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Abstract—Conditional branch prediction remains one of the
most important enabling technologies for high-performance mi-
croprocessors. A small improvement in accuracy can result in
a large improvement in performance as well as a significant
reduction in energy wasted on wrong-path instructions. Neural-
based branch predictors have been among the most accurate
in the literature. The recently proposed scaled neural analog
predictor, or SNAP, builds on piecewise-linear branch prediction
and relies on a mixed analog/digital implementation to mitigate
latency as well as power requirements over previous neural
predictors. We present an optimized version of the SNAP pre-
dictor, hybridized with two simple two-level adaptive predictors.
The resulting optimized predictor, OH-SNAP, delivers very high
accuracy compared with other state-of-the-art predictors.

I. INTRODUCTION

High-performance microprocessors rely on accurate branch

predictors to continuously supply the core with right-path in-

structions. A small improvement in conditional branch predic-

tor accuracy can result in a significant improvement in perfor-

mance as well as a reduction in energy consumption as fewer

wasted wrong-path instructions are executed. For instance, a

recent study finds that for the Intel Xeon E5440, a perfect

branch predictor would yield a performance improvement of

26.0%, while halving the average number of mispredictions

per 1000 instructions (MPKI) from 6.50 to 3.25 would improve

performance by 13.0% [13]. For future generation processors

with deeper pipelines and/or larger instruction windows, the

effect on performance would be even more pronounced.

Figure 1 illustrates the steady improvement in branch pre-

dictor accuracy over the years on a set of SPEC CPU 2000 and

2006 integer benchmarks. The bimodal [20], two-level adap-

tive training GAs [22], gshare [12], hybrid [4], BiMode [11],

perceptron [8], 2Bc-gskew [18], piecewise linear neural [7],

L-TAGE [16], and SNP/SNAP [1] predictors are illustrated,

showing the continued progress of branch prediction research

over the past two decades.

This paper introduces a set of optimizations to the Scaled

Neural Analog Predictor [1], [2], a branch predictor based

on neural learning and assuming a mixed analog/digital im-

plementation to provide low latency and low power. Previous

work describes in detail the implementation of this predictor;

this paper shows that aggressive optimization of SNAP results

in significantly improved accuracy.

The SNP/SNAP predictor is based on neural branch pre-

diction, a technique introduced by Vintan [21] and refined by

Jiménez et al. [8], [6], [7]. The basic idea is to associate each

branch (or branch path, dynamically) with a perceptron [3],

[14], i.e., a vector of small integer weights learned by on-
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Fig. 1. Conditional branch predictor accuracy over the years. MPKI is
mispredictions per 1000 instructions; lower is better.

line training. The perceptron is a simplified model of a

neuron, hence the term “neural prediction.” When the branch

is predicted, the dot-product of these weights with a binary

vector of recent branch outcomes is computed and the branch

is predicted to be taken if the dot-product value exceeds 0,

or not taken otherwise. The mechanism seems complex, but

through tricks derived from high-speed computer arithmetic

as well as pipelining, perceptron-based predictors can achieve

latencies competitive with table-based predictors [6]. The

SNAP predictor uses a mixed analog/digital implementation

to achieve even lower latency and improved accuracy [1].

Our optimized version of the SNAP predictor attempts to

strike a balance between implementability and accuracy. An

actual implementation would likely differ in design complexity

but deliver similar performance; this paper explores the limits

of the scaled neural predictor idea with predictor state as the

only practical constraint. The Optimized Hybrid Scaled Neural

Analog Predictor, or OH-SNAP, uses only branch address and

outcome information. Section II describes the idea of the

algorithm. Section III gives a list of optimizations used to

make the algorithm more accurate. Section IV describes the

experimental methodology. Section V gives results comparing

the accuracy of OH-SNAP with previous work.
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Fig. 2. Weight position and branch outcome correlation. This figure is taken
from the original SNAP paper [1].

