
Controlling the Power and Area of Neural Branch Predictors for Practical
Implementation in High-Performance Processors∗

Daniel A. Jiḿenez Gabriel H. Loh
Rutgers University Georgia Institute of Technology

Department of Computer Science College of Computing
djimenez@cs.rutgers.edu loh@cc.gatech.edu

Abstract

Neural-inspired branch predictors achieve very low branch
misprediction rates. However, previously proposed imple-
mentations have a variety of characteristics that make them
challenging to implement in future high-performance pro-
cessors. In particular, the the original Perceptron branch
predictor suffers from a long access latency, and the faster
path-based neural predictor (PBNP) requires deep pipelin-
ing and additional area to support checkpointing for mis-
prediction recovery.

The complexity of the PBNP predictor stems from the fact
that the path history length, which determines the number
of tables and pipeline stages, is equal to the history length,
which is typically very long for high accuracy. We pro-
pose to decouple the path-history length from the outcome-
history length through a new technique calledmodulo-path
history. By allowing a shorter path history, we can imple-
ment a PBNP with significantly fewer tables and pipeline
stages while still exploiting a traditional long branch out-
come history. The pipeline length reduction results in de-
creased power and implementation complexity. We also
proposefolded modulo-pathhistory to allow the number
of pipeline stages to differ from the path history length.
We show that our modulo-path PBNP at 8KB can achieve
prediction accuracy and overall performance within 0.8%
(SPECint) of the original PBNP while simultaneously re-
ducing predictor energy consumption by∼29% per access
and predictor die area by∼35%. Our folded modulo-path
history PBNP achieves performance within 1.3% of ideal,
with a ∼37% energy reduction and∼36% predictor area
reduction.

1. Introduction

After decades of academic and industrial research ef-
forts focused on the branch prediction problem, pipeline
flushes due to control flow mispredictions remain one of the
primary bottlenecks in the performance of modern proces-

∗A subset of the ideas presented in this paper appeared in an earlier
workshop with unpublished proceedings.

sors. A large amount of recent branch prediction research
has centered around techniques inspired and derived from
machine learning theory, with a particular emphasis on the
perceptronalgorithm [4, 5, 9, 10, 12, 15, 25]. These neural-
based algorithms have been very successful in pushing the
envelope of branch predictor accuracy.

Researchers have made a conscious effort to propose
branch predictors that are highly amenable to pipelined and
ahead-pipelined [22] organizations to minimize the impact
of predictor latency on performance. There has been con-
siderably less effort on addressing power consumption and
implementation complexity of the neural predictors, both
of which are now first-class design considerations in high-
performance microprocessors. Reducing branch predictor
power is not an easy problem because any reduction in the
branch prediction accuracy can result in an overall increase
in the systempower consumption due to a corresponding
increase in wrong-path instructions [3].

The goal of this work is to demonstrate that the complex-
ity of neural branch predictors can be substantially reduced
without altering the fundamental behaviors and characteris-
tics of the prediction algorithm. In this paper, we willnot
re-argue the benefits of the conventional neural predictors
as that has already been demonstrated in numerous previ-
ous works [4, 5, 9, 10, 12, 25].

In the rest of this paper, we will first review the design
of neural-based branch predictors in Section 2. Section 3
details our new branch predictor organizations targeted at
reducing complexity and overall energy consumption. Sec-
tion 4 presents our experimental results demonstrating the
impact of our proposal on processor performance and en-
ergy, and Section 5 concludes the paper.

2. Neural Branch Predictors

In this section, we review neural-based branch predic-
tors. We then qualitatively describe the sources of complex-
ity and power consumption that make conventional neural
predictors difficult to implement in high-performance pro-
cessors.



PCPC

Add t−0
Pipelined

Add t−1
Pipelined

Add t−2
Pipelined

Add t−h+2
Pipelined

Add t−h+1
Pipelined

Stage t−h
Pipeline

Lookup
SRAM

BHR

SRAM
Lookup

Wallace
Tree

(h+1)−to−2
Reduction

Final Look−Ahead

BHR

Prediction
Carry Addition Prediction

(b)(a)

+

+

+

+

+

Figure 1. (a) The perceptron branch predictor and
(b) the path-based neural predictor or PBNP.

