Reducing the Power and Complexity of Path-Based Neural Branch

Prediction
Gabriel H. Loh Daniel A. Jiranez
College of Computing Department of Computer Science
Georgia Institute of Technology Rutgers University
loh@cc.gatech.edu djimenez@cs.rutgers.edu
Abstract 1. Introduction

After decades of academic and industrial research ef-

)) forts focused on the branch prediction problem, pipeline
A conventional path-based neural predictor (PBNR),shes due to control flow mispredictions remain one

achieves very high prediction accuracy, butits very deeply the primary bottlenecks in the performance of mod-
pipelined implementation makes it both a complex aggh hrocessors. A large amount of recent branch predic-
power-intensive component. One of the major reasofis, research has centered around techniques inspired and
for the large complexity and power is that for a historgeriveqd from machine learning theory, with a particular
length of h, the PBNP must usé separately indexed emphasis on thperceptronalgorithm [3, 4, 7-10, 14, 18].
SRAM arrays (or suffer from a very long update latencytheqe neural-based algorithms have been very successful

organized in arh-stage predictor pipeline. Each pipeling, nyshing the envelope of branch predictor accuracy.
stage requires a separate row-decoder for the correspond-

ing SRAM array, inter-stage latches, control logic ang Researchers have made a conscious effort to propose

checkpointing support. All of these add power and comr-anCh pret_jl_ctorts that are hlghly amena_blg t.o p|pel|ne(_j
lexity to the predictor and ahead-pipelined organizations to minimize the im

plexity P ’ pact of predictor latency on performance. There has been

We propose two techniques to address this problegansiderably less effort on addressing power consumption
The first ismodulo path-historywhich decouples the ang implementation complexity of the neural predictors.
branch outcome history length from the path histoigequycing branch predictor power is not an easy problem
length allowing for a shorter path history (and therepecause any reduction in the branch prediction accuracy
fore fewer predictor pipeline stages) while simultaneousiyn result in an overall increase in thgstenpower con-
making use of a traditional long branch outcome historgumption due to a corresponding increase in wrong-path
The pipeline length reduction results in decreased powWgktryctions. On the other hand, peak power consump-
and implementation complexity. The second techniqugjéh which limits the processor performance, and aver-
bias-based fllteranBBF) which takes advantage of th%ge power consumption, which impacts battery lifetime
fact that neural predictors already have a way o traclyr mopile processors, are important design concerns for
strongly biased branches. BBF uses the bias weightstigre processors [5]. Furthermore, it has been shown that
filter out mostly always taken or mostly always not-tak§Re branch predictor, and the fetch engine in general, is a
branches and avoids consuming update power for sugfarmal hot-spot that can potentially limit the maximum
branches. clock frequency and operating voltage of the CPU, which

Our proposal is complexity effective because it datturn limits performance [16].

creases the power and complexity of the PBNP withoutThis paper focuses on thmth-based neural predictor

negatively impacting performance. The combination @hich is one of the proposed implementations of neu-
modulo path-history and BBF resullts in a slight improvea| branch prediction [7]. In particular, this algorithm is

ment in predictor accuracy of 1% for 32KB and 64KB prenighly accurate and pipelined for low effective access la-
dictors, but more importantly the techniques reduce powgicy. We explain the organization of the predictor and the
and complexity by reducing the number of SRAM arrap@gajor sources of power consumption and implementation
from 30+ down to only 4-6 tables, and reducing predictafomplexity. We propose a new technique for managing
update activity by 4-5%. branch path-history information that greatly reduces the

number of tables, the pipeline depth, and the checkpoimmt-different entries also helps to reduce the impact of inter-
ing overhead required for path-based neural predictidmanch aliasing.
We also propose a simple bias-based filtering mechanisnTo implement the PBNP, the lookup phase is actually
to further reduce branch prediction power. While this ppipelined over many stages based on the overall path-
per specifically discusses the original path-based neuythnch-history length. Figure 1b illustrates the hardware
predictor [7], the techniques are general and can be easilyanization of the PBNP. For a branch at cytlehe
applied to other neural predictors that use path history. PBNP starts the prediction at cydle- k using PC},. For
The rest of this paper is organized as follows. Sectioreach cycle aftet — h, the PBNP computes partial sums
provides an overview of the path-based neural predictifrthe dot-product ofiw - 2. Pipeline stage contains the
and discusses its power and complexity. Section 3 gartial sum for the branch prediction that will be needed
plains our proposed techniques for reducing the powaer: cycles. At the very end of the pipeline, the critical
consumption and implementation complexity. Sectionldokup latency consists of looking up the final weight and
presents the simulation-based results of our optimizpdrforming the final addition.
path-based neural predictor in terms of the impact on pre-

diction accuracy and power reduction. Section 5 con-]
cludes the paper. 2.2. Power and Complexity

