
Improved Latency and Accuracy for Neural
Branch Prediction

DANIEL A. JIMÉNEZ
Department of Computer Science

Rutgers University

Microarchitectural prediction based on neural learning has received increasing attention in recent
years. However, neural prediction remains impractical because its superior accuracy over conven-
tional predictors is not enough to offset the cost imposed by its high latency. We present a new
neural branch predictor that solves the problem from both directions: it is both more accurate and
much faster than previous neural predictors. Our predictor improves accuracy by combining path
and pattern history to overcome limitations inherent to previous predictors. It also has much lower
latency than previous neural predictors. The result is a predictor with accuracy far superior to
conventional predictors but with latency comparable to predictors from industrial designs. Our
simulations show that a path-based neural predictor improves the instructions-per-cycle (IPC)
rate of an aggressively clocked microarchitecture by 16% over the original perceptron predictor.
One reason for the improved accuracy is the ability of our new predictor to learn linearly insepara-
ble branches; we show that these branches account for 50% of all branches and almost all branch
mispredictions.

Categories and Subject Descriptors: C.1.1 [Processor Architectures]: Single Data Stream
Architectures

General Terms: Performance

Additional Key Words and Phrases: Branch prediction, machine learning

1. INTRODUCTION

Branch misprediction latency is the most important component of performance
degradation as microarchitectures become more deeply pipelined [Sprangle
and Carmean 2002]. Branch predictors must improve to avoid the increasing
penalties of mispredictions. Branch predictors based on neural learning are
the most accurate predictors in the literature [Loh and Henry 2002; Jiménez
and Lin 2002], but they are impractical because the advantage of the extra

This research was supported by National Science Foundation (NSF) grant CCR-0311091.
Author’s address: Department of Computer Science, Rutgers University, 110 Frelinghuysen Rd.,
Piscataway, N.J. 08854; email: djimenez@cs.rutgers.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1529-3785/05/0100-0197 $5.00

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005, Pages 197–218.

198 • Daniel A. Jiménez

Fig. 1. Rather than being done all at once (above), computation is staggered (below).

accuracy is nullified by high access latency, even when latency-sensitive pre-
dictor organizations are used [Jiménez 2002]. This latency is due primarily to
the complex computation that must be carried out to determine the excitation
of an artificial neuron.

We present a practical neural branch predictor. Its latency is much lower than
previous designs and is comparable to that of conventional predictors used in
industrial designs, making it practical for implementation in a high-frequency
microprocessor. At the same time, its accuracy is superior to that of previous
highly accurate predictors.

1.1 Better Latency through Path-Based Prediction

Figure 1 illustrates how our new predictor achieves low latency by beginning
well ahead of time. The predictor staggers computations in time, predicting
a branch using a neuron selected dynamically along the path to that branch,
rather than selecting the neuron all at once based solely on the branch address.
A happy side-effect of this selection process is improved accuracy because the
predictor is able to correlate with path history as well as pattern history.

An interesting result of the selection process is that this new predictor be-
comes a non-linear classifier, able to predict a wider range of branch behavior
to achieve better accuracy than previous linear neural branch predictors.

We show that our path-based neural predictor has a misprediction rate 7%
lower than that of the original perceptron predictor, and because of its improved
latency it delivers an IPC 16% higher than that predictor at a 64 KB hardware
budget.

1.2 Better Accuracy for Linearly Inseparable Branches

Linear classifiers such as the perceptron predictor [Jiménez and Lin 2001,
2002] use a set of weights to define a flat surface or hyperplane that di-
vides the space of branch histories into “predict taken” and “predict not

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 199

taken.” Such predictors can only learn to predict linearly separable branches
whose histories are separable by such a hyperplane. However, over half of all
branches cannot be characterized by a single hyperplane and are thus linearly
inseparable.

Our new path-based neural predictor uses a slightly different set of weights,
and thus a different hyperplane, for each distinct path leading to the predicted
branch, giving it the ability to fully learn linearly inseparable branch behav-
ior. A branch may be linearly inseparable as a whole, but it may be piecewise
linearly separable with respect to the distinct program paths. In other words,
the path-based neural predictor combines path history with pattern history, re-
sulting in superior learning than a neural predictor that relies only on pattern
history.

1.3 Contributions

This article makes the following contributions:

(1) We present a path-based neural predictor with a latency comparable to
a conventional branch predictor. By contrast, previous neural predictors
have a very high latency relative to other branch predictors, which severely
diminishes their capacity to improve performance [Jiménez 2002]. Thus,
the path-based neural predictor can replace a less accurate conventional
branch predictor and guarantee improved performance.

(2) We show that linearly inseparable branches account for over half of all
branches and over 90% of mispredictions for most benchmarks and pre-
dictors we studied. The path-based neural predictor can learn to predict
linearly inseparable branches that previous predictors cannot. Thus, the
new predictor is more accurate than previous predictors.

(3) The perceptron predictor must use a long history length to achieve
high accuracy; with equivalent history lengths, it is less accurate than
gshare [Jiménez and Lin 2001]. The path-based neural predictor predic-
tor achieves superior accuracy as shorter history lengths. Since the hard-
ware budgets of both predictors are proportional to history length, the path-
based neural predictor can deliver superior accuracy with a lower hardware
budget.

This article is organized as follows: Section 2 briefly discusses related
work. Section 3 gives background in neural branch prediction and explains
the new prediction algorithm. Section 4 describes our experimental methodol-
ogy. Section 5 gives the accuracy and performance results of our experiments.
Section 6 gives the results of more experiments explaining why the new pre-
dictor works well. Finally, Section 7 concludes the article.

