
Reducing the Power and Complexity of Path-Based Neural Branch
Prediction

Gabriel H. Loh Daniel A. Jiḿenez
College of Computing Department of Computer Science

Georgia Institute of Technology Rutgers University
loh@cc.gatech.edu djimenez@cs.rutgers.edu

Abstract

A conventional path-based neural predictor (PBNP)
achieves very high prediction accuracy, but its very deeply
pipelined implementation makes it both a complex and
power-intensive component. One of the major reasons
for the large complexity and power is that for a history
length of h, the PBNP must useh separately indexed
SRAM arrays (or suffer from a very long update latency)
organized in anh-stage predictor pipeline. Each pipeline
stage requires a separate row-decoder for the correspond-
ing SRAM array, inter-stage latches, control logic, and
checkpointing support. All of these add power and com-
plexity to the predictor.

We propose two techniques to address this problem.
The first is modulo path-historywhich decouples the
branch outcome history length from the path history
length allowing for a shorter path history (and there-
fore fewer predictor pipeline stages) while simultaneously
making use of a traditional long branch outcome history.
The pipeline length reduction results in decreased power
and implementation complexity. The second technique is
bias-based filtering(BBF) which takes advantage of the
fact that neural predictors already have a way to track
strongly biased branches. BBF uses the bias weights to
filter out mostly always taken or mostly always not-taken
branches and avoids consuming update power for such
branches.

Our proposal is complexity effective because it de-
creases the power and complexity of the PBNP without
negatively impacting performance. The combination of
modulo path-history and BBF results in a slight improve-
ment in predictor accuracy of 1% for 32KB and 64KB pre-
dictors, but more importantly the techniques reduce power
and complexity by reducing the number of SRAM arrays
from 30+ down to only 4-6 tables, and reducing predictor
update activity by 4-5%.

1. Introduction

After decades of academic and industrial research ef-
forts focused on the branch prediction problem, pipeline
flushes due to control flow mispredictions remain one
of the primary bottlenecks in the performance of mod-
ern processors. A large amount of recent branch predic-
tion research has centered around techniques inspired and
derived from machine learning theory, with a particular
emphasis on theperceptronalgorithm [3, 4, 7–10, 14, 18].
These neural-based algorithms have been very successful
in pushing the envelope of branch predictor accuracy.

Researchers have made a conscious effort to propose
branch predictors that are highly amenable to pipelined
and ahead-pipelined organizations to minimize the im-
pact of predictor latency on performance. There has been
considerably less effort on addressing power consumption
and implementation complexity of the neural predictors.
Reducing branch predictor power is not an easy problem
because any reduction in the branch prediction accuracy
can result in an overall increase in thesystempower con-
sumption due to a corresponding increase in wrong-path
instructions. On the other hand, peak power consump-
tion, which limits the processor performance, and aver-
age power consumption, which impacts battery lifetime
for mobile processors, are important design concerns for
future processors [5]. Furthermore, it has been shown that
the branch predictor, and the fetch engine in general, is a
thermal hot-spot that can potentially limit the maximum
clock frequency and operating voltage of the CPU, which
in turn limits performance [16].

This paper focuses on thepath-based neural predictor
which is one of the proposed implementations of neu-
ral branch prediction [7]. In particular, this algorithm is
highly accurate and pipelined for low effective access la-
tency. We explain the organization of the predictor and the
major sources of power consumption and implementation
complexity. We propose a new technique for managing
branch path-history information that greatly reduces the



number of tables, the pipeline depth, and the checkpoint-
ing overhead required for path-based neural prediction.
We also propose a simple bias-based filtering mechanism
to further reduce branch prediction power. While this pa-
per specifically discusses the original path-based neural
predictor [7], the techniques are general and can be easily
applied to other neural predictors that use path history.

The rest of this paper is organized as follows. Section 2
provides an overview of the path-based neural predictor
and discusses its power and complexity. Section 3 ex-
plains our proposed techniques for reducing the power
consumption and implementation complexity. Section 4
presents the simulation-based results of our optimized
path-based neural predictor in terms of the impact on pre-
diction accuracy and power reduction. Section 5 con-
cludes the paper.

2. Path-Based Neural Prediction

This section describes the original path-based neural pre-
dictor (PBNP), and then details the power and complexity
issues associated with the PBNP.