II. THE IDEA OF THE ALGORITHM

This section briefly reviews the Scaled Neural Predictor

algorithm.

A. Variables

The following variables are used by the algorithm:

a) W: A two-dimensional array of integers weights.

Addition and subtraction on elements of W saturate at +63

and -64. The first weight in each row, denoted W [i, 0] for the

ith row, is a bias weight; the rest of the weights are correlating

weights.

b) h: The global history length. This is a small integer,

258 in our implementation.

c) H: The global history register. This vector of bits

accumulates the outcomes of branches as they are executed.

Branch outcomes are shifted into the first position of the

vector.

d) A: An array of addresses. As branches are executed,

their addresses are shifted into the first position of this array.

In the implementation, the elements of the array are the lower

9 bits of the branch address.

e) C: An array of scaling coefficients. These coefficients

are multiplied by the partial sums of weights in a dot product

computation to make the prediction. There is a different

coefficient for each history position, exploiting the fact that

different history positions make a different contribution to

the overall prediction. The coefficients are chosen as C[i] =
f(i) = 1/(A+B×i) for values of A and B chosen empirically.

This formula reflects the observation that correlation between

history and branch outcome decreases with history position,

illustrated in Figure 2 taken from the original SNAP paper [1].

f) sum: An integer. This integer is the dot-product of

a weights vector chosen dynamically and the global history

register.

B. Prediction Algorithm

Figure 3 shows the function predict that computes the

Boolean prediction function. The function accepts the address

of the branch to be predicted as its only parameter. The branch

is predicted taken if predict returns true, not taken otherwise.

The weights are organized into blocks of 8 weights each to

reduce the number of tables, hence decreasing selection logic

overhead. The dot product computation can be expressed as

summing of currents through Kirchhoff’s law. The multiplica-

tion by coefficients can be expressed by appropriately sizing

transistors in the digital-to-analog converters described in the

original SNAP paper [1]. As discussed in the original paper,

the mixed analog/digital implementation allows performing the

complex dot-product computation to be done with very low

latency and power with negligible impact on accuracy.

1) Predictor Update: There are three kinds of updates to

the predictor, each of which can proceed in parallel:

1) Training As branches are committed, the predictor train-

ing algorithm is invoked. The weights used to predict the

branch are updated according to perceptron learning. If

the prediction was incorrect, or if the sum used to make

the prediction has a magnitude less than a parameter θ,

then each weight is adjusted. Correlating weights are

incremented if the outcome of the current branch is the

same as the outcome of the corresponding branch in the

history, or decremented otherwise. The bias weight is

incremented if the branch was taken, decremented oth-

erwise. All weights saturate at 63 and -64. Since the up-

dates to each weight occur independently of one another,

this algorithm is highly parallel and is dominated by the

latency of performing an increment/decrement on a 7-bit

number. This algorithm is basically the same algorithm

presented in several previous related works [8], [6], [7].

2) History Update Branch outcomes are shifted into H
as they become available. Two versions of H are kept:

a speculative version that is updated as soon as a

prediction is made, and a non-speculative version that

is updated on commit. When a mispredicted branch is

discovered, the speculative version is recovered with the

non-speculative version in parallel with other branch

misprediction recovery actions.

3) Adaptive Threshold Training The threshold θ itself

is adaptively trained according to an algorithm due to

Seznec [15] who found that predictor accuracy seemed

to be best when the number of training rounds due

to mispredictions was roughly equal to the number of

training rounds due to low-confidence predictions where

the prediction was correct but the magnitude of the

neural output (i.e. the dot-product) failed to exceed

θ. This algorithm increases θ on a misprediction and

decreases it on a low-confidence but correct prediction.

III. OPTIMIZATIONS

In this section, we describe a number of optimizations used

to improve the accuracy of the predictor.