During the lookup phase of the PBNP, each pipeline stage
. L. reads a weight corresponding to the exact same PC. This
2. Path-Based Neural Prediction is due to the fact that the curreRC, will be next cycle’s

This section describes the original path-based neural p]rjec-v.1 and next-next cycle’s’C; and so on. This allows

dictor (PBNP), and then details the power and complexffm |mplem§ntat|op Wlhelre thesvl\;i?\?ts areihretad mta.smglltle
issues associated with the PBNP. ccess using a single large row that contains a

of the weights. During the update phase however, a sin-

gle large access would force the update process to use a
2.1. Predictor Organization pipelined implementation as well. While at first glance

this may seem desirable, this introduces considerable de-
The path-based neural predictor (PBNP) derives from tlay between update and lookup. For example a 30-stage
original perceptrorbranch predictor [9]. We define a vecupdate pipeline implies that even after a branch outcome
tor 7 = (1,x1, s, ..., z5) Wherez; is theith most recent has been determined, another 30 cycles must elapse be-
branch history outcome represented as -1 for a not takere the PBNP has been fully updated to reflect this new
branch and 1 for a taken branch. The branch historyiigormation. This update delay can create a decrease in
the collection of taken/not-taken results for thenost re- predictor accuracy. There are also some timing effects due
cent conditional branches. The perceptron uses the bratcthe fact that some weights of a branch will be updated
address to select a set of weights = (wg, w1, ..., w;,) before others.
that represent the observed correlation between branclAn alternative organization usés tables in parallel,
history bits and past branch outcomes. The sign of thee for each pipeline stage/history-bit position [7], as il-
dot-product ofw - Z provides the final prediction wherelustrated in Figure 1b. This organization allows for a
a positive value indicates a taken-branch prediction. Figruch faster update and better resulting accuracy and per-
ure 1a shows a block diagram of the lookup logic for tHermance. The disadvantage of this organization is that
perceptron predictor. there is now a considerable amount of area and power

At a high-level, the PBNP is very similar to the percepverhead to implement the row decoders for theep-

tron in that it computes a dot-product between a vector@fate SRAM arrays. Furthermore, to support concurrent
weights and the branch history. The primary differen¢eokup and update of the predictor, each of these SRAM
is that the PBNP uses a different branch address for eattalys needs to be dual-ported (one read port/one write
of the weights ofw/. Let PCy be the current branch ad4ort) which further increases the area and power overhead
dress, andPC; be theith most recent branch address iaf the SRAM row decoders. To use the PBNP, the branch
the path history For the perceptron, each weight is chgeredictor designer must choose between an increase in
sen with the same index based B¢,. For the PBNP, power and area or a decrease in prediction accuracy.
each weightv; is chosen based on an index derived from On a branch misprediction, the PBNP pipeline must
PC;. This provides path history information that can imbe reset to the state that corresponded to the mispredict-
prove prediction accuracy, and spreading out the weightg branch being the most recent branch in the branch

| Decoder [+| PCj,_5 |

| Decoder | PC, |

| Decoder | PC), |

| Decoder [+| PCj,_4 |

| Decoder | PC, |

[v9)
T
pY)
o
1
a7
1
<)
‘XA
[v9)
T
Y]

X
ADD
Prediction Prediction
(@) (b)

Figure 1: (a) Organization of the lookup logic for the perceptron branch predictor. (b) Lookup logic for the
pipelined path-based neural branch predictor.

