight
was essential for enabling the first microprocessor chip.

G. CAD Tools

Since the mid-1960’s computer makers had been doing
circuit analysis using “home grown” tools. Hoff and I
developed a transient analysis program (PULS) to help with
MOS circuit design. Intel’s Dov Frohman, who invented
the EPROM (he didn’t call it a FROM), provided the
transistor model. Intel’s designers used PULS to help them
achieve the desired ac/dc performance. Hoff wrote our first
logic simulator for the PDP-8; later I used a commercial
(Applicon) tool for the PDP-10. I abused the DEC macro
assembler to get the first MCS-4 code assembled and into
the 4001 ROM bit map. We developed the early calculator
firmware with this assembler. The availability of these CAD
tools allowed our designers to catch design errors early and
were essential to Intel’s success. A few Silicon Valley CAD
companies were spawned from these in house CAD groups.

H. The Microcomputer Name

In the mid-1960’s midicomputers and minicomputers
were selling in the marketplace. Some computers used
a microprogram, stored in ROM; the inner part of such
a computer was called an “engine” or “microengine” or
“microprocessor.” In 1970, a microcomputer was normally
interpreted as a computer considerably smaller than a mini-
computer, possibly using: ROM for program storage. By
extension, the terms “nano-computer” and “pico-computer”
have also been used by computer engineers indicating
relative size and performance of computers.

In the late 1960’s Fairchild had a logic family called u-
logic, so the prefix was also used for “micrologic” in IC’s.
(Since most of the Intel guys had come from Fairchild we
avoided references to their product line; Intel did not use
the Greek letter).

Lo [45] mentions “the computer on a chip” in 1968, and
Scientific American also featured “Computer on a Chip,”
with 400 gates in 1970 [2]. IBM looked for ways of sim-
plifying computers. In 1968, Hitt proposed a 4-b computer
with no arithmetic unit and no registers (CADET—can’t
add doesn’t even try). But this very simple computer was
not built with LSI and was still called a minicomputer [11].

The single chip central processor unit (CPU) has been
commonly called a microprocessor. With off chip memory,
it is usually called a microcomputer. Single chip computers

are often called microcontrollers. The 4004 specification
was for a microcomputer.

VI. SUMMARY

Integrated circuit technology has been evolving in a
predictable manner for the past 30 years. Although a
computer on a chip was eventually realizable, it was
problematical how to use LSI chips which had fewer
than 20 000 transistors. Most of the work focused on
partitioning 16-b computers into multiple chips, but few of
these projects were successful. Early Intel microprocessors
succeeded because they were scaled down computers. Like
a golf cart, they were very limited, “but got across the
green.” When the densities reached 200 k+ transistors
per chip, microprocessors became the dominant computer
technology.
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