A. Using Global and Per-Branch History

To boost accuracy, we use a combination of global and per-

branch history rather than just global history as outlined in

the algorithms above. A table of per-branch histories is kept
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function prediction (pc: integer) : { taken , not taken }
begin

sum := C[0] × W [pc mod n, 0] Initialize to bias weight

for i in 1 .. h by 8 in parallel For all h/8 weight tables

k := (hash(A[i..i + 7]) xor pc) mod n Select a row in the table

for j in 0 .. 7 in parallel For all weights in the row

sum := sum + C[i + j] × W [k, i + j + 1] × H [i + j] Add to dot product

end for

end for

if sum >= 0 then Predict based on sum

prediction := taken

else

prediction := not taken

endif

end

Fig. 3. SNP algorithm to predict branch at PC. This figure is taken from the original SNAP paper [1] and slightly modified.

and indexed by branch address modulo number of histories.

Weights for local perceptrons are kept separately from global

weights. These histories are incorporated into the computations

for the prediction and training in the same way as the global

histories. This technique was used in the perceptron predic-

tor [9] and has been referred to as alloyed branch prediction

in the literature [19]. The number of branch histories, history

length, and number of correlating weights vectors for local

histories were chosen empirically.

B. Ragged Array

The W matrix is represented by a ragged array. That is,

it is not really a matrix, but a structure in which the size

of the row varies with the index of the column. Rows for

correlating weights representing more recent history positions

are larger since these positions have higher correlation with

branch outcome and thus should be allocated more resources.

The sizes of the components of the array vary according to

the same formula for deciding the coefficient values, i.e.,

the number of correlating weights per row is proportional

to f(i) = 1/(A + B × i) for values of A and B chosen

empirically. It would be possible to make a predictor with

the same accuracy with rows all of the same size, but the

resulting predictor would consume approximately twice the

storage budget as our predictor.

C. Training Coefficients Vectors

The vector of coefficients from the original SNAP was

determined statically. Our predictor tunes these values dynam-

ically. When the predictor is trained, each history position is

examined. If the partial prediction given at this history position

is correct, then the corresponding coefficient is increased by

a certain factor; otherwise is is decreased by that factor. Also,

four separate coefficients vectors are kept, indexed by branch

address modulo four. Coefficients are part of the state of

the predictor, so they are represented as 24-bit fixed point

numbers. Now that coefficients vary, they can no longer be

represented through fixed-width transistors in the digital to

analog converters. However, they can still be implemented

efficiently by being represented digitally similarly to the

perceptron weights, then multiplied by the partial products

through digital-to-analog conversion and multiplication with

op-amps.

D. Training θ

The adaptive training algorithm used for O-GEHL [15] is

used to dynamically determine the value of the threshold θ,

the minimum magnitude of perceptron outputs below which

perceptron learning is triggered on a correct prediction. We

extend this algorithm to include multiple values of θ, chosen

by branch address modulo number of θs. Also, the value

trained adaptively is multiplied by a small empirically tuned

factor to determine whether to trigger perceptron learning.

E. Branch Cache

The predictor keeps a cache for conditional branches with

entries consisting of partially tagged branch addresses, the

bias weight for the given branch, and flags recording whether

the branch has ever been taken or ever been not taken. The

cache is large enough to achieve more than 99% hit rate on

all benchmarks tested. This way, there is no aliasing between

bias weights. Moreover, branches that have only displayed one

behavior during the run of the program can be predicted with

that behavior and prevented from training and thus possibly

aliasing the weights. The number of entries, size of partial

tags, and associativity of the branch cache are empirically de-

termined. The cache is filled with new conditional branches as

they are predicted, with old branches being evicted according

to a least-recently-used replacement policy.

F. Hybrid Predictor

Figure 4 shows the probability that a branch is taken given

the value of the neural output. In most cases, the neural output

is a very good indicator of whether or not a branch will

be taken. However, for neural output values near zero, the

probability that a branch is taken is very close to 50%. That
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Fig. 4. Perceptron output tracks probability branch is taken

is, the neural output becomes useless as a predictor when it is

near zero. Thus, when the neural output is close to zero we

use an alternate method of making a prediction.