and path history. To support this predictor state recos- Reducing Perceptron Power and
ery, each branch must checkpoint all of the partial sums in ;

the PBNP pipeline. On a branch misprediction, the PBNP CompleXIty

restores all of the partial sums in the pipeline using thig this section, we propose two techniques for reducing
checkpointed state. Forbit weights and a history lengththe power and complexity of the path-based neural predic-
of h, a PBNP checkpoint requires approximatélybits tor. Modulo-Path History is a new way to manage path-
of storage. The total number of bits is slightly greater baistory information which also provides a new degree of
cause the number of bits required to store a partial sif@edom in the design of neural predictors. Bias-Based
increases as the sum accumulates more weights. TheFiering is a technique similar to previously proposed fil-
tal storage for all checkpoints corresponds to the maéring mechanisms that takes advantage of the informa-
mum number of in-flight branches permitted in the praion encoded in the neural weights to detect highly biased
cessor. For example, assuming one branch occurs eygidhches.

five instructions, then a 128-entry ROB would on average

have 25 branches in flight. This means the PBNP check- .

point table must have about 25 entries to support the av-L- Modulo-Path History

erage number of pranches. To avoi.d stalls due to a bl1Fr°’tthe original PBNP, the path history length is always

of branch |n.struct|ons, the checkpoint table may needéaum to the branch history length. This is a result of

pe s_ubstant_lally I_arger. For proposals of very-large eﬁel%ing PC;, to compute the index for the weight of,.

tive instruction window processors such as CFP [17], thg gescribed in the previous section, the pipeline depth

checkpointing overhead further increases. directly increases the number of tables and the check-
pointing overhead required. On the other hand, support-
ing a long history length requires the PBNP to be deeply
pipelined.

The checkpointing overhead represents additional areaye proposemodulo path-historywhere we decouple
power, and state that is often unaccounted for in naWe branch history length from the path history length.
ral predictor studies. This overhead increases with tg |imit the path history to only thé® < h most re-
history/path-length of the predictor since the PBNP mugént branch addresses. Instead of ugit(@ to compute
store one partial sum per predictor stage. A further soukg@ index forw;, we usePC; .4 p. In this fashion,
of complexity is the gddiltional corjtrol logic required tQue can reduce the degree of pipelining down to oRly
manage the deeply pipelined predictor. stages. Figure 2a shows the logical predictor organiza-

PG
PC
P&

PG
PC
PG

— (2]
¢ | L] L | I | 8| 8| o & ko) ko) &
AR 83 R B|8 R 8 8 8
F | ® | ® FlFE|F|F|F|F = = =
|-
Wh Wh—1Wh—2 Ws W4 w3 wa w1 Wo wa w1 Wo
Ws Wa ws

Figure 2: (a) Logical organization of a PBNP using modulo path-history. (b) Physical organization of a PBNP
using modulo path-history for P = 3.

tion of a PBNP using modulo path-history (fét = 3). jan and Skadron proposed a comprehensive taxonomy of
Since everyPth weight is indexed with the same brancheural branch predictor organizations that can describe a
address, we can interleave the order of the weights in trexy wide variety of neural predictor variations [18]. Nev-
table such that onlyP tables are necessary. Figure 2brtheless, modulo path-history is a new addition that does
shows how each table provides weights that corresponcahtt fall into any of their categories.
h/ P branch history outcomes, where each branch history
outcome is separated Wy bit positions.) o
By reducing the PBNP implementation to only uBe 3.2. Bias-Based Filtering
distinct tables, we a_ddress seve_ral Of the main source_%gfr"er branch prediction studies have made the observa-
power and complexity as described in Section 2. Usm% : ;
) tion that there are a large number of branch instructions
only P tables reduces the duplicated row-decoder over; . .
S hose outcomes are almost always in the same direc-
head. The reduction in the number of tables reduces ﬁ"]e X .
overall pipeline depth of the predictor which reduces the. [2,6]. Some of this research has proposed various
amountpoe State thgt must bepcheck ointed (i.e. there 5\/ra s for detecting these strongly biased branches and re-
; . P - moving orfiltering them out to reduce the amount of in-
only P partial sums). With fewer stages, the control logic . o
. o terference in the branch prediction tables. We make the
for the predictor pipeline can also be reduced. The nunj- : .
! . : observation that from an energy and power perspective,
ber of inter-stage latches and associated clocking ovel- i . : .
head is also corresnondinaly reduced eeping track ofh distinct weights and performing an
_ P gy ' _ expensive dot-product operation is an overkill for these
~ Modulo path-history may also make the single-tabigasy-to-predict branches. We also observe that the fam-
implementation feasible. The pipelined update still adg§ of neural predictors have built-in mechanisms for de-
latency to the update phase of the branch predictor, but {Beting highly-biased branches. Combining these obser-
update latency has been reduced frorh) cycles down vations, we proposeBlias-Based FilterindBBF).
to O(P) cycles. For sufficiently small values df, the e BBF technique is simple in principal. We consider
subs’lcant}al reductlon_m complgxny and associated powWehranch whose bias weighi) has saturated (equal to
may justify the small increase in the update latency. maximum or minimum value) as a highly-biased branch.
Modulo path-history is a unique way to manage th&'hen the predictor detects such a branch, the predic-
branch path history information. A PBNP can now choos$®n is determined only by the bias weight as opposed
between different lengths of branch and path history. Tao-the entire dot-product. If this prediction turns out to