2.1. Background

Traditional PHT-based (pattern history table) branch pre-
dictors such as GAs [26] and gshare [16] do not scale grace-
fully with longer branch history lengths. Forh bits of
branch history, a conventional PHT needs a table size expo-
nential inh. The neural predictors are interesting because
they can exploit deep correlations from very long history
lengths with subexponential scaling.

The basic perceptron predictor [12] employs a vector
of weights that learns correlations between the branch di-
rection and the results of previous branches. Figure 1a
shows how a table of weights is indexed by the program
counter (PC) to choose a single vector of weights, which
is then combined with the branch history register in a dot-
product operation (each● represents conditionally negating
the weight depending on the direction of the correspond-
ing branch history bit). Conceptually, a past branch that is
strongly correlated with the outcome of the current branch
will have a corresponding weight with a large magnitude.
The perceptron trains (increments/decrements) the weights
to predict only according to those branches in the history
that have exhibited strong correlations to the branch under
consideration. A Wallace tree reduces theh + 1 weights
down to only two weights inO(log3/2 n) carry-save adder
gate delays. A final carry-completing adder such as a look-
ahead carry adder computes the final sum. The sign of this
resulting sum indicates the final prediction. The main ob-
stacle to implementing a perceptron branch predictor is the
long latency required to read the weights and then perform
the large dot-product operation. To reduce the latency of the
predictor, it may be necessary to implement the adders with
fast, leaky transistors that end up consuming more dynamic
and static power.

The second-generation path-based neural predictor
(PBNP) largely solves the latency problems of the origi-

nal perceptron [9]. The central idea is that theith previous
branch address (i.e. from the path history) can be used to
look up the weight corresponding to theith oldest branchi
cycles ahead of time. While this largely addresses the la-
tency issues of the perceptron predictor, the PBNP still suf-
fers from significant implemenation complexity. As shown
in Figure 1b, the clever pipelining of the PBNP provides
a much faster effective predictor latency: the critical path
is now the table lookup and a single addition. The PBNP
also requires a number of adders equal to the depth of the
branch history, further increasing the hardware cost. The
third-generation piecewise linear predictor has an organi-
zation that consists ofk parallel PBNP pipelines that can
each learn separate linearly separable functions for better
prediction accuracy [10]. However, thek pipelines further
increases the implementation overhead.

2.2. Power and Complexity

In this paper, we will focus on the path-based neural
predictor (PBNP). The original perceptron predictor’s long
lookup latency makes it difficult to implement without mak-
ing use of an overriding predictor organization [11] that just
adds more power and complexity. The piecewise linear pre-
dictor has a very similar structure, and so we believe our
findings based on the PBNP hold for the more complicated
predictor as well.

During the lookup phase of the PBNP, each pipeline
stage reads a weight corresponding to the exact same PC.
This is due to the fact that the currentPC0 will be the next
branch’sPC1 and next-next branch’sPC2 and so on. This
allows an implementation where the weights are read in a
single access using a single large SRAM row that contains
all of the weights. During the update phase however, a sin-
gle large access would force the update process to use a
pipelined implementation as well. While at first glance this
may seem desirable, this introduces considerable delay be-
tween update and lookup. For example a 30-stage update
pipeline implies that even after a branch outcome has been
determined, another 30 cycles must elapse before the PBNP
has been fully updated to reflect this new information. This
update delay can create a decrease in predictor accuracy.
There are also some odd timing effects due to the fact that
some weights of a branch will be updated before others.

An alternative organization usesh tables in parallel, one
for each pipeline stage/history-bit position [9], as shown in
Figure 2(a). This organization allows for a much faster up-
date and better resulting accuracy and performance. The
disadvantage of this organization is that there is now a con-
siderable amount of area and power overhead to implement
the row decoders for theh separate SRAM arrays. Further-
more, to support concurrent lookup and update of the pre-
dictor, each of these SRAM arrays needs to be dual-ported
(one read port/one write port) which further increases the



area and power overhead of the SRAM row decoders. To
use the PBNP, the branch predictor designer must choose
between an increase in power and area or a decrease in pre-
diction accuracy. Using a large number of small SRAM ar-
rays makes it more difficult to derive energy savings through
SRAM banking and sub-banking techniques [6].