Two other predictors are used alongside the SNAP predictor.

A gshare-style predictor [12] indexed by a hash of branch

address and branch history is consulted if the magnitude of

the perceptron output falls below a certain tuned threshold.

If the gshare prediction has low confidence (i.e. if the two-

bit saturating counter from the gshare does not have the

maximum or minimum value) then a PAg-style local-history

predictor [22] consisting of a table of single bits is consulted.

The history lengths of the gshare and PAg predictors is tuned

empirically. The empirically-tuned threshold below which the

table-based predictors take over is expressed as a fraction of

θ.

G. Other Minor Optimizations

A minimum coefficient value was tuned empirically; co-

efficients are prevented from going below this value when

initialized. The output of local perceptrons is multiplied by

a tuned coefficient before being summed with the bias weight

and partial sum from correlating weights. The block size was

changed from eight in the original SNAP to three in this

implementation.

IV. METHODOLOGY

A. Trace-Based Simulator

We use a trace-based simulator written in C++ that apply

the various branch prediction algorithms tested to a set of

40 benchmarks from the JWAC-2 competition [10]. The 40

benchmark traces are provided by Intel and are divided into

five categories: client (CLIENT), integer (INT), multimedia

(MM), server (SERVER), and workstation (WS). Each trace

contains conditional branch address and outcome representing

a run of 50 million microinstructions. We report branch predic-

tor accuracy as number of mispredictions per 1000 instructions

(MPKI). This statistic has been used in most recent branch

prediction work and is preferred to the misprediction rate

(i.e., number of mispredictions divided by total number of

predictions) because it reflects the impact of mispredictions

on performance proportionately to the normalized number of

branches executed.

B. Predictors

We compare OH-SNAP with the following predictors from

industry and the academic literature:

1) L-TAGE The L-TAGE branch predictor is currently

the most accurate branch predictor in the academic

literature [16], [17]. It is based on prediction by partial

matching. Several tables are indexed using different

history lengths based on a geometric progression; the

longest matching history is used to make a prediction.

We implement a version of L-TAGE that uses a 65KB

storage budget based on the original author’s code

available from the CBP-2 website.

2) SNP The SNP predictor is the infeasible digital version

of the analog SNAP predictor. We implement a version

of SNP that uses a 65KB storage budget based on one

of the original author’s code available from his website.

3) Intel Core 2 The Intel Core 2 branch predictor rep-

resents the state-of-the-art in accuracy for implemented

branch predictors. The actual design of the predictor is

a closely guarded trade secret, but we use a reverse-

engineered model of this predictor that has been val-

idated to achieve very similar accuracy on a set of

benchmarks [13].

4) Opteron The AMD Opteron branch predictor is an-

other highly accurate industrial predictor. We simulate

it using a reverse-engineered model [5] that we have

independently validated as having very similar on a set

of benchmarks.

5) OH-SNAP We simulate the OH-SNAP predictor as

described in this paper, starting with the design given

in the original paper [1] as well as code provided by

one of the authors on his website.

C. The Size of the Predictors

Figure I shows the computation of the size of the state used

for the predictor. The total number of bits used by the predictor

is 530,609, or approximately 65KB. We feel that 65KB is a

reasonable size for a future-generation branch predictor; it is

the size given for contestants in the JWAC-2 competition [10],

and the Alpha EV8 predictor was designed in 2002 to consume

approximately 48KB [18].