2. RELATED WORK

2.1 Neural Prediction

Calder et al. [1995] use neural networks to perform static branch prediction
at compile time. Features such as control-flow information are used to train

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

200 • Daniel A. Jiménez

a neural network to distinguish between branches that are likely to be bi-
ased taken from branches that are likely to be biased not taken. This approach
achieves a 20% misprediction rate, ompared to 25% for static heuristics [Ball
and Larus 1993; Calder et al. 1995].

Dynamic branch prediction with neural methods was first proposed by
Vintan and Iridon [1999] who explore the use of learning vector quantization,
a neural method. The resulting branch predictor achieves an accuracy compa-
rable to a table-based branch predictor. This method does not lend itself well to
high-speed implementation because it performs complex computations involv-
ing floating point numbers.

2.1.1 Branch Prediction with Perceptrons. The original perceptron pre-
dictor [Jiménez and Lin 2001] uses a simple linear neuron known as a per-
ceptron [Block 1962] to perform branch prediction. Perceptrons are vectors of
weights trained with a machine learning algorithm such that the sign of the dot
product of the weights vector and an input vector classifies the input vector into
one of two classes. In the case of branch prediction, the classes are taken and not
taken. Perceptrons achieve better accuracy than two-level adaptive branch pre-
diction because of their ability to exploit long history lengths which have been
shown to provide additional correlation for branch predictors [Evers et al. 1998].
Another study suggests ways to implement the predictor using techniques from
high-speed arithmetic [Jiménez and Lin 2002], but the latency of the predic-
tor is more than 4 cycles with an aggressive clock rate. Despite its drawbacks,
neural prediction has been suggested as a promising technology for future mi-
croprocessors [Seznec et al. 2002]. It has become part of one of Intel’s IA-64
simulators for researching future microarchitectures [Brekelbaum et al. 2002].
It has been used as a component in studies of hybrid predictors [Loh and Henry
2002; Thomas et al. 2003] and is the most accurate single-component branch
predictor in the literature [Loh and Henry 2002; Jiménez and Lin 2002]. The
path-based neural branch predictor described in this paper was presented at
the 36th International Symposium on Microarchitecture [Jiménez 2003].

2.2 Path-Based Prediction

Our path-based neural predictor achieves superior accuracy and low latency
by choosing the neural weights based on the path taken to reach a branch
rather than the branch address itself. Branch outcomes are highly correlated
both with path and pattern histories [Nair 1995; Stark et al. 1998]. Previous
work has also explored the use of path information to improve branch predictor
accuracy. For instance, the variable length path branch predictor [Stark et al.
1998] computes a hash of past branch addresses to form an index into a table of
counters. It chooses the hash function based on information gathered through
a feedback-directed procedure that requires profiling runs.

2.3 Latency-Sensitive Prediction

As hardware budgets for branch predictors expand, research has begun to focus
on balancing the tradeoff between accuracy and latency important for large

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 201

predictors with high latencies. Jiménez et al. [2000] survey several techniques
for mitigating branch predictor delay. The most common technique is overrid-
ing, in which a quick but relatively inaccurate predictor guides instruction fetch
in a single cycle, and may be corrected by a slower but more accurate multi-cycle
predictor. This approach was used for the Alpha EV6 and EV7 cores [Kessler
1999] and was proposed for the Alpha EV8 [Seznec et al. 2002]. The overriding
technique does not scale well as branch predictor latency increases because the
penalty for an overriding event becomes substantial [Jiménez 2002].

Other studies propose pipelined branch predictors [Stark et al. 1998; Jiménez
2002; Seznec and Fraboulet 2003] to mitigate latency. The main source of la-
tency for most large branch predictors is the access delay to the memories used
to implement the pattern history tables. The latency of the perceptron predictor
is dominated by computation time.

3. A PATH-BASED NEURAL PREDICTOR

In this section, we review the relevant details of previous work on neural branch
prediction. In this context, we give the intuition behind the path-based neu-
ral predictor. We then give a detailed explanation of the path-based neural
predictor.

3.1 Branch Prediction with Perceptrons

The perceptron predictor uses perceptron learning [Rosenblatt 1962; Block
1962] to predict the directions of conditional branches [Jiménez and Lin 2001,
2002]. We review the design of the perceptron predictor, describing algorithms
using an Algol-like pseudocode with keywords in boldface and comments in
italics. We use taken and not taken as meaningful names for Boolean constants.

Throughout this article, we use a notation in which brackets signify vector
or matrix indexing, for example, W [i, j] is the i, j th element of the matrix W .
Subscripts indicate a member of a sequence, for example, bi is the ith of a
sequence labeled b.

The perceptron predictor is similar to other predictors in that it keeps a
global history shift register that records the outcomes of branches as they are
executed, or speculatively as they are predicted. The width of this register is
the history length for the predictor, hereafter referred to as h.

The perceptron predictor keeps an n × (h + 1) matrix W [0..n − 1, 0..h] of
integer weights, where n is a design parameter. Weights are 8-bit bytes. Each
row of the matrix is an (h+1)-length weights vector. Each weights vector stores
the weights of one perceptron that is controlled by perceptron learning. In a
weights vector w[0..h], the first weight, w[0], is known as the bias weight. Thus,
the first column of W contains the bias weights of each weights vector. The
Boolean vector G[1..h] ∈ {1..h}×{taken, not taken} represents the global history
shift register.

3.1.1 Prediction and Update Algorithms. Figure 2 gives pseudocode for the
prediction and update algorithms for the original perceptron predictor. The pre-
diction algorithm returns a Boolean value predicting the branch at address pc.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

202 • Daniel A. Jiménez

Fig. 2. Perceptron prediction and update algorithm.

When a branch outcome becomes known, the train algorithm is invoked
to update the predictor. The training algorithm takes an integer parameter
θ that controls the trade-off between long-term accuracy and the ability to
adapt to phase behavior. It has been empirically determined that choosing
θ = �1.93h + 14� gives the best accuracy [Jiménez and Lin 2002]. Thus, θ

is a constant for a given history length. Once the outcome of a branch becomes
known, the following algorithm is used to update the perceptron predictor, tak-
ing as parameters the outcome as well as the values of i, prediction, and yout
computed during the prediction phase.