On a branch misprediction, the PBNP pipeline must be
reset to the state that corresponded to the mispredicting
branch being the most recent branch in the branch and
path history. To support this predictor state recovery, each
branch must checkpoint all of the partial sums in the PBNP
pipeline. On a branch misprediction, the PBNP restores all
of the partial sums in the pipeline using this checkpointed
state. Forb-bit weights and a history length ofh, a PBNP
checkpoint requires approximatelybh bits of storage. The
total number of bits is slightly greater because the number
of bits required to store a partial sum increases as the sum
accumulates more weights. The total storage for all check-
points corresponds to the maximum number of in-flight
branches permitted in the processor. The checkpointing
overhead represents additional area, power, and state that is
often unaccounted for in neural predictor studies. This over-
head increases with the history/path-length of the predictor
since the PBNP must store one partial sum per predictor
stage. The combination of these issues makes the conven-
tional PBNP difficult to implement for high-performance.

3. Decoupling the Path and Branch History
Lengths

In the original PBNP, the path history length is always
equal to the branch history length. This is a result of using
PCi to compute the index for the weight ofxi. As de-
scribed in the previous section, the pipeline depth directly
increases the number of tables and the checkpointing over-
head required. On the other hand, supporting a long history
length requires the PBNP to be deeply pipelined.

3.1. Modulo-Path History

We proposemodulo path-historywhere we decouple the
branch history length from the path history length. We limit
the path history to only theP < h most recent branch ad-
dresses. Instead of usingPCi to compute the index for
wi, we usePCi mod P . In this fashion, we can reduce the
degree of pipelining down to onlyP stages. Figure 2(b)
shows the logical organization of a PBNP using modulo
path-history (forP = 3). In this example, we only use
a path length of three, but Figure 2(b) still appears to use
O(h) separate tables. Since everyP th weight is indexed
with the same branch address, we can interleave the order
of the weights in the tables such that onlyP tables are nec-
essary. Figure 2(c) shows the physical organization where
each table provides weights that correspond toh/P branch

P Ch

wh

P Ch−1

wh−1

P C5

w5

P C4

w4

P C3

w3

P C2

w2

P C1

w1

P C0

w0

P C1

w2w5

P C1

w1w4

P C0

w0w3wh wh−1 wh−2

(c)

wh−2

P Ch−2

(a)

wh−2wh wh−1 w5 w4 w3 w2 w1 w0

P C2 P C1 P C0

(b)

Figure 2. (a) Organization of the h tables of the
PBNP, (b) logical organization of a PBNP using
modulo path-history for P = 3, and (c) the corre-
sponding physical organization of the same. The
shaded portion represents the SRAM row decoder
and related access logic.

history outcomes, where each branch history outcome is
separated byP bit positions.

By reducing the PBNP implementation to only useP
distinct tables, we address several of the main sources of
power and complexity as described in Section 2. Using
only P tables reduces the duplicated row-decoder overhead.
The reduction in the number of tables reduces the overall
pipeline depth of the predictor which reduces the total bits
of state that must be checkpointed (i.e. there are onlyP par-
tial sums). The number of inter-stage latches and associated
clocking overhead is also correspondingly reduced.

3.2. Folded Modulo-Path History

Reducing the path-history length of a path-based neu-
ral predictor may reduce prediction accuracy because the
long path history may provide additional context for detect-
ing correlations. That is, a branch prediction may be highly
correlated to thekth address in the branch history, but reduc-
ing the path length toP < k by using modulo-path history
eliminates this source of correlation. To recapture the cor-
relation in thekth path address, we would need to increase



hash hash hash hash

P
C

1
1

P
C

1
0

P
C

9

P
C

8

P
C

7

P
C

6

P
C

5

P
C

4

P
C

3

P
C

2

P
C

1

P
C

0

addresses

path-length of
P · f = 12

Table0

w0
w4

w1

Table1

w5

Table2

w2
w6

Table3

w3
w7

P = 4 tables,
pipeline stages

length
outcome history
Long branch

... ... ... ...