be correct, the predictor skips the update phase which®”*

saves the associated power and energy. BBF does not rez,,, | *—* * * "
. . . . O

duce the lookup power because the pipelined organization ﬁ + N - a
& —0 —f w: A

must start the dot-product computation before the predicg 0% |
tor knows whether the branch is highly biased. Besideg
the power reduction, BBF has a slight accuracy benefi§ ***

because the act of filtering the strongly biased branch%zo% x|
reduces the interference among the remaining branches. -a-8KB

The relatively long history lengths of neural predictors 1.0% ool
combined with the usage of multi-bit weights results in a |-e-64KB|
table that has relatively few entries or rows. This greatly °%)
increases the amount of inter-branch aliasing in the tables Weights per Table

which potentially reduces the effectiveness of BBF. To

address this, we propose that the bias table uses a Ia@%ﬁre 3: Average misprediction rates on SPECint
number of entries than any of the other tables. This mal en using modulo path-history.
sense since the bias table now has to keep track of all of

the strongly biased branches as well as provide the B8, ., history position. We then increased the number of

weights for the regular branches. _ weights provided by each table by settiffg= h/2, h/3,

To increase the number of strongly biased branchgsy’ sq on. This reduces the length of the path-history
cqvered by BBF, we mOd_'fy the _neural prediction IOOk,uR/hile maintaining a constant branch history length. Fig-
slightly such that the bias weight (and only the big§e 3 shows the impact on prediction accuracy as we
weight) is indexed in a gshare fas_hlon (xor of k?ra”_(i;?iry the number of weights per lookup table over a range
address_and branch_hlstory)._ This improves the fllternag predictor sizes. For the smaller predictors (2KB and
mechanism by allowing the bias table to detect branchggg) ihere is an initial increase in the misprediction rate
that are strongly biased but only under certain globgj e, \ve add modulo path-history. For predictors 16KB
history contexts. We also reduce the width of the bigg,j |5rger, the increase in the misprediction rate is less

weights to 5 bits which allows the bias weights to saturaje, | o 5o, (8KB) and in some cases eiprovepredic-
more quickly and start filtering strongly biased branchgg, accuracy by a small amount (0.1% for 64KB).

sooner. As we increase the number of weights per table, the to-
tal number of tables decreases. This reduces the power
and energy cost per access due to a reduction in the num-
4. Performance and Power Results ber of row decoders in the entire predictor. The power
In this section, we present the simulation results for &ast per table lookup increases with the number of weights
optimized PBNP predictor that uses modulo path-histopgr table, but the number of tables decreases. The mod-
and bias-based filtering. ulo path-history approach for managing path history in
the PBNP is overall performance-neutral while provid-
. . ing a power benefit by reducing the power consumed per
4.1. Simulation Methodology lookup. We have not quantified the exact power benefit
For our prediction accuracy results, we used the il Watts due to limitations of CACTI-like tools. We also

order branch predictor simulator sim-bpred from the Sifi@ve not quantified in detail the reduction of the check-
pleScalar toolset [1]. We simulated all twelve SPECiRQiNting overhead or the impact of simplifying the control
applications using the reference sets and single 100M ipgic for the reduced pipeline depth, but simply observe
struction simulation points chosen by SimPoint 2.0 [13f1at there will be some power and complexity benefit.