2.1. Predictor Organization

The path-based neural predictor (PBNP) derives from the
originalperceptronbranch predictor [9]. We define a vec-
tor−→x = 〈1, x1, x2, ..., xh〉 wherexi is theith most recent
branch history outcome represented as -1 for a not taken
branch and 1 for a taken branch. The branch history is
the collection of taken/not-taken results for theh most re-
cent conditional branches. The perceptron uses the branch
address to select a set of weights−→w = 〈w0, w1, ..., wh〉
that represent the observed correlation between branch
history bits and past branch outcomes. The sign of the
dot-product of−→w · −→x provides the final prediction where
a positive value indicates a taken-branch prediction. Fig-
ure 1a shows a block diagram of the lookup logic for the
perceptron predictor.

At a high-level, the PBNP is very similar to the percep-
tron in that it computes a dot-product between a vector of
weights and the branch history. The primary difference
is that the PBNP uses a different branch address for each
of the weights of−→w . Let PC0 be the current branch ad-
dress, andPCi be theith most recent branch address in
thepath history. For the perceptron, each weight is cho-
sen with the same index based onPC0. For the PBNP,
each weightwi is chosen based on an index derived from
PCi. This provides path history information that can im-
prove prediction accuracy, and spreading out the weights

in different entries also helps to reduce the impact of inter-
branch aliasing.

To implement the PBNP, the lookup phase is actually
pipelined over many stages based on the overall path-
/branch-history length. Figure 1b illustrates the hardware
organization of the PBNP. For a branch at cyclet, the
PBNP starts the prediction at cyclet− h usingPCh. For
each cycle aftert − h, the PBNP computes partial sums
of the dot-product of−→w · −→x . Pipeline stagei contains the
partial sum for the branch prediction that will be needed
in i cycles. At the very end of the pipeline, the critical
lookup latency consists of looking up the final weight and
performing the final addition.

2.2. Power and Complexity

During the lookup phase of the PBNP, each pipeline stage
reads a weight corresponding to the exact same PC. This
is due to the fact that the currentPC0 will be next cycle’s
PC1 and next-next cycle’sPC2 and so on. This allows
an implementation where the weights are read in a single
access using a single large SRAM row that contains all
of the weights. During the update phase however, a sin-
gle large access would force the update process to use a
pipelined implementation as well. While at first glance
this may seem desirable, this introduces considerable de-
lay between update and lookup. For example a 30-stage
update pipeline implies that even after a branch outcome
has been determined, another 30 cycles must elapse be-
fore the PBNP has been fully updated to reflect this new
information. This update delay can create a decrease in
predictor accuracy. There are also some timing effects due
to the fact that some weights of a branch will be updated
before others.

An alternative organization usesh tables in parallel,
one for each pipeline stage/history-bit position [7], as il-
lustrated in Figure 1b. This organization allows for a
much faster update and better resulting accuracy and per-
formance. The disadvantage of this organization is that
there is now a considerable amount of area and power
overhead to implement the row decoders for theh sep-
arate SRAM arrays. Furthermore, to support concurrent
lookup and update of the predictor, each of these SRAM
arrays needs to be dual-ported (one read port/one write
port) which further increases the area and power overhead
of the SRAM row decoders. To use the PBNP, the branch
predictor designer must choose between an increase in
power and area or a decrease in prediction accuracy.

On a branch misprediction, the PBNP pipeline must
be reset to the state that corresponded to the mispredict-
ing branch being the most recent branch in the branch

2



D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

BHR
...

ADD

Prediction

... ...

BHR
...

Prediction

(b)(a)

P
C

h

P
C

h
−

1

P
C

h
−

2

P
C

0...
P

C
0

× ×× × × × ××

+ + + +

Figure 1: (a) Organization of the lookup logic for the perceptron branch predictor. (b) Lookup logic for the
pipelined path-based neural branch predictor.

and path history. To support this predictor state recov-
ery, each branch must checkpoint all of the partial sums in
the PBNP pipeline. On a branch misprediction, the PBNP
restores all of the partial sums in the pipeline using this
checkpointed state. Forb-bit weights and a history length
of h, a PBNP checkpoint requires approximatelybh bits
of storage. The total number of bits is slightly greater be-
cause the number of bits required to store a partial sum
increases as the sum accumulates more weights. The to-
tal storage for all checkpoints corresponds to the maxi-
mum number of in-flight branches permitted in the pro-
cessor. For example, assuming one branch occurs every
five instructions, then a 128-entry ROB would on average
have 25 branches in flight. This means the PBNP check-
point table must have about 25 entries to support the av-
erage number of branches. To avoid stalls due to a burst
of branch instructions, the checkpoint table may need to
be substantially larger. For proposals of very-large effec-
tive instruction window processors such as CFP [17], the
checkpointing overhead further increases.