... ... ... ...

wh wh−1 wh−2 wh−3

Figure 3. A neural predictor employing folded
modulo-path history, where the path-length 6=
history-length 6= number of tables.

the modulo-path history length to at leastk (so indices are
computed usingPCi mod k rather thanPCi mod P ). This
unfortunately increases the predictor pipeline depth and the
associated power and complexity.

We propose to decouple the predictor pipeline depth
from the path-history length by usingfolded modulo-path
history. Similar to the normal modulo-path history, our
PBNP uses onlyP tables, but now we employ a path-history
length that isP · f addresses long, wheref is the folding
factor. In a conventional PBNP we only use one branch
address to compute an index for each table. With folded
modulo-path history, we usef addresses hashed together.
Folded modulo-path history can be considered the path-
history analogue of the folded long branch outcome histo-
ries used in other predictors such as 2bc-gskew [21]. Fig-
ure 3 shows an example PBNP withP = 4 andf = 3 for a
total path length of 12 while only using four tables.

To combine thef path addresses into a single index, we
used a simple XOR and shift-based hash function. For each
of the path addressesPCi, i ∈ {0..f − 1} used to index a
table, we hash the addresses by taking the exclusive-OR of
PCi � i. This is similar to the hash function used by Stark
et al. for their path hashing [24].

Note that the folded-modulo-path history predictor needs
a shift register to track the path-history, and this shift reg-
ister will need to be checkpointed for misprediction recov-
eries. However, the size of this shift register is relatively
small due to the reduced number of predictor stages en-
abled by the modulo history and each entry only needs to
store enough bits to index into the perceptron table (e.g.,
128-entry SRAM only require 7 bits from each branch ad-
dress).

Modulo path-history is a unique way to manage the
branch path history information. A PBNP can now choose
between different lengths of branch and path history. Tar-

jan and Skadron proposed a “hashed” perceptron indexing
scheme that removed the rigid relationship between history
length and the number of tables [25]. Seznec’s GEHL pre-
dictors use a similar hashing approach to map multiple bits
of branch history to a single correlation weight [20]. Our
work provides a different way of separating history length
from table count, and also makes the contribution of sep-
arating the path length from either of these parameters as
well.

3.3. Generality of the Techniques

In this paper, we focus on the path-based neural pre-
dictor. However, the proposed history-folding techniques
can potentially be applied to other predictor organizations.
Multi-table, ahead-pipelined predictors such as the Hashed-
Perceptron [25], GEHL [20] or PPM [17] could all in-
clude folded history to incorporate additional information
and context in their indexing functions.

4. Results

In this section, we present our experimental results to
demonstrate the merits of our proposed branch predictor or-
ganizations.

4.1. Experimental Methodology

For our initial design space exploration, we used the in-
order branch predictor simulator sim-bpred from the Sim-
pleScalar toolset [2]. we simulated applications from the
SPEC2000cpu integer benchmark suite with reference in-
puts, MiBench [8] with the large inputs and the Media-
Bench [14] multimedia benchmark suites with expanded
inputs. Some applications (e.g., thelame MP3 encoder)
are not included because we could not compile them in
our Alpha environment due to unsupported libraries. We
used 100M instruction simulation points chosen by Sim-
Point 2.0 [19]. Our applications were compiled on an Al-
pha 21264 with Compaqcc with full optimizations. For our
IPC simulations, we used the MASE simulator from Sim-
pleScalar 4.0 [13]. We simulated a four-wide out-of-order
processor; the details are listed in Table 1. The processor
parameters were chosen to model a machine with a level
of aggressiveness similar to a Intel Pentium-III/Pentium-M
microarchitecture.