Our applications were compiled on an Alpha 21264 with
Compagee with full optimizations. 4.3. Impact of Bias-Based Filtering

For a fixed hardware budget, increasing the number of en-
tries in the bias table forces the remaining tables to be
To measure the impact of modulo-path history, we startddcreased in size. We evaluated a range of table sizes.
with the original PBNP where there afé = h tables Figure 4 shows the prediction accuracy impact of dedi-
that each provide a single weight corresponding to a singkgting some more weights to the bias table while reduc-

4.2. Impact of Modulo-Path History

6.0% 100%

70%

60% -

50% -

40%

Misprediction Rate
w
o
X
Weights Written (Normalized)

2.0% S 2KB 30% -
D
1.0% - 16KB 10% 1
-@-32KB
-0-64KB 0%
0.0% ‘ ‘ ‘ ‘ 2 8 16
PRNP 1/8 1/4 112 1 Size (KB)
Figure 4: Average misprediction rates on SPECint Figure 5: Average reduction in update activity for a
when using bias-based filtering. PBNP using bias-based filtering.

Baseline PBNP| With Mod. Path and BBF
ing the size of the other tables. These results include fredictor History History | Path Bias
Bias-Based Filtering effects. The left-most set of points Size Length Length | Length | Weights
in Figure 4 correspond to the baseline PBNP. The remdin- 2KB 17 17 4 1K
ing configurations use BBF where 1/ indicates that 4KB 25 24 4 2K
the bias table ha(/n entries, whereX is the number | 8KB 31 29 4 4K
of bytes in the table. For example, the 1/4 configuratipn 16KB 32 33 5 8K
for an 8KB budget has a bias table with 8K/4 = 2K en- 32KB 42 42 3 16K
tries (ot 2KB worth of entries). Similar to the modulo__64KB 47 42 3 32K

path-history results, BBF is less effective at the small- o1 P for the baseline PBNP and a PBNP
est predictor sizes, and is relatively performance-neutfP'e 1- Parameters for the baseline PBNP and a

. . . using both modulo path-history and bias-based filter-
at larger sizes. For predictors sized 16KB and grea‘ulerz]rg
BBF actually results in a slight (1-3%) decrease in mis-"
predictions. The reason for this slight accuracy benefit

is that gating updates for highly-biased branches creaj§s number of predictor pipeline stages. We now observe
an interference-reducing effect similar to a partial updafs effects of combining the two techniques. Table 1 lists
policy [12]. the final configurations used for the PBNP with modulo

The primary purpose of BBF is to reduce the numbggth-history and bias-based filtering, as well as the base-
of weights written to the tables during the update phagge pPBNP configurations.

Figure 5 shows the reduction in the number of weights,;igure 6 shows the average misprediction rate for a

written as compared to the baseline PBNP. Overall, 86 entional PBNP and a PBNP augmented with modulo
mid-sized to larger sized predictors achieve the greatgst, history and bias-based filtering. Similar to the indi-

benefit, with about a 10% reduction in the update activity.y ;4] results. our techniques are not recommended for

small predictor sizes. At 16KB the techniques do not help
or hurt accuracy, and at 32KB and 64KB they provide a

4.4. Impact of Power-Reduced Path-Basedsmall accuracy benefit (about 1%).
Neural Predictor As discussed earlier, the modulo path-history reduces

power by reducing the number of tables and the reduc-
In the previous subsections, we have shown how the tettg the pipeline depth of the predictor. BBF reduces the
nigues of modulo path-history and bias-based filterimymber of table updates. Figure 7 shows the relative de-
are relatively performance-neutral for mid-sized predicrease in update activity when compared to a conventional
tors and performance-beneficial for larger predictors. $IBNP. Note that for the 2KB predictor size, the activity
multaneously, these techniques provide a reduction in titually increases This is due to the fact that for the
predictor’s power consumption by reducing the power pgmaller predictor, the slight decrease in prediction accu-
access and reducing the total number of accesses, amacg causes the neural prediction algorithm to train more
reduction in the implementation complexity by reducinfyequently which causes more overall activity in the table

oo tor at every branch impacts the physical design of the pre-

5.0% | dictor. Table 2 lists the number of bits required per check-
point for copying the partial sums. The bit counts are
slightly underestimated because we assumed that every