The checkpointing overhead represents additional area,
power, and state that is often unaccounted for in neu-
ral predictor studies. This overhead increases with the
history/path-length of the predictor since the PBNP must
store one partial sum per predictor stage. A further source
of complexity is the additional control logic required to
manage the deeply pipelined predictor.

3. Reducing Perceptron Power and
Complexity

In this section, we propose two techniques for reducing
the power and complexity of the path-based neural predic-
tor. Modulo-Path History is a new way to manage path-
history information which also provides a new degree of
freedom in the design of neural predictors. Bias-Based
Filtering is a technique similar to previously proposed fil-
tering mechanisms that takes advantage of the informa-
tion encoded in the neural weights to detect highly biased
branches.

3.1. Modulo-Path History

In the original PBNP, the path history length is always
equal to the branch history length. This is a result of
using PCi to compute the index for the weight ofxi.
As described in the previous section, the pipeline depth
directly increases the number of tables and the check-
pointing overhead required. On the other hand, support-
ing a long history length requires the PBNP to be deeply
pipelined.

We proposemodulo path-historywhere we decouple
the branch history length from the path history length.
We limit the path history to only theP < h most re-
cent branch addresses. Instead of usingPCi to compute
the index forwi, we usePCi mod P . In this fashion,
we can reduce the degree of pipelining down to onlyP
stages. Figure 2a shows the logical predictor organiza-

3



Ta
bl

e h

Ta
bl

e h
−

1

Ta
bl

e h
−

2

Ta
bl

e 5

Ta
bl

e 4

Ta
bl

e 3

P
C 1

P
C 2

P
C 0

Ta
bl

e 2

Ta
bl

e 1

Ta
bl

e 0

w0w1w2

w5

w8

...

w2

w3

w6

...

w0

w4

w7

...

w1

P
C 1

P
C 2

P
C 0

...

w3w4w5wh−2wh−1wh

(a)

Ta
bl

e 2

Ta
bl

e 0

Ta
bl

e 1

(b)

...

Figure 2: (a) Logical organization of a PBNP using modulo path-history. (b) Physical organization of a PBNP
using modulo path-history for P = 3.

tion of a PBNP using modulo path-history (forP = 3).
Since everyP th weight is indexed with the same branch
address, we can interleave the order of the weights in the
table such that onlyP tables are necessary. Figure 2b
shows how each table provides weights that correspond to
h/P branch history outcomes, where each branch history
outcome is separated byP bit positions.

By reducing the PBNP implementation to only useP
distinct tables, we address several of the main sources of
power and complexity as described in Section 2. Using
only P tables reduces the duplicated row-decoder over-
head. The reduction in the number of tables reduces the
overall pipeline depth of the predictor which reduces the
amount of state that must be checkpointed (i.e. there are
only P partial sums). With fewer stages, the control logic
for the predictor pipeline can also be reduced. The num-
ber of inter-stage latches and associated clocking over-
head is also correspondingly reduced.

Modulo path-history may also make the single-table
implementation feasible. The pipelined update still adds
latency to the update phase of the branch predictor, but the
update latency has been reduced fromO(h) cycles down
to O(P ) cycles. For sufficiently small values ofP , the
substantial reduction in complexity and associated power
may justify the small increase in the update latency.

Modulo path-history is a unique way to manage the
branch path history information. A PBNP can now choose
between different lengths of branch and path history. Tar-

jan and Skadron proposed a comprehensive taxonomy of
neural branch predictor organizations that can describe a
very wide variety of neural predictor variations [18]. Nev-
ertheless, modulo path-history is a new addition that does
not fall into any of their categories.