We used CACTI 3.2 [23] to estimate the energy con-
sumption of 90nm implementations of the branch predic-
tors. Since CACTI does not simulate tables with non-
power-of-two numbers of entries, we simply rounded-up
the sizes of our structures to the next largest power of two.
While this introduces some slight overestimation in power
consumption, a realistic implementation of a neural branch
predictor would likely use SRAMs with a power-of-two



Parameter Value Parameter Value

Machine 4-wide Integer Units ALU:2, Mult:2
IFQ Size 8 entry FP Units Add:1, Mult:1, Div:1
Scheduler 24 entry Latencies Same as Pentium-M [7]
LSQ Size 24 entry Memory Ports 2
ROB Size 64 entry ITLB/DTLB 64 entry each
IL1, DL1 16KB/4-way Branch Penalty 13 cycles

Unified L2 512KB/8-way DRAM Latency 200 cycles

Table 1. The processor configuration used for our
IPC simulations.

Common Parameters Modulo-Path + Folded Path
History Rows per SRAM Path Path f = Path

Size Length (# Perceptrons) Length Length Folding
1KB 24 40 8 11 2
2KB 24 81 8 11 2
4KB 31 128 6 15 2
8KB 32 248 7 11 2

Table 2. Parameters for the baseline PBNP and
versions using modulo path-history and folded-
modulo-path history.

number of entries. We used CACTI to estimate the energy
consumption of both the predictor tables of weights as well
as the checkpoint tables. We also extrapolated the energy
consumption of the predictors’ adders based on the logic
model of CACTI’s row decoders. For our predictor die-area
estimates, we use the register bit equivalent (rbe) methodol-
ogy proposed by Mulder et al. [18].

We simulated a large number of PBNP configurations
to find the best parameter settings. For the modulo-path
and folded-modulo-path versions, we maintained the same
branch history length and number of entries per table of
weights (i.e., same total number of perceptrons) while al-
lowing the predictor pipeline depth and path history length
to vary. The final configurations are listed in Table 2. We
could have potentially improved the performance of the
modulo-path versions by allowing the history length and
number of perceptrons to change. However, we decided to
keep these parameters the same as the baseline PBNP to di-
rectly quantify the impact of our techniques.

4.2. Predictor Accuracy

The usage of modulo-path history potentially compro-
mises the prediction accuracy of the path-based neural pre-
dictor (PBNP) due to the reduction in the total amount of
unique path information. While the modulo-path versions
of the PBNP make for simpler and more practical imple-
mentations, a substantial reduction in accuracy and over-
all performance would simply make both conventionaland
modulo-path versions of the predictor undesirable. Fig-
ure 4 shows the average prediction accuracy of the differ-
ent versions of PBNPs across a range of predictor sizes for
SPECint, MediaBench and MiBench, respectively. Over-

all, the modulo-path modifications only slightly increase
the misprediction rates of the predictors, with a greater sen-
sitivity at the smallest hardware budget. For future high-
performance processors however, the predictor sizes are
more likely to be toward 8KB or larger [1], making the sen-
sitivity at the smaller sizes less of a problem. This is a very
positive result as it means that we can employ the simpler
modulo-path versions of the neural predictor without crip-
pling performance.

4.3. Predictor Accuracy

Given that our modified versions of the PBNP do not af-
fect prediction accuracy by much, we expect that the over-
all performance will also be similar to that of the original
PBNP. Figure 5 shows the geometric mean IPC rates across
the SPECint, MediaBench and MiBench applications, re-
spectively, for different predictor sizes. Overall, the IPC
of our simplified PBNPs matches the performance of the
original predictor very closely. At an 8KB budget on the
SPECint applications, the IPC degradation is only 0.8% for
the ModPath predictor, and 1.3% for the Folded version.
Across the range, the difference in overall performance is
within the noise of the simulator. For the MediaBench ap-
plications, we observe 1.5% and 0.5% IPC degradations for
the ModPath and Folded-ModPath 8KB predictors, respec-
tively. For MiBench, the performance penalties are 0.1%
and 0.0% for the same predictors.

The choice of target applications affects which predictor
organization is most appropriate. For example, ModPath
performs better for SPECint, while the Folded ModPath is
better for MediaBench. On the other hand, the MiBench
applications are fairly insensitive to the choice of the neural
predictor implementation, which means we can reap energy
and area benefits (described in the next section) withoutany
performance impact.