stage only needs an 8-bit value to simplify the arithmetic.
In practice the bit-width increases with the number of ac-
cumulated weights. The original PBNP needs 144-384
bits of information checkpointed on every branch, while
using modulo-path history reduces this to only 32-48 bits
per branch. The checkpointing overhead reduction not
0.0% : ‘ ‘ ‘ ‘ only reduces the size of the SRAM needed to store the
2 ¢ ? o (k) ® & checkpoints, but it also reduces the number of wires en-
tering and leaving the predictor for the checkpoints. To re-
duce the impact on the physical layout and latency of the
predictor, the checkpoint SRAM may be placed slightly
further away from the main predictor. This physical sepa-
104 ration requires longer wires (more capacitance) which re-
sults in increased power consumption for the communica-
tion between the predictor and the checkpoint SRAM.
11 — Modulo path-history and BBF impact the power con-
sumed by the predictor itself and also the overall system-
wide power. In this study, we did not quantify the ex-
act power benefits because SRAM latency/power estima-
tion tools such as CACTI [15] and eCACTI [11] do not
handle the non-power-of-two SRAM sizes used in this
study. For the non-SRAM portions of the predictors such

Misprediction Rate
i w »
o o o
N N X

8
3

Figure 6: Average SPECint misprediction rate for the
baseline PBNP and a PBNP using both modulo path-
history and bias-based filtering.

1.02 4

Update Activity
o
©
©

o
©
>

d
©
=

o
©
N

0.9 ‘ ‘ ‘ ‘ ‘ as the adders, pipeline latches, control logic, and commu-

2B KB 8KB 16K8 32KB 64KB nication between the main predictor and the checkpoint

Predictor Size SRAM, we would need a detailed physical design and lay-

Figure 7: Change in the update activity of a PBNP out to even begin to accurately estimate the overall power

using modulo path-history and bias-based filtering as impact. This level of analysis is beyond the scope of this
compared to a conventional PBNP. paper, but will be examined in future research.

of weights. At the larger sizes, BBF reduces the freque

n :
of updates by 4-5%. 5 Conclusions

We have introduced two new techniques for reducing the
4.5. Overall Impact on Implementation complexity and power of path-based neural branch pre-
Complexity dictors. While this study has focused on the original
path-based neural predictor, our proposal can apply to any
The original goal of this research was to redesign a patii-the similar neural prediction algorithms such as the
based neural predictor to be less complex and hence dwshed perceptron [18] or the piecewise-linear branch pre-
ier to implement. Table 2 summarizes the overall bendictor [8]. We have shown that the combination of modulo
fits in terms of key sources of implementation compleyath-history and bias-based filtering can reduce power by
ity. Modulo-path history reduces the number of separatecreasing the total number of tables used by the predic-
SRAM arrays from 18-48 down to only 4-6. The reduder as well as reducing the activity factor of the update
tion in the table count is directly correlated to the depth phase of prediction. The modulo path-history technique
pipelining needed to implement a PBNP. This 72-92% ralso reduces the implementation complexity of the path-
duction of the predictor pipeline length greatly simplifiebased neural predictor by reducing the predictor pipeline
the control logic needed to control stalling, checkpointimdepth to only 4-6 stages, as opposed to 18-48 stages for
and recovering the predictor pipeline. the original predictor.
The extra storage needed for checkpointing the predicWhile this study has focused on a conventional path-

Predictor PBNP With Mod. Path and BBF %
Size Num SRAM Arrays | Bits per Checkpointf Num SRAM Arrays | Bits per Checkpoint Reduction
2KB 18 144 5 40 72.2
4KB 26 208 5 40 80.8
8KB 32 256 5 40 84.4
16KB 33 264 6 48 81.8
32KB 43 344 4 32 90.7
64KB 48 384 4 32 91.7

Table 2: Impact on predictor pipeline depth and checkpointing overhead. The number of SRAM arrays is equal
to the path length, plus one for the bias table. Checkpoint overhead estimates assume one 8-bit value per

predictor pipeline stage.

based neural predictor, other similar predictors could also
benefit from either or both modulo path-history and BBF.

The piecewise-linear neural branch predictor is a gen
alization of the PBNP that computes different PBNP
summations in parallel [8]. These parallel computa-

tions increase the complexity of a deeper pipelined pré7—]
dictor, and modulo-path history may be very useful in

this context to keep that complexity under control.

Thés]

m computations also require times as many weights to

be updated, and bias-based filtering may also be very user

ful to reduce the activity of the piecewise-linear predictor.