3.2. Bias-Based Filtering

Earlier branch prediction studies have made the observa-
tion that there are a large number of branch instructions
whose outcomes are almost always in the same direc-
tion [2, 6]. Some of this research has proposed various
ways for detecting these strongly biased branches and re-
moving orfiltering them out to reduce the amount of in-
terference in the branch prediction tables. We make the
observation that from an energy and power perspective,
keeping track ofh distinct weights and performing an
expensive dot-product operation is an overkill for these
easy-to-predict branches. We also observe that the fam-
ily of neural predictors have built-in mechanisms for de-
tecting highly-biased branches. Combining these obser-
vations, we proposedBias-Based Filtering(BBF).

The BBF technique is simple in principal. We consider
a branch whose bias weight (w0) has saturated (equal to
maximum or minimum value) as a highly-biased branch.
When the predictor detects such a branch, the predic-
tion is determined only by the bias weight as opposed
to the entire dot-product. If this prediction turns out to

4



be correct, the predictor skips the update phase which
saves the associated power and energy. BBF does not re-
duce the lookup power because the pipelined organization
must start the dot-product computation before the predic-
tor knows whether the branch is highly biased. Besides
the power reduction, BBF has a slight accuracy benefit
because the act of filtering the strongly biased branches
reduces the interference among the remaining branches.

The relatively long history lengths of neural predictors
combined with the usage of multi-bit weights results in a
table that has relatively few entries or rows. This greatly
increases the amount of inter-branch aliasing in the tables
which potentially reduces the effectiveness of BBF. To
address this, we propose that the bias table uses a larger
number of entries than any of the other tables. This makes
sense since the bias table now has to keep track of all of
the strongly biased branches as well as provide the bias
weights for the regular branches.

To increase the number of strongly biased branches
covered by BBF, we modify the neural prediction lookup
slightly such that the bias weight (and only the bias
weight) is indexed in a gshare fashion (xor of branch
address and branch history). This improves the filtering
mechanism by allowing the bias table to detect branches
that are strongly biased but only under certain global
history contexts. We also reduce the width of the bias
weights to 5 bits which allows the bias weights to saturate
more quickly and start filtering strongly biased branches
sooner.

4. Performance and Power Results
In this section, we present the simulation results for an
optimized PBNP predictor that uses modulo path-history
and bias-based filtering.

4.1. Simulation Methodology

For our prediction accuracy results, we used the in-
order branch predictor simulator sim-bpred from the Sim-
pleScalar toolset [1]. We simulated all twelve SPECint
applications using the reference sets and single 100M in-
struction simulation points chosen by SimPoint 2.0 [13].
Our applications were compiled on an Alpha 21264 with
Compaqcc with full optimizations.

4.2. Impact of Modulo-Path History

To measure the impact of modulo-path history, we started
with the original PBNP where there areP = h tables
that each provide a single weight corresponding to a single

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

1 2 3 4 5 6

Weights per Table

M
is

pr
ed

ic
tio

n 
R

at
e

2KB
4KB
8KB
16KB
32KB
64KB

Figure 3: Average misprediction rates on SPECint
when using modulo path-history.

branch history position. We then increased the number of
weights provided by each table by settingP = h/2, h/3,
and so on. This reduces the length of the path-history
while maintaining a constant branch history length. Fig-
ure 3 shows the impact on prediction accuracy as we
vary the number of weights per lookup table over a range
of predictor sizes. For the smaller predictors (2KB and
4KB), there is an initial increase in the misprediction rate
when we add modulo path-history. For predictors 16KB
and larger, the increase in the misprediction rate is less
than 0.5% (8KB) and in some cases evenimprovepredic-
tion accuracy by a small amount (0.1% for 64KB).

As we increase the number of weights per table, the to-
tal number of tables decreases. This reduces the power
and energy cost per access due to a reduction in the num-
ber of row decoders in the entire predictor. The power
cost per table lookup increases with the number of weights
per table, but the number of tables decreases. The mod-
ulo path-history approach for managing path history in
the PBNP is overall performance-neutral while provid-
ing a power benefit by reducing the power consumed per
lookup. We have not quantified the exact power benefit
in Watts due to limitations of CACTI-like tools. We also
have not quantified in detail the reduction of the check-
pointing overhead or the impact of simplifying the control
logic for the reduced pipeline depth, but simply observe
that there will be some power and complexity benefit.