It is important to keep in perspective that even though
the modulo-path history versions of the PBNP cause a slight
performance drop, this is relative to a processor that uses a
conventional PBNP. Without our proposed modifications, a
processor would not even be able to use the PBNP in the
first place. Our contribution is a new design for the PBNP
that makes it much more practical while delivering nearly
the same benefit as the more complex version. The alterna-
tive is a processor with much less performance due to a less
sophisticated non-neural prediction algorithm [12].

4.4. Energy Impact

We anticipate that the modulo-path PBNPs will consume
less energy per access for two reasons. The first is that the
folded organization reduces the total number of SRAM ar-
rays which reduces the per-table overhead such as the row
decoders. However, packing the same number of bits into



SPECint

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1024 2048 4096 8192
Predictor Size (bytes)

M
isp

re
di

ct
io

n 
Ra

te

PBNP
ModPath
Folded MP

(a)

MediaBench

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

1024 2048 4096 8192
Predictor Size (bytes)

M
isp

re
di

ct
io

n 
Ra

te

PBNP
ModPath
Folded MP

(b)

MiBench

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1024 2048 4096 8192
Predictor Size (bytes)

M
isp

re
di

ct
io

n 
Ra

te

PBNP
ModPath
Folded MP

(c)

Figure 4. Arithmetic mean misprediction rates
across the (a) SPECint, (b) MediaBench and (c)
MiBench applications for the original path-based
neural predictor (PBNP) as well as versions using
modulo- and folded-modulo-path history.

SPECint

0.6

0.7

0.8

0.9

1

1.1

1.2

1024 2048 4096 8192
Predictor Size (bytes)

G
eo

M
ea

n 
IP

C

PBNP
ModPath
Folded MP

(a)

MediaBench

1

1.1

1.2

1.3

1.4

1.5

1.6

1024 2048 4096 8192
Predictor Size (Bytes)

G
eo

M
ea

n 
IP

C

PBNP
ModPath
Folded MP

(b)

MiBench

1

1.1

1.2

1.3

1.4

1.5

1.6

1024 2048 4096 8192
Predictor Size (Bytes)

G
eo

M
ea

n 
IP

C

PBNP
ModPath
Folded MP

(c)

Figure 5. Geometric mean IPC rates for the (a)
SPECint, (b) MediaBench and (c) MiBench appli-
cations for the original path-based neural predic-
tor (PBNP) as well as versions using modulo- and
folded-modulo-path history.



0

2E-10

4E-10

6E-10

8E-10

1E-09

1.2E-09

1.4E-09

1024 2048 4096 8192
Predictor Size (bytes)

En
er

gy
 p

er
 A

cc
es

s 
(J

ou
le

s)

Checkpoint
Adders
SRAMs

PBNP

ModPath
FModPath

Figure 6. Energy per access including the lookups
in the SRAMs for the predictor weights, the
adders for computing the predictor output, and
one checkpoint access.

a smaller number of tables tends to increase the wordline
lengths, which could increase power. The second reason for
an energy reduction is in the decrease of the checkpointing
overhead. By reducing the total number of SRAM tables,
we reduce the length of the predictor pipeline, thereby re-
quiring less state to be checkpointed for each branch. Fig-
ure 6 shows the overall energy consumption per predictor
access, which includes the predictor portion (SRAMs and
adders) as well as the checkpointing overhead. The adders’
energy consumption does not vary because we maintain the
same history length between the conventional PBNP and the
modulo-path versions. The results clearly show a substan-
tial reduction in the predictor energy consumption, rang-
ing from 30% and 42% for 1KB modulo-path and folded-
modulo-path versions, respectively, to 29% and 37% for the
8KB configurations.