From the algorithm we can see that the bias weight is incremented (decre-
mented) if the branch is taken (not taken), while the rest of the weights are
incremented (decremented) if the branch outcome is equal (not equal) to the
corresponding bit of the global history shift register.

3.1.2 Implementation. We review some of the suggestions for a practical
implementation of the perceptron predictor.

The matrix W should be implemented as a tagless direct-mapped memory
of n blocks with the ith block containing h 8-bit weights that form the weights

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 203

vector of the ith perceptron. Thus, each time a prediction is needed, the weights
vector corresponding to that value of pc is read from memory.

Instead of negating the weights to produce summands for the computation
of yout, they can be bitwise complemented with very little impact on accuracy.
This speeds the computation of the summands.

The computation of yout can be arranged as a Wallace-tree [Cormen et al.
1990] adder to add the summands. This allows the circuit performing this com-
putation to have a depth of O(log h) gate delays, as opposed to O(h) gate delays
with a naive summing algorithm.

Two global shift history registers should be kept: a speculative one that is
updated with predictions, and a nonspeculative one that is updated when a
branch completes. The speculative history is used for all predictions, while the
non-speculative history is used to correct the speculative one on a misprediction.

3.1.3 Disadvantage of the Perceptron Predictor. The main disadvantage of
the perceptron predictor is its high latency. Even using the high-speed arith-
metic tricks mentioned above, the latency of the computation of yout is high
relative to the clock period of a deeply pipelined microarchitecture. It has
been shown that performance is highly sensitive to high-branch predictor la-
tency [Jiménez et al. 2000], even when special techniques are used to mitigate
latency [Jiménez 2002].

The latency has been estimated at 4 cycles for a small version of the predic-
tor [Jiménez and Lin 2002]. Our simulations, detailed in Section 4, show that
the latency would be 6 cycles for a version of the predictor capable of achieving
the same accuracy as the 2Bc-gskew predictor that was proposed for the Alpha
EV8 [Seznec et al. 2002], with a latency of only 2 cycles.

3.2 A Path-Based Neural Predictor

Our alternative to the perceptron predictor is a neural predictor that chooses
its weights vector according to the path leading up to a branch, rather than
according to the branch address alone. This technique has two advantages.
First, latency is mitigated because computation of yout can begin in advance of
the prediction, with each step proceeding as soon as a new element of the path
is executed. Second, accuracy is improved because the predictor incorporates
path information into the prediction.

3.2.1 Intuitive Description. Our new predictor has much the same struc-
ture as the perceptron predictor. It keeps a matrix W of weights vectors. Each
time a branch is fetched and requires a prediction, one of the weights vectors
from W is read. However, only the 0th weight, that is, the bias weight, is used
to help predict the current branch. Its value is added to a running total that
has been kept for the last h branches, with each summand added during the
processing of a previous branch.

Figure 3 illustrates the difference between the perceptron predictor (a) and
our new predictor (b). The diagrams show the progress of the two predictors
predicting a sequence of branches labeled bt−7 through bt with bt fetched most
recently. The vertical columns correspond to the rows of W accessed at each

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

204 • Daniel A. Jiménez

Fig. 3. Illustration of the weights used to predict branch bt with the perceptron predictor (a) and
the path-based neural predictor (b) with history length of 7. Vertical columns are weights vectors.

time step. Each predictor has a history length h = 7. For each predictor, the set
of weights used to predict branch bt is x[0..7]. For the perceptron predictor (a)
at time t, the vector is accessed, each weight processed into a summand, and
yout computed all at once.

By contrast, the x[0..7] weights for the new predictor (b) are built up by
accessing different positions in the weights vectors associated with branches
bt−7 through bt . For the new predictor, a running total (not shown) is kept of
the summands in the computation of yout. By time t, the only summand left to
be added is the bias weight, x[0]. Note that the prediction generated for branch
bt−i is the ith most recent speculative history bit for branch bt , so the relevant
parts of the speculative global history shift register become available as they
are needed. To further clarify the intuition, Figure 3 also shows the positions of
the weights y[0..7] and z[0..7] used to compute the predictions for the previous
two branches bt−1 and bt−2.

Another way to see the difference between the two predictors is to look at
which weights are used to predict which branches. In the original perceptron
predictor, each of the weights in the weights vector associated with branch bj
is used to predict branch bt . In the new predictor, the ith weight in the weights
vector associated with branch bj is used to predict branch bj+i.

3.2.2 The Prediction Algorithm. Figure 4 shows a parallel algorithm for
predicting the current branch and updating computations for predicting the
next h branches. Let W , n, and h be defined as before. Let SR[0..h] and R[0..h] be
vectors of h + 1 integers. The first column of W form the bias weights. SR[h− j]
contains the running total computing the perceptron output that will be used
to predict the j th branch after the current one. SR is updated speculatively, so
R, used in the updating algorithm described later, holds the most up-to-date
non-speculative version of SR. Think of SR as a queue that holds the partial
sums for the perceptron output computation as they are being computed. A zero
enters the tail of the queue at SR[0] and the perceptron output, minus the bias

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 205

Fig. 4. Path-based neural prediction algorithm to predict branch at address pc.

weight, emerges at SR[h]. SG and G are shift registers that hold speculative
and nonspeculative global history, respectively.

3.2.3 Update Algorithm. Updating the path-based neural predictor is con-
ceptually similar to updating the original perceptron predictor. However, the
new update algorithm has to deal with the fact that each weights vector is as-
sociated with h branches, rather than one branch as in the original predictor.
When branch bt completes and its outcome is ready to be used to update the pre-
dictor, most of the weights vector associated with bt cannot be updated because
they are being used to predict future branches that have not completed yet.
Thus, we design the matrix W as h + 1 independently addressable high-speed
memories, each representing the n weights of a single column of W . When the
predictor is updated the corresponding weights can be accessed independently.
The memory with the bias weights are kept closest to the logic that computes
the final yout value for low latency.