4.3. Impact of Bias-Based Filtering

For a fixed hardware budget, increasing the number of en-
tries in the bias table forces the remaining tables to be
decreased in size. We evaluated a range of table sizes.
Figure 4 shows the prediction accuracy impact of dedi-
cating some more weights to the bias table while reduc-

5



0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

PBNP 1/8 1/4 1/2 1

M
is

pr
ed

ic
tio

n 
R

at
e

2KB
4KB
8KB
16KB
32KB
64KB

Figure 4: Average misprediction rates on SPECint
when using bias-based filtering.

ing the size of the other tables. These results include the
Bias-Based Filtering effects. The left-most set of points
in Figure 4 correspond to the baseline PBNP. The remain-
ing configurations use BBF where “1/n” indicates that
the bias table hasX/n entries, whereX is the number
of bytes in the table. For example, the 1/4 configuration
for an 8KB budget has a bias table with 8K/4 = 2K en-
tries (not 2KB worth of entries). Similar to the modulo
path-history results, BBF is less effective at the small-
est predictor sizes, and is relatively performance-neutral
at larger sizes. For predictors sized 16KB and greater,
BBF actually results in a slight (1-3%) decrease in mis-
predictions. The reason for this slight accuracy benefit
is that gating updates for highly-biased branches creates
an interference-reducing effect similar to a partial update
policy [12].

The primary purpose of BBF is to reduce the number
of weights written to the tables during the update phase.
Figure 5 shows the reduction in the number of weights
written as compared to the baseline PBNP. Overall, the
mid-sized to larger sized predictors achieve the greatest
benefit, with about a 10% reduction in the update activity.

4.4. Impact of Power-Reduced Path-Based
Neural Predictor

In the previous subsections, we have shown how the tech-
niques of modulo path-history and bias-based filtering
are relatively performance-neutral for mid-sized predic-
tors and performance-beneficial for larger predictors. Si-
multaneously, these techniques provide a reduction in the
predictor’s power consumption by reducing the power per
access and reducing the total number of accesses, and a
reduction in the implementation complexity by reducing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32 64

Size (KB)

W
ei

gh
ts

 W
ri

tt
en

 (N
or

m
al

iz
ed

)

PBNP
1/8
1/4
1/2
1

Figure 5: Average reduction in update activity for a
PBNP using bias-based filtering.

Baseline PBNP With Mod. Path and BBF
Predictor History History Path Bias

Size Length Length Length Weights
2KB 17 17 4 1K
4KB 25 24 4 2K
8KB 31 29 4 4K
16KB 32 33 5 8K
32KB 42 42 3 16K
64KB 47 42 3 32K

Table 1: Parameters for the baseline PBNP and a PBNP
using both modulo path-history and bias-based filter-
ing.

the number of predictor pipeline stages. We now observe
the effects of combining the two techniques. Table 1 lists
the final configurations used for the PBNP with modulo
path-history and bias-based filtering, as well as the base-
line PBNP configurations.

Figure 6 shows the average misprediction rate for a
conventional PBNP and a PBNP augmented with modulo
path-history and bias-based filtering. Similar to the indi-
vidual results, our techniques are not recommended for
small predictor sizes. At 16KB the techniques do not help
or hurt accuracy, and at 32KB and 64KB they provide a
small accuracy benefit (about 1%).

As discussed earlier, the modulo path-history reduces
power by reducing the number of tables and the reduc-
ing the pipeline depth of the predictor. BBF reduces the
number of table updates. Figure 7 shows the relative de-
crease in update activity when compared to a conventional
PBNP. Note that for the 2KB predictor size, the activity
actually increases. This is due to the fact that for the
smaller predictor, the slight decrease in prediction accu-
racy causes the neural prediction algorithm to train more
frequently which causes more overall activity in the table

6



0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

2 4 8 16 32 64
Size (KB)

M
is

pr
ed

ic
tio

n 
R

at
e

PBNP
+ModPath, +BBF

Figure 6: Average SPECint misprediction rate for the
baseline PBNP and a PBNP using both modulo path-
history and bias-based filtering.