4.5. Area

To estimate the die area of each predictor configuration,
we use the process independent register bit equivalent (rbe)
metric proposed by Mulder et al. [18]. The rbe method-
ology provides for a way to estimate the area overhead of
the decoder/driver logic, sense amps, and other related cir-
cuitry. Figure 7 shows the estimated areas of the predictor
configurations in rbe’s. The majority of the area reduction
comes from a reduction in the total number of SRAM tables
which reduces the overhead of duplicated decode logic (the
total number of predictor bits remains constant). This esti-
mate may be slightly generous in that additional wordline
repeaters/drivers may need to be inserted to avoid a sub-
stantial increase in the overall predictor access time. Any
additional drivers would add to the area overhead; how-
ever, the drivers should still take up less area than a full

0

20000

40000

60000

80000

100000

120000

140000

1024 2048 4096 8192

Predictor Size (bytes)

Re
gi

st
er

 B
it 

Eq
ui

va
le

nt
 (r

be
)

path
checkpoint
adder
sense
decoder
bits

PBNP

ModPath

FModPath

Figure 7. Area requirements of the different ver-
sions of PBNP in register bit equivalents (rbe).

decode tree. The checkpoint overhead1 (includes bitcells,
decoders, sense amps) also contributes a small but non-
negligible amount of area. Depending on the overall hard-
ware budget for the PBNP, the modulo-path history can re-
duce area requirements by 18-37% without any substantial
impact on performance.

Note that in our earlier discussions and comparisons,
we kept the overall hardware budget the same between the
original and optimized PBNP configurations. However, the
hardware budget as measured by bits of storage is only a
proxy for the actual die area required for the predictor. In
a practical setting, our 8KB optimized predictors would re-
quire substantially less area to implement (up to 37%). In-
stead of reducing the die footprint of the predictor, we could
instead reclaim the area to add more perceptron entries to
the tables of weights. This would help to relieve capacity
conflicts in the predictor structures, but could still maintain
the same hardware cost in die area as the original PBNP
even though it contains a larger total number of bits of state.

5. Conclusions

Despite the high accuracy of the neural-based branch
predictors, none have yet been implemented in any com-
mercial processors. We believe that the primary obstacles
to the adoption of neural predictors is in the complexity of
the previously proposed schemes. The modulo-path history
predictors proposed in this paper provide substantial reduc-
tions in the hardware complexity as measured by the num-
ber of tables, the predictor pipeline depth, and the check-
pointing overhead, while simultaneously reducing predictor
energy consumption and die-area requirements. The reduc-
tion in power and area can potentially be used to reduce the
cost of the processor, or they could also be traded to im-

1We assume that at most 1 out of 4 instructions will be a branch, and
therefore for a ROB of 64 entries, we use 16 checkpoints.



plement larger predictors than was previously possible with
a conventional neural predictor organization. We believe
that research aimed at providing practical implementations
of sophisticated predictors is critical to successfully trans-
ferring this technology to industrial implementations.

Acknowledgments

Daniel Jiḿenez is supported by grants from NSF (CCR-
0311091 and CCF-0545898). Gabriel Loh is supported by
funding and equipment from Intel Corporation.

References

[1] The 1st JILP Championship Branch Prediction Competition
(CBP-1).http://www.jilp.org/cbp .

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An In-
frastructure for Computer System Modeling.IEEE Micro
Magazine, pages 59–67, February 2002.

[3] M. Co, D. A. B. Weikle, and K. Skadron. A Break-Even For-
mulation for Evaluating Branch Predictor Energy Efficiency.
In Proceedings of the Workshop on Complexity-Effective De-
sign, Madison, WI, USA, June 2005.

[4] V. Desmet, H. Vandierendonck, and K. D. Bosschere. A
2bcgskew Predictor Fused by a Redundant History Skewed
Perceptron Predictor. InProceedings of the 1st Champi-
onship Branch Prediction Competition, pages 1–4, Portland,
OR, USA, December 2004.

[5] H. Gao and H. Zhou. Adaptive Information Processing: An
Effective Way to Improve Perceptron Predictors. InPro-
ceedings of the 1st Championship Branch Prediction Com-
petition, pages 1–4, Portland, OR, USA, December 2004.

[6] K. Ghose and M. B. Kamble. Reducing Power in Super-
scalar Processor Caches Using Subbanking, Multiple Line
Buffers and Bit-Line Segmentation. InProceedings of the
International Symposium on Low Power Electronics and De-
sign, pages 70–75, San Diego, CA, USA, August 1999.