Figure 5 gives a parallel algorithm for updating the path-based neural pre-
dictor. It accepts as parameters the values of i and yout computed during the

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

206 • Daniel A. Jiménez

Fig. 5. Path-based predictor update algorithm.

prediction algorithm as well as the Boolean outcome of the branch, a vector H
representing the value of the speculative global history shift register SR when
the branch was predicted, and an array v[1..h] of integers representing the ad-
dresses of the last h branches predicted modulo n. That is, v[i] is the index of the
row in W used for predicting the ith most recent branch instruction. This array
can be implemented as a small circular buffer global to all invocations of the
training procedure with speculative and non-speculative versions as with the
prediction algorithm. Note that the address modulo n was computed in the pre-
diction algorithm, so it can be recorded in the circular buffer at that time. Also,
the modulo operation need not be expensive: it is simply a masking operation
if the number of weights vectors is chosen to be a power of two.

Some of the details of these algorithms have been omitted for clarity and
brevity, for example, details the maintenance of the circular buffer of weights
vector indices and the maintenance of the contents of R, which is simply a
nonspeculative copy of the circuitry that maintains SR. A detailed Java imple-
mentation of the algorithm will be made available upon request.

3.2.4 Recovery After Misprediction. When the path-based neural predictor
predicts incorrectly, the SR vector is restored to the value stored in R during
the predictor update for the last committed branch. Since all of the branches up
to the last committed branch were correctly predicted and committed in-order,
the restored value of SR is as it was when the mispredicted branch was fetched,
and prediction will continue normally. The recovery takes less than one cycle,

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 207

and its latency is completely hidden by the latency of other actions taken by
the microarchitecture to recover from the misprediction.

3.2.5 Area and Latency. Clearly, the prediction algorithm uses a slower
method for computing yout than the original perceptron method. However, since
it begins the summation process h branches before the prediction is needed, the
latency is almost completely hidden. The only elements on the critical path to
making a prediction are reading the bias weight and adding it to the current par-
tial sum (i.e., SR[h]). This is much faster than computing yout all at once with a
Wallace-tree and also consumes less area. The Wallace-tree for the original per-
ceptron predictor has O(h log h) carry-save adders as well as a carry-lookahead
adder for the final addition, while the new algorithm requires only O(h) inde-
pendent adders for updating SR at each prediction step. For reasonable-sized
predictors and history lengths, we estimate that the path-based neural predic-
tor would take approximately two clock cycles to produce a prediction given a
branch address. This is the same latency tolerated by branch predictors from
industrial designs [Seznec et al. 2002]. We give details of these estimates later
in Section 4.

4. METHODOLOGY

In this section, we describe our experimental methodology for evaluating the
path-based neural predictor.

4.1 Microarchitectural Framework

We use 17 SPEC CPU integer benchmarks running under a version of Sim-
pleScalar / Alpha [Burger and Austin 1997], a cycle-accurate out-of-order exe-
cution simulator that has been enhanced to include our branch predictors, sim-
ulate overriding predictors at various latencies, and simulate deep pipelines.
We simulate all of the SPEC CPU 2000 integer benchmarks, and all of the SPEC
CPU 95 integer benchmarks that are not duplicated in SPEC CPU 2000. The
benchmarks are compiled with the CompaQ GEM compiler with the optimiza-
tion flags -fast -O4 -arch ev6.

Table I describes each of the benchmarks.
To better capture the steady-state performance behavior of the programs,

our experiments skip the first billion instructions, as several of the benchmarks
have an initialization period lasting fewer than one billion instructions during
which program behavior is not characteristic of the many billions of subsequent
instructions. After skipping those instructions, each benchmark executes 500
million instructions on the ref inputs before the simulation ends.

Table II shows the base microarchitectural parameters used for the simu-
lations. We started with a configuration loosely based on the Intel Pentium 4,
with a deeper pipeline of 32 stages to provide a reasonable model of a future ag-
gressively clocked microarchitecture. A recent study from Intel’s Pentium Pro-
cessor architecture group concludes that performance of aggressively clocked
microarchitectures continues to improve until pipelines reach a depth of
52 [Sprangle and Carmean 2002]. Thus, while our 32-stage pipeline is

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

208 • Daniel A. Jiménez

Table I. Description of SPEC CPU Integer Benchmarks

Benchmark Description
099.go Plays the game of go. Pattern matching.
124.m88ksim Simulator for the Motorola 88100 microprocessor.
129.compress Compresses files with Lempel-Ziv adaptive encoding.
130.li Lisp interpreter running the Gabriel benchmarks.
132.ijpeg Compression/decompression for JPEG images.
164.gzip Compresses files with Lempel-Ziv coding.
175.vpr Placement and routing program for FPGAs.
176.gcc C compiler (gcc 2.7.2.2) for the Motorola 88100.
181.mcf Single-depot scheduling for mass transportation.
186.crafty Plays chess using alpha-beta search.
197.parser Parses English text to produce grammar analysis.
252.eon Probabilistic ray tracing program.
253.perlbmk Stripped-down version of Perl v5.005 03.
254.gap Language for group-theoretic computation.
255.vortex Object-oriented database program.
256.bzip2 Compresses files with block-sorting compression.
300.twolf Standard-cell placement and routing.

Table II. Microarchitectural Parameters

Parameter Configuration
L1 I-cache 16 KB, 6 4B blocks, 2-way
L1 D-cache 8 KB, 64B blocks, 4-way
L2 unified cache 512 KB, 128B blocks, 8-way
BTB 4096 entry, 2-way
Issue width 8
Pipeline depth 32
RUU entries 128
LSQ entries 128
L2 hit latency 7 cycles
L2 miss latency 200 cycles

aggressive for current technology, it is conservative with respect to what is
possible in future technologies.