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

2KB 4KB 8KB 16KB 32KB 64KB

Predictor Size

U
pd

at
e 

A
ct

iv
ity

Figure 7: Change in the update activity of a PBNP
using modulo path-history and bias-based filtering as
compared to a conventional PBNP.

of weights. At the larger sizes, BBF reduces the frequency
of updates by 4-5%.

4.5. Overall Impact on Implementation
Complexity

The original goal of this research was to redesign a path-
based neural predictor to be less complex and hence eas-
ier to implement. Table 2 summarizes the overall bene-
fits in terms of key sources of implementation complex-
ity. Modulo-path history reduces the number of separate
SRAM arrays from 18-48 down to only 4-6. The reduc-
tion in the table count is directly correlated to the depth of
pipelining needed to implement a PBNP. This 72-92% re-
duction of the predictor pipeline length greatly simplifies
the control logic needed to control stalling, checkpointing
and recovering the predictor pipeline.

The extra storage needed for checkpointing the predic-

tor at every branch impacts the physical design of the pre-
dictor. Table 2 lists the number of bits required per check-
point for copying the partial sums. The bit counts are
slightly underestimated because we assumed that every
stage only needs an 8-bit value to simplify the arithmetic.
In practice the bit-width increases with the number of ac-
cumulated weights. The original PBNP needs 144-384
bits of information checkpointed on every branch, while
using modulo-path history reduces this to only 32-48 bits
per branch. The checkpointing overhead reduction not
only reduces the size of the SRAM needed to store the
checkpoints, but it also reduces the number of wires en-
tering and leaving the predictor for the checkpoints. To re-
duce the impact on the physical layout and latency of the
predictor, the checkpoint SRAM may be placed slightly
further away from the main predictor. This physical sepa-
ration requires longer wires (more capacitance) which re-
sults in increased power consumption for the communica-
tion between the predictor and the checkpoint SRAM.

Modulo path-history and BBF impact the power con-
sumed by the predictor itself and also the overall system-
wide power. In this study, we did not quantify the ex-
act power benefits because SRAM latency/power estima-
tion tools such as CACTI [15] and eCACTI [11] do not
handle the non-power-of-two SRAM sizes used in this
study. For the non-SRAM portions of the predictors such
as the adders, pipeline latches, control logic, and commu-
nication between the main predictor and the checkpoint
SRAM, we would need a detailed physical design and lay-
out to even begin to accurately estimate the overall power
impact. This level of analysis is beyond the scope of this
paper, but will be examined in future research.

5. Conclusions
We have introduced two new techniques for reducing the
complexity and power of path-based neural branch pre-
dictors. While this study has focused on the original
path-based neural predictor, our proposal can apply to any
of the similar neural prediction algorithms such as the
hashed perceptron [18] or the piecewise-linear branch pre-
dictor [8]. We have shown that the combination of modulo
path-history and bias-based filtering can reduce power by
decreasing the total number of tables used by the predic-
tor as well as reducing the activity factor of the update
phase of prediction. The modulo path-history technique
also reduces the implementation complexity of the path-
based neural predictor by reducing the predictor pipeline
depth to only 4-6 stages, as opposed to 18-48 stages for
the original predictor.

While this study has focused on a conventional path-

7



Predictor PBNP With Mod. Path and BBF %
Size Num SRAM Arrays Bits per Checkpoint Num SRAM Arrays Bits per Checkpoint Reduction
2KB 18 144 5 40 72.2
4KB 26 208 5 40 80.8
8KB 32 256 5 40 84.4
16KB 33 264 6 48 81.8
32KB 43 344 4 32 90.7
64KB 48 384 4 32 91.7

Table 2: Impact on predictor pipeline depth and checkpointing overhead. The number of SRAM arrays is equal
to the path length, plus one for the bias table. Checkpoint overhead estimates assume one 8-bit value per
predictor pipeline stage.

based neural predictor, other similar predictors could also
benefit from either or both modulo path-history and BBF.
The piecewise-linear neural branch predictor is a gener-
alization of the PBNP that computesm different PBNP
summations in parallel [8]. Thesem parallel computa-
tions increase the complexity of a deeper pipelined pre-
dictor, and modulo-path history may be very useful in
this context to keep that complexity under control. The
m computations also requirem times as many weights to
be updated, and bias-based filtering may also be very use-
ful to reduce the activity of the piecewise-linear predictor.
There are likely other predictors designs that can make
use of the ideas presented in this study.