V. RESULTS

This section gives results of experiments on all 40 bench-

marks for OH-SNAP as well as other predictors. Accuracy is

discussed, as well as the contribution of individual optimiza-

tions to accuracy.
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Source of bits Quantity of bits Remarks

branch queue 129× (9 + 1 + 17) = 3, 483 9-bit index, 1 bit prediction, 17 bit local history
local history 384× 17 = 6, 528 384 local histories, 17 bits each
local weights 7× 96× 17 = 11, 424 96 local perceptrons, each 17 7-bit weights
weights blocks 0..6 7× (3× 7× 512) = 75, 264 1st 7 columns have 512 blocks of 3 weights
weights blocks 7..12 6× (3× 7× 256) = 32, 256 next 6 columns have 256 blocks of 3 weights
weights blocks 13..85 73× (3× 7× 128) = 196, 224 last 73 columns have 128 blocks of 3 weights
branch cache 64× 140× (10 + 7 + 2) = 170, 240 64 sets, 140 ways 10-bit tag, 7-bit bias, 2 bit T/NT
other predictor 2, 048× (2 + 1) = 6, 144 2K 2-bit gshare + 2k 1-bit local counters
coefficients vectors 4× 24× (258 + 1) = 24, 864 4 24-bit 259-entry fixed-point vectors
pattern history 258 + 129 = 387 enough circular buffer for all in-flight branches
path history 9× (258 + 129) = 3, 483 enough circular buffer for all in-flight branches
θ values 12× 26 = 312 26 12-bit threshold values

total 530, 609 total number of bytes is 66,326 = 64.77KB

TABLE I
COMPUTING THE TOTAL NUMBER OF BITS USED FOR OH-SNAP
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Fig. 5. Mispredictions per 1000 instructions for various predictors.

A. Accuracy

Figure 5 shows that OH-SNAP has high accuracy. On

average, OH-SNAP delivers an accuracy of 3.78 MPKI. L-

TAGE yields 3.90 MPKI, so OH-SNAP gives an accuracy

3.1% better than L-TAGE. SNP, the predictor on which OH-

SNAP is based, gives an accuracy of 4.09 MPKI. Thus, OH-

SNAP improves by 7.6% over its predecessor. The Intel Core

2 predictor yields 5.45 MPKI and the AMD Opteron predictor

gives 5.76 MPKI. OH-SNAP outperforms all of the predictors

except for L-TAGE on all of the benchmarks. OH-SNAP

frequently outperforms L-TAGE and has fewer mispredictions

on average.

Improvements in MPKI translate into improvements in

performance and reductions in energy consumption. Thus, the

OH-SNAP predictor is capable of improving performance and

reducing energy over state-of-the-art academic predictors.

B. Contribution of Optimizations

Figure 6 illustrates the contributions of individual optimiza-

tions to accuracy. Each bar represents the presence or absence

of certain optimizations. For instance, “none” means there are

no optimizations over the baseline SNP predictor, “only hybrid

predictor” means that the only optimization over the baseline

is to use a hybrid predictor, and “no training theta” means that

all optimizations are used except for the method of adaptively

training the parameter θ.

The greatest contribution to accuracy is from training the

coefficients. The “only training coefficients” bar shows the

accuracy achieved by training the coefficients but not applying

any other optimization. This optimization alone improves

accuracy by 7% over the baseline SNP, more than any of

the other optimizations. The addition of a hybrid predictor

proves to be the least valuable optimization. If it is the
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only optimization, the hybrid predictor improves MPKI by

3.3%. If it is omitted but all the other optimizations are kept,

MPKI is reduced by only 0.32% compared with keeping all

optimizations. Interestingly, using ragged arrays to distribute

predictor storage proportionately with history correlation im-

proves performance more than using local histories.
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only local histories
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Fig. 6. Contributions of individual optimizations to overall accuracy.
“No” means this optimization is the only one omitted; “only” means this
optimization is the only one applied.

VI. CONCLUSION

The SNP/SNAP predictor provided evidence that highly ac-

curate neural branch prediction could be done efficiently with

a mixed analog/digital implementation. This paper engineers

that design into a practical hybrid predictor with significantly

improved accuracy.
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[7] Daniel A. Jiménez. Piecewise linear branch prediction. In Proceedings

of the 32nd Annual International Symposium on Computer Architecture

(ISCA-32), June 2005.
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