[7] S. Gochman, R. Ronen, I. Anati, A. Berkovitz, T. Kurts,
A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine. The
Intel Pentium M Processor: Microarchitecture and Perfor-
mance.Intel Technology Journal, 7(2), May 2003.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A Free, Commer-
ically Representative Embedded Benchmark Suite. InPro-
ceedings of the 4th Workshop on Workload Characteriza-
tion, pages 83–94, Austin, TX, USA, December 2001.

[9] D. A. Jiménez. Fast Path-Based Neural Branch Prediction.
In Proceedings of the 36th International Symposium on Mi-
croarchitecture, pages 243–252, San Diego, CA, USA, De-
cember 2003.

[10] D. A. Jiménez. Piecewise Linear Branch Prediction. In
Proceedings of the 32nd International Symposium on Com-
puter Architecture, pages 382–393, Madison, WI, USA,
June 2005.

[11] D. A. Jiménez, S. W. Keckler, and C. Lin. The Impact of
Delay on the Design of Branch Predictors. InProceedings

of the 33rd International Symposium on Microarchitecture,
pages 4–13, Monterey, CA, USA, December 2000.

[12] D. A. Jiménez and C. Lin. Neural Methods for Dynamic
Branch Prediction. ACM Transactions on Computer Sys-
tems, 20(4):369–397, November 2002.

[13] E. Larson, S. Chatterjee, and T. Austin. MASE: A Novel
Infrastructure for Detailed Microarchitectural Modeling. In
Proceedings of the 2001 International Symposium on Per-
formance Analysis of Systems and Software, pages 1–9, Tuc-
son, AZ, USA, November 2001.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communication Systems. InProceedings of the 30th
International Symposium on Microarchitecture, pages 330–
335, Research Triangle Park, NC, USA, December 1997.

[15] G. H. Loh. The Frankenpredictor. InProceedings of the 1st
Championship Branch Prediction Competition, pages 1–4,
Portland, OR, USA, December 2004.

[16] S. McFarling. Combining Branch Predictors. TN 36, Com-
paq Computer Corporation Western Research Laboratory,
June 1993.

[17] P. Michaud. A PPM-like, Tag-Based Predictor.Journal of
Instruction Level Parallelism, 7:1–10, 2005.

[18] J. M. Mulder, N. T. Quach, and M. J. Flynn. An Area Model
for On-Chip Memories and its Application.IEEE Journal of
Solid-State Circuits, 26(2):98–106, February 1991.

[19] E. Perelman, G. Hamerly, and B. Calder. Picking Statisti-
cally Valid and Early Simulation Points. InProceedings of
the 2003 International Conference on Parallel Architectures
and Compilation Techniques, pages 244–255, New Orleans,
LA, USA, September 2004.

[20] A. Seznec. Analysis of the O-GEometric History Length
Branch Predictor. InProceedings of the 32nd International
Symposium on Computer Architecture, Madison, WI, USA,
June 2005.

[21] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design
Tradeoffs for the Alpha EV8 Conditional Branch Predic-
tor. In Proceedings of the 29th International Symposium on
Computer Architecture, Anchorage, AK, USA, May 2002.

[22] A. Seznec and A. Fraboulet. Effective Ahead Pipelining
of Instruction Block Address Generation. InProceedings
of the 30th International Symposium on Computer Architec-
ture, San Diego, CA, USA, May 2003.

[23] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Inte-
grated Timing, Power, and Area Model. TR 2001/2, Compaq
Computer Corporation Western Research Laboratory, Au-
gust 2001.

[24] J. Stark, M. Evers, and Y. N. Patt. Variable Length Path
Branch Prediction. ACM SIGPLAN Notices, 33(11):170–
179, 1998.

[25] D. Tarjan and K. Skadron. Merging Path and Gshare In-
dexing in Perceptron Branch Prediction.ACM Transac-
tions on Architecture and Code Optimization, 2(3):280–300,
September 2005.

[26] T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Branch Pre-
diction. InProceedings of the 24th International Symposium
on Microarchitecture, pages 51–61, Albuqueque, NM, USA,
November 1991.