There are likely other predictors designs that can make
use of the ideas presented in this study. [t

Acknowledgements

Gabriel Loh is supported by funding and equipment fro
Intel Corporation.

(11]

Daniel Jignez is supported by a

grant from NSF (CCR-0311091) as well as a grant from
the Spanish Ministry of Education and Science (8820033]

0357).
References

14
[1] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An IrE-]

(2]

(3]

(4]

(5]

frastructure for Computer System ModelindEEE Micro Maga-
zing pages 59-67, February 2002. [15]

Po-Yung Chang, Marius Evers, and Yale N. Patt. Improving
Branch Prediction Accuracy by Reducing Pattern History Table
Interference. IrProceedings of the International Conference on
Parallel Architectures and Compilation Techniquesages 48-57, [16]
1996.

Veerle Desmet, Hans Vandierendonck, and Koen De Bosschere. A
2bcgskew Predictor Fused by a Redundant History Skewed Per-
ceptron Predictor. Iffroceedings of the 1st Championship Branch
Prediction Competitionpages 1-4, Portland, OR, USA, Decembeil 7]
2004.

Hongliang Gao and Huiyang Zhou. Adaptive Information Process-
ing: An Effective Way to Improve Perceptron Predictors.Pio-
ceedings of the 1st Championship Branch Prediction Competition
pages 1-4, Portland, OR, USA, December 2004. [18]

Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovitz,
Tsvika Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, and Robert C.

Valentine. The Intel Pentium M Processor: Microarchitecture and
Performancelntel Technology Journal7(2), May 2003.

5] Dirk Grunwald, Donald Lindsay, and Benjamin Zorn. Static Meth-

ods in Hybrid Branch Prediction. IRroceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques pages 222-229, Paris, France, October 1998.

Daniel A. Jineénez. Fast Path-Based Neural Branch Prediction. In
Proceedings of the 36th International Symposium on Microarchi-
tecture pages 243-252, San Diego, CA, USA, December 2003.

Daniel A. Jinenez. Piecewise Linear Branch Prediction.Pho-
ceedings of the 32nd International Symposium on Computer Ar-
chitecture 2005.

Daniel A. Jinénez and Calvin Lin. Neural Methods for Dy-

namic Branch Prediction ACM Transactions on Computer Sys-
tems 20(4):369-397, November 2002.

0] Gabriel H. Loh. The Frankenpredictor. Rroceedings of the 1st

Championship Branch Prediction Competitiguages 1-4, Port-
land, OR, USA, December 2004.

Manhesh Mamidipaka and Nikil Dutt. eCACTI: An Enhanced
Power Estimation Model for On-Chip Caches. TR 04-28, Uni-
versity of California, Irvine, Center for Embedded Computer Sys-
tems, September 2004.

] Pierre Michaud, Andre Seznec, and Richard Uhlig. Trading Con-

flict and Capacity Aliasing in Conditional Branch Predictors. In
Proceedings of the 24th International Symposium on Computer Ar-
chitecture pages 292-303, Boulder, CO, USA, June 1997.

Erez Perelman, Greg Hamerly, and Brad Calder. Picking Sta-
tistically Valid and Early Simulation Points. IRroceedings of
the 2003 International Conference on Parallel Architectures and
Compilation Techniquepages 244-255, New Orleans, LA, USA,
September 2004.

André Seznec. Reuvisiting the Perceptron Predictor. Pl 1620, In-
stitut de Recherche en Informatique et $yses Aéatoires, May
2004.

Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0: An
Integrated Timing, Power, and Area Model. TR 2001/2, Com-
paq Computer Corporation Western Research Laboratory, August
2001.

Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei
Huang, Sivakumar Velusamy, and David Tarjan. Temperature-
Aware Microarchitecture: Modeling and Implementatiofrans-
actions on Architecture and Code Optimizatioh(1):94-125,
March 2004.

Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit
Gandhi, and Mike Upton. Continual Flow Pipelines. Rroceed-
ings of the 11th Symposium on Architectural Support for Program-
ming Languages and Operating Systepages 107-119, Boston,
MA, USA, October 2004.

David Tarjan and Kevin Skadron. Merging Path and Gshare In-

dexing in Perceptron Branch Prediction. CS 2004-38, University
of Virginia, December 2004.