Acknowledgements

Gabriel Loh is supported by funding and equipment from
Intel Corporation. Daniel Jiḿenez is supported by a
grant from NSF (CCR-0311091) as well as a grant from
the Spanish Ministry of Education and Science (SB2003-
0357).

References
[1] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An In-

frastructure for Computer System Modeling.IEEE Micro Maga-
zine, pages 59–67, February 2002.

[2] Po-Yung Chang, Marius Evers, and Yale N. Patt. Improving
Branch Prediction Accuracy by Reducing Pattern History Table
Interference. InProceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pages 48–57,
1996.

[3] Veerle Desmet, Hans Vandierendonck, and Koen De Bosschere. A
2bcgskew Predictor Fused by a Redundant History Skewed Per-
ceptron Predictor. InProceedings of the 1st Championship Branch
Prediction Competition, pages 1–4, Portland, OR, USA, December
2004.

[4] Hongliang Gao and Huiyang Zhou. Adaptive Information Process-
ing: An Effective Way to Improve Perceptron Predictors. InPro-
ceedings of the 1st Championship Branch Prediction Competition,
pages 1–4, Portland, OR, USA, December 2004.

[5] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovitz,
Tsvika Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, and Robert C.

Valentine. The Intel Pentium M Processor: Microarchitecture and
Performance.Intel Technology Journal, 7(2), May 2003.

[6] Dirk Grunwald, Donald Lindsay, and Benjamin Zorn. Static Meth-
ods in Hybrid Branch Prediction. InProceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, pages 222–229, Paris, France, October 1998.

[7] Daniel A. Jiḿenez. Fast Path-Based Neural Branch Prediction. In
Proceedings of the 36th International Symposium on Microarchi-
tecture, pages 243–252, San Diego, CA, USA, December 2003.

[8] Daniel A. Jiḿenez. Piecewise Linear Branch Prediction. InPro-
ceedings of the 32nd International Symposium on Computer Ar-
chitecture, 2005.

[9] Daniel A. Jiḿenez and Calvin Lin. Neural Methods for Dy-
namic Branch Prediction.ACM Transactions on Computer Sys-
tems, 20(4):369–397, November 2002.

[10] Gabriel H. Loh. The Frankenpredictor. InProceedings of the 1st
Championship Branch Prediction Competition, pages 1–4, Port-
land, OR, USA, December 2004.

[11] Manhesh Mamidipaka and Nikil Dutt. eCACTI: An Enhanced
Power Estimation Model for On-Chip Caches. TR 04-28, Uni-
versity of California, Irvine, Center for Embedded Computer Sys-
tems, September 2004.

[12] Pierre Michaud, Andre Seznec, and Richard Uhlig. Trading Con-
flict and Capacity Aliasing in Conditional Branch Predictors. In
Proceedings of the 24th International Symposium on Computer Ar-
chitecture, pages 292–303, Boulder, CO, USA, June 1997.

[13] Erez Perelman, Greg Hamerly, and Brad Calder. Picking Sta-
tistically Valid and Early Simulation Points. InProceedings of
the 2003 International Conference on Parallel Architectures and
Compilation Techniques, pages 244–255, New Orleans, LA, USA,
September 2004.

[14] Andrè Seznec. Revisiting the Perceptron Predictor. PI 1620, In-
stitut de Recherche en Informatique et Systèmes Aĺeatoires, May
2004.

[15] Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0: An
Integrated Timing, Power, and Area Model. TR 2001/2, Com-
paq Computer Corporation Western Research Laboratory, August
2001.

[16] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei
Huang, Sivakumar Velusamy, and David Tarjan. Temperature-
Aware Microarchitecture: Modeling and Implementation.Trans-
actions on Architecture and Code Optimization, 1(1):94–125,
March 2004.

[17] Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit
Gandhi, and Mike Upton. Continual Flow Pipelines. InProceed-
ings of the 11th Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 107–119, Boston,
MA, USA, October 2004.

[18] David Tarjan and Kevin Skadron. Merging Path and Gshare In-
dexing in Perceptron Branch Prediction. CS 2004-38, University
of Virginia, December 2004.

8