We simulate extra pipeline stages beyond the 5 provided by sim-outorder
by adding an extra stages that simply buffer instructions from the fetch stage
to the decode stage. Thus, our modeling of wrong-path effects is conservative
with respect to branch prediction studies, since misspeculated loads that miss
in the data cache can only be issued near the final stage.

4.2 Branch Predictors Simulated

We simulate the following predictors to compare with the path-based neural
predictor:

4.2.1 2Bc-gskew. We simulate a 2Bc-gskew predictor, which is a
McFarling-style [McFarling 1993] hybrid predictor combining a bimodal
predictor with an egskew predictor that predicts using the majority predic-
tion of three components: the bimodal predictor and two gshare-like predictors

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 209

indexed by special hash functions so as to minimize the chance that both pre-
dictors will suffer destructive interference at the same time. A version of this
predictor would have been used in the Alpha EV8 processor [Seznec et al. 2002].
In our latency-sensitive simulation, 2Bc-gskew takes more than one cycle to re-
turn a result. We use a two-level overriding organization [Jiménez et al. 2000] to
mitigate this latency: A first-level 2K-entry bimodal predictor gives a predic-
tion in a single cycle and instructions are fetched down the predicted path. If
the second-level 2Bc-gskew predictor disagrees with the initial prediction, the
instructions fetched so far are dropped and fetching continues from the other
path. This technique closely reflects the design of the EV8 predictor, in which
2Bc-gskew overrides a less accurate instruction cache line predictor.

4.2.2 Perceptron Predictor. We simulate a recent [Jiménez and Lin 2002],
highly accurate version of the perceptron predictor that combines global and
per-branch history information in a manner reminiscent of the alloyed branch
predictors of Skadron et al. [2000] and Jiménez and Lin [2002]. We again use an
overriding organization with a first-level 2K-entry bimodal predictor, this time
backed up with a second-level perceptron predictor. We note that this predictor
has been shown to be more accurate than even the most aggressive multicompo-
nent hybrid predictor [Jiménez and Lin 2002]. Thus, including other combined
global and per-branch hybrid predictors in this study would be superfluous.

4.2.3 gshare.fast. We simulate a specialized version of the gshare predictor
that has been pipelined to return a result in a single cycle. By using older
branch history to prefetch a portion of the pattern history table in a previous
cycle and then using the exclusive-OR of more recent history and the low bits
of the current branch address to select from that portion, gshare.fast has an
effective latency of one cycle [Jiménez 2002]. It has been shown to yield higher
instruction per cycle rates than highly accurate predictors such as 2Bc-gskew
and the perceptron predictor at large hardware budgets [Jiménez 2002]. For
this study, our simulation of gshare.fast is idealized, assuming that there is no
overlap or missing gap between the older history and more recent history.

4.2.4 Fixed-Length Path Predictor. We simulate a fixed length path branch
predictor that forms a hash of the history of branch target addresses leading up
to the branch to be predictor [Stark et al. 1998]. The hash function XORs the
addresses, first rotating each address by a number of bits equal to it position in
the branch history. The hash is used to index a table of two-bit saturating coun-
ters as in a two-level scheme. We use the same fixed length for each benchmark,
as opposed to using a variable-length path branch predictor which requires ex-
pensive profiling [Stark et al. 1998]. (Note that none of the schemes used for
this article require profiling.)

4.2.5 Path-Based Neural Predictor. We simulate the path-based neural
predictor as described above, using an overriding organization with a first-level
2K-entry bimodal predictor as with the other overriding predictors.

Each simulated predictor is pipelined so that it can be accessed on every
cycle, for example, for a predictor with a latency of two cycles, the prediction

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

210 • Daniel A. Jiménez

Table III. Tuned History Lengths

Fixed Path-
Hardware Length Global/ Based
Budget Path 2Bc-gskew Local Neural

1 KB 10 10 25/9 13
2 KB 10 10 31/11 18
4 KB 12 10 34/12 20
8 KB 15 11 34/12 32

16 KB 20 14 38/14 34
32 KB 20 15 40/14 34
64 KB 20 16 50/18 37

requested two cycles ago is available in the current cycle. Each predictor’s his-
tory registers are updated speculatively and corrected on a misprediction. The
neural predictors, that is, perceptron and path-based, use 8-bit weights. This
number of bits was chosen empirically.

4.3 Multiple Branch Prediction

As described, the perceptron predictor and path-based neural predictor can
only predict one branch in a fetch group. Although multiple branch prediction
will be addressed in future work, we currently make no provision for predicting
more than one branch with the neural predictors.

We simulate 2Bc-gskew and gshare.fast as multiple branch predictors. They
are allowed to return up to eight predictions for a single fetch group. Each pre-
diction uses speculative history updated by the previous prediction so that stale
histories are not used. The perceptron predictor and path-based neural predic-
tor are simulated as single branch predictors allowed to predict at most one
branch per cycle. By avoiding stale histories for the multiple branch predictors
and restricting the neural predictors to single branch prediction, we conserva-
tively estimate the performance improvement yielded by the neural techniques
over the conventional predictors.

4.4 Tuning the Predictors

Using the train inputs of the benchmarks and trace-driven simulation, we find
the history lengths that minimize the average misprediction rate for each hard-
ware budget and branch predictor, exploring hardware budgets from 1 KB to
64 KB. We use these history lengths in the execution-driven simulations on the
ref inputs. Table III shows the tuned history lengths for each hardware bud-
gets. Note that gshare.fast is not shown, as its history length is fully constrained
by the details of its implementation, and is equal to the base-2 logarithm of the
number of elements in the pattern history table.

4.5 Estimating Branch Predictor Latency

We use CACTI 3.0 [Shivakumar and Jouppi 2001] to estimate the latency of
the various memories accessed by the predictors. We use HSPICE along with a
custom logic design program to estimate the latency of the circuits used to com-
pute the perceptron output for the perceptron predictor as well as the latency

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 211

Table IV. Estimated Access Latencies

Hardware 2Bc-gskew Global/Local Path-Based
Budget (Cycles) Perceptron Neural

1 KB 2 5 2
2 KB 2 5 2
4 KB 2 5 2
8 KB 2 6 2

16 KB 2 6 2
32 KB 2 6 2
64 KB 3 7 3

of the adders used for the path-based neural predictor. Table IV shows the la-
tencies we derived for each branch predictor and hardware budget except for
gshare.fast, giving the amount of time it takes from the time a branch address
is known to the time a prediction becomes available. The CACTI estimates take
into account the fact that h + 1 independently addressable memories are used
to implement the update phase of the predictor. For gshare.fast, the latency is
always at most one cycle. For 2Bc-gskew, we estimate the latency of the predic-
tor as the delay in accessing the slowest table plus one fan-out-of-four (FO4)
delay for taking the majority and choosing the hybrid prediction from the two
component predictions. For the global/local perceptron predictor, the latency
is the sum of the access delay to the table of weights vectors measured by
CACTI and the worst-case delay of the perceptron output circuit as measured
by HSPICE. We optimistically ignore the access time to the first-level table of
per-branch histories. The fixed-length path branch predictor is computationally
expensive to implement because it requires hashing many addresses to produce
one prediction. Nevertheless, we optimistically assume that it can be pipelined
to produce a result with the same latency as 2Bc-gskew. For the path-based
neural predictor, the latency is the sum of the access delay to the table of bias
weights and the worse-case delay of the adder that adds the bias weight to
the next partial sum in the SR vector. For consistency, we use the same adder
circuits that were used in the original perceptron predictor study [Jiménez and
Lin 2002]. All of the estimates assume a 90 nm technology and an aggressive 8
FO4 delays, that is, 3.86 GHz.

5. EXPERIMENTAL RESULTS

In this section, we give the results of our experimental studies. We discuss
the misprediction rates of the various branch predictors. We then discuss the
performance achieved by the predictors in terms of instructions-per-cycle (IPC).

5.1 Misprediction Rates

Figure 6 shows the arithmetic mean misprediction rates for the four predictors
ranging over hardware budgets from 1 KB to 64 KB over all benchmarks as
measured by the microarchitectural simulator. Clearly, the path-based neural
predictor has the lowest misprediction rate of all the predictors for all hardware
budgets. Figure 7 shows the misprediction rates for each benchmark at a 8 KB

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

212 • Daniel A. Jiménez

Fig. 6. Average misprediction rates per hardware budget.

Fig. 7. Misprediction rates per benchmark at an 8 KB hardware budget.

hardware budget. The path-based neural predictor achieves an average mis-
prediction rate of 5.7%, which is 7% lower than that of the global/local per-
ceptron predictor at 6.1%, 13% lower than that of 2Bc-gskew at 6.6%, and
40% lower than that of the fixed-length path branch predictor at 9.4%. The
path-based neural predictor has the lowest misprediction rate of all the pre-
dictors in 9 out of the 17 benchmarks. Ignoring the global/local perceptron
predictor, the path-based neural predictor is the best predictor for 14 of the
benchmarks.

Note that the average misprediction rates are slightly higher than those
reported in previous work for two reasons. First, the set of benchmarks includes
elements from both SPEC CPU 95 and SPEC CPU 2000, where previous work
has focused on a smaller set of benchmarks. Second, the misprediction rates
are those reported by the cycle-accurate deep-pipeline simulator simulating the
realistic lag in time between prediction and update that is not experienced by a
simulator such as sim-bpred that models instantaneous predictor update. We

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 213

Fig. 8. Average IPC per hardware budget.

Fig. 9. IPC per benchmark at an 8 KB hardware budget.

believe that both of these points yield a more realistic estimate of what the
branch predictor accuracy would be like for a real machine.

5.2 Instructions Per Cycle

Figure 8 shows the number of instructions executed per cycle (IPC) for each
branch predictor and hardware budget. Clearly, the path-based neural predic-
tor yields the best performance at every hardware budget. The key reason is the
combination of superior accuracy and low latency. For instance, the global/local
perceptron predictor, which is the second most accurate of all the branch pre-
dictors, yields the worse performance at higher hardware budgets because of
its high latency. At the same time, 2Bc-gskew, a McFarling-style hybrid with
approximately the same latency as the path-based neural predictor, delivers
less accuracy and performance than the single-component path-based neural
predictor. At a 64 KB hardware budget, the path-based neural predictor deliv-
ers an IPC 16% higher than that of the perceptron predictor because of that
predictor’s high latency.

Figure 9 shows the IPC for each benchmark and each predictor at an 8-KB
hardware budget. The path-based neural predictor yields the best IPC in 15 out
of the 17 benchmarks. It achieves a harmonic mean IPC of 1.06, giving a speedup

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

214 • Daniel A. Jiménez

of 12% over the global/local perceptron predictor at 0.95 IPC, 4% over 2Bc-gskew
at 1.02 IPC, 18% over gshare.fast at 0.90 IPC, and 18% over the fixed length path
branch predictor at 0.90 IPC. At this hardware budget, both 2Bc-gskew and the
path-based neural predictor have a latency of two cycles, while gshare.fast has
a single-cycle latency. The global/local perceptron predictor has a latency of six
cycles at this hardware budget. Although it is more accurate than gshare.fast
and 2Bc-gskew, its higher latency cancels any advantage it might have for
performance.

5.2.1 Area vs. Hardware Budget. Although standard for branch prediction
research, equating the term hardware budget with number of bits of predictor
state is problematic in our case. As described in Section 3.2.3, an implemen-
tation of the path-based neural predictor may use h + 1 independently ad-
dressable memories, each with its own selection logic, to facilitate the update
algorithm. The path-based neural predictor also requires a number of adder
circuits proportional to the history length. We estimate that a naive implemen-
tation of a path-based neural predictor using 8 KB of state could require 80%
more area than a 8 KB 2Bc-gskew predictor. Even so, the path-based neural pre-
dictor is still the best choice. A path-based neural predictor with a hardware
budget of 4 KB, consuming approximately 10% less total area than a 8 KB
2Bc-gskew, achieves a harmonic mean IPC of 1.05 which is less than 1% lower
than that of an 8 KB path-based neural predictor and 3% higher than that of a
8 KB 2Bc-gskew. Indeed, a path-based neural predictor with only 2 KB of state
achieves the same IPC as an 8 KB 2Bc-gskew.

6. ANALYSIS

In this section, we discuss the ability of the path-based neural predictor to
adapt to a wider range of branch behavior than the original perceptron predic-
tor. In particular, the path-based neural predictor can learn to predict branches
characterized by linearly inseparable functions (hereafter, “linearly insepara-
ble branches”), while the perceptron predictor will mispredict some of these
branches.

6.1 Linear Separability

A branch direction predictor can be thought of as a device that attempts to learn
a function f : X �→ {taken, not taken}, where X is the domain of the function.
The domain X is usually the set of n-length binary vectors representing pattern
histories of length n. The assumption for branch prediction is that there exists
such a function f for every branch that best characterizes the behavior of that
branch.

Perceptrons are limited by the fact that they can only learn linearly separable
functions. Let x1..h ∈ X , that is, x1..h represents an instance of a branch history
such that f (x1..h) is either taken or not taken. A branch prediction function
f is linearly separable if and only if there exist integers w0, w1, . . . , wn such
that the hyperplane with the equation w0 +∑n

i=1 xiwi = 0 separates X into one
half-space containing only taken instances and another half-space containing

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 215

Fig. 10. Break-down of branches best predicted by constant, linearly separable, and linearly in-
separable functions.

only not taken instances. The weights in the equation of the hyperplane corre-
spond to the weights in a trained perceptron.

In other words, perceptrons can only completely learn functions that can be
characterized by a linear equation [Fausett 1994]. Perceptrons can only par-
tially learn other functions. For instance, perceptrons can learn the Boolean
functions AND and OR with 100% accuracy, but can only learn XOR with at most
75% accuracy. Constant functions, for example, always predict taken, are triv-
ially linearly separable. On the other hand, two-level adaptive branch predic-
tors such as gshare and 2Bc-gskew can theoretically learn arbitrary functions.

6.1.1 Impact of Linear Separability. What does linear separability have
to do with branch prediction in real programs? Through our experiments, we
find two surprising facts. First, over half of all branches executed are linearly
inseparable. Second, nearly all mispredictions come from linearly insepara-
ble branches for all the branch predictors we studied. Thus, linearly insepara-
ble branches are the most important branches for branch predictors, but they
are the hardest for perceptrons to learn. Note that traditional branch predic-
tors based on two-level adaptive branch prediction are not limited by linear
separability.

Figure 10 illustrates the phenomenon of linear separability in branch be-
havior. For each branch in each benchmark, we find a Boolean function with a
history length of 10 that minimizes the misprediction rate for that branch. Our
algorithm for finding the best function is exponential in the history length, and
there are thousands of branches in the 17 benchmarks, so we limit the history
length to 10 to keep simulation time reasonable. We then test each function
for linear separability. For each benchmark, the differently shaded bars break

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

216 • Daniel A. Jiménez

Fig. 11. Break-down of mispredictions for the path-based (n), perceptron (p), and gshare (g) pre-
dictors into linearly separable and linearly inseparable branches.

down the fraction of constant, linearly separable but not constant, and linearly
inseparable branches weighted by their execution frequencies. Although there
is a wide variance, on average 55% of all branches are linearly inseparable. Of
the linearly separable branches, 20% are best predicted by a constant taken or
not taken, that is, they could be predicted just as well with a simple static or
bimodal predictor [Smith 1981] as with a perceptron predictor. Thus, although
the perceptron predictor is highly accurate, it cannot completely learn the func-
tions that best predict over half of all branches.

Figure 11 breaks down mispredictions in terms of their linear separability
for three branch predictors: the path-based neural predictor (n), the perceptron
predictor using only global history (p), and gshare (g). Again, each predictor is
simulated with a history length of 10 so that we can test for linear separability
in a reasonable amount of time. Each branch predictor is simulated with a vir-
tually unlimited hardware budget to suppress aliasing effects. Thus, the gshare
we simulate should have the same accuracy as any other two-level predictor
with a more sophisticated mechanism for dealing with aliasing.

For all benchmarks except for 124.m88ksim, over 90% of all mispredictions
come from linearly inseparable branches. Since the history lengths for each
predictor are equal, we do not see a wide separation in the average mispre-
diction rates. Nevertheless, note that the path-based neural predictor is the
most accurate of the three, and that gshare is more accurate than the original
perceptron predictor because the history lengths are equal.

If two-level predictors such as gshare can learn linearly inseparable func-
tions, then why should the path-based neural predictor still outperform gshare?
There are two answers to this question. First, it has been observed that neural
predictors can learn more quickly than two-level predictors because of warm-
up effects [Jiménez and Lin 2002]. Second, the path-based neural predictor
combines path and pattern history, while gshare uses only pattern history.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

Improved Latency and Accuracy for Neural Branch Prediction • 217

7. CONCLUSION

We have presented a new neural branch predictor that has lower latency and
superior accuracy to previous neural branch predictors. Our new predictor
achieves high accuracy and low latency by predicting a branch using a neuron
selected dynamically along the path to that branch. This work is only the begin-
ning of path-based neural prediction; we have yet to fully exploit the potential
of this technique. We have shown that our predictor has better accuracy and
yields higher performance than conventional predictors. By incorporating our
path-based neural predictor into new microarchitectures, designers will be able
to improve IPC rates while increasing pipeline depths and clock frequencies.

ACKNOWLEDGMENTS

I thank Calvin Lin and Doug Burger for their helpful comments on the first
draft of this paper. Thanks also to Charles Ganansia for working on circuit
models for this research.

REFERENCES

BALL, T. AND LARUS, J. 1993. Branch prediction for free. In Proceedings of the SIGPLAN ’93 Con-
ference on Programming Language Design and Implementation. ACM, New York, 300–313.

BLOCK, H. D. 1962. The perceptron: A model for brain functioning. Rev. Mod. Phys. 34, 123–135.
BREKELBAUM, E., RUPLEY, J., WILKERSON, C., AND BLACK, B. 2002. Hierarchical scheduling windows.

In Proceedings of the 35th International Symposium on Microarchitecture (Istanbul, Turkey).
BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set version 2.0. Tech. Rep. 1342, Com-

puter Sciences Department, University of Wisconsin. June.
CALDER, B., GRUNWALD, D., LINDSAY, D., MARTIN, J., MOZER, M., AND ZORN, B. 1995. Corpus-based

static branch prediction. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation. ACM, New York, 79–92.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. McGraw Hill,
New York.

EVERS, M., PATEL, S. J., CHAPPELL, R. S., AND PATT, Y. N. 1998. An analysis of correlation and
predictability: What makes two-level branch predictors work. In Proceedings of the 25th Annual
International Symposium on Computer Architecture. 52–61.

FAUSETT, L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms and Applications.
Prentice-Hall, Englewood Cliffs, N.J.

JIMÉNEZ, D. A. 2002. Reconsidering complex branch predictors. In Proceedings of the 9th Inter-
national Symposium on High Performance Computer Architecture. 43–52.

JIMÉNEZ, D. A. 2003. Fast path-based neural branch prediction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, Press, Los
Alamitos, Calif., 243–252.

JIMÉNEZ, D. A., KECKLER, S. W., AND LIN, C. 2000. The impact of delay on the design of branch
predictors. In Proceedings of the 33rd Annual International Symposium on Microarchitecture.
67–76.

JIMÉNEZ, D. A. AND LIN, C. 2001. Dynamic branch prediction with perceptrons. In Proceedings of
the 7th International Symposium on High Performance Computer Architecture. 197–206.

JIMÉNEZ, D. A. AND LIN, C. 2002. Neural methods for dynamic branch prediction. ACM Trans.
Comput. Syst. 20, 4 (Nov.), 369–397.

KESSLER, R. E. 1999. The Alpha 21264 microprocessor. IEEE Micro 19, 2 (Mar./Apr.), 24–36.
LOH, G. H. AND HENRY, D. S. 2002. Predicting conditional branches with fusion-based hybrid pre-

dictors. In Proceedings of the 11th Conference on Parallel Architectures and Compilation Tech-
niques (Charlottesville, Va.), 165–176.

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

218 • Daniel A. Jiménez

MCFARLING, S. 1993. Combining branch predictors. Tech. Rep. TN-36m, Digital Western Research
Laboratory. June.

NAIR, R. 1995. Dynamic path-based branch correlation. In Proceedings of the 28th Annual Inter-
national Symposium on Microarchitecture. 15–23.

ROSENBLATT, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mecha-
nisms. Spartan.

SEZNEC, A., FELIX, S., KRISHNAN, V., AND SAZEIDES, Y. 2002. Design tradeoffs for the Alpha EV8
conditional branch predictor. In Proceedings of the 29th International Symposium on Computer
Architecture.

SEZNEC, A. AND FRABOULET, A. 2003. Effective ahead pipelining of instruction block address gener-
ation. In Proceedings of the 30th International Symposium on Computer Architecture (San Diego,
Calif.).

SHIVAKUMAR, P. AND JOUPPI, N. P. 2001. Cacti 3.0: An integrated cache timing, power and area
model. Tech. Rep. 2001/2, Compaq Computer Corporation. August.

SKADRON, K., MARTONOSI, M., AND CLARK, D. W. 2000. A taxonomy of branch mispredictions, and
alloyed prediction as a robust solution to wrong-history mispredictions. In Proceedings of the
2000 International Conference on Parallel Architectures and Compilation Techniques. 199–206.

SMITH, J. E. 1981. A study of branch prediction strategies. In Proceedings of the 8th Annual
International Symposium on Computer Architecture. 135–148.

SPRANGLE, E. AND CARMEAN, D. 2002. Increasing processor performance by implementing deeper
pipelines. In Proceedings of the 29th International Symposium on Computer Architecture
(Anchorage, Alaska). 25–34.

STARK, J., EVERS, M., AND PATT, Y. N. 1998. Variable length path branch prediction. In Proceedings
of the 8th International Conference on Architectural Support for Programming Languages and
Operating Systems. 170–179.

THOMAS, R., FRANKLIN, M., WILKERSON, C., AND STARK, J. 2003. Improving branch prediction by
dynamic dataflow-based identification of correlated branches from a large global history. In Pro-
ceedings of the 30th International Symposium on Computer Architecture (San Diego, Calif.).

VINTAN, L. N. AND IRIDON, M. 1999. Towards a high performance neural branch predictor. In
Proceedings of the International Joint Conference on Neural Networks. 2, 868–873.

Received December 2003; revised November 2004; accepted November 2004

ACM Transactions on Computer Systems, Vol. 23, No. 2, May 2005.

