
Chained In-Order/Out-of-Order DoubleCore Architecture

Miquel Pericàs†?, Adrian Cristal†?, Ruben González†, Daniel A. Jimenez‡ and Mateo Valero†?

†Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya
{mpericas,adrian,gonzalez,mateo}@ac.upc.edu

?Barcelona Supercomputing Center ‡Department of Computer Science, Rutgers University
djimenez@acm.org

Abstract

Complexity is one of the most important problems facing
microarchitects. It is exacerbated by the application of opti-
mizations, by scaling to higher issue widths and, in general,
by increasing the size of microprocessor structures.

This paper presents a new microarchitecture, the
Chained In–Order/Out–of–Order DoubleCore Architecture
(CIO2), designed to attack the problems of complexity and
energy. The CIO2 architecture reorganizes the microarchi-
tecture using the concepts of a centralized register file and
the Future File. The resulting architecture decouples that
program state from the execution units.

The simplicity of the architecture enables the implemen-
tation of three optimizations with little effort: register file
banking, writeback filtering and instruction pre–execution.
These optimizations allow a reduction of up to 75% in regis-
ter file energy consumption. Instruction pre–execution fur-
ther allows around 40% of all integer instructions to execute
in the in–order front–end, considerably reducing the activ-
ity of the power–hungry issue queues in the out–of–order
back–end. Moreover, these improvements are achieved with
a negligible performance loss.

1. Introduction

During the last decade, processor design has seen a dra-
matic increase in complexity and in the power consumption
of chips in order to maintain acceptable instructions-per-
cycle (IPC) levels while continuing to decrease the clock
cycle. Many recent studies have shown how most structures
in modern processors are unnecessarily abused leading to
the current levels of power consumption. This paper fo-
cuses on two of these structures: the register file and the
instruction queues.

The register file is often on the critical path and normally

has high power consumption. The inefficiency of current
register files comes from several sources. In a microarchi-
tecture like the MIPS R10000 [21], register files need to be
large and heavily multiported to provide operands for all
instructions in the instruction window.

The Future File [18] solves this bottleneck by keeping a
small register file in the front–end that represents the pro-
gram state at the time of instruction decode. Only a subset
of the full processor state is available at that time. The re-
maining operands are obtained while the instruction is wait-
ing in the reservation stations. But this design requires lay-
ing out additional buses, adding complexity. In addition,
the Future File scheme for recovering from exceptions or
branch mispredictions requires the excepting instruction to
commit before recovery can start. This can have a large im-
pact on performance.

Instruction queues are another source of inefficiency in
processors. They are needed to implement out–of–order
execution, a technique devised to tolerate the latency issues
that appear when mixing operations with different latencies.
As memory latencies increase, more entries are required in
the instruction queues. But instruction queues are complex
and require the use of large content-addressable memory
(CAM) structures. This can be very costly.

The proposal in this paper decouples program state from
logic and data necessary for execution. In this paper, pro-
gram state refers to the set of registers necessary for exe-
cution plus the set of registers necessary for recovery. All
program state is kept in the front–end while execution logic
is kept in the back–end as usual. First, the front–end is
optimized to reduce its power consumption. Next, pre–
execution is added to the design. The new machine is able to
execute early all single–cycle integer instructions that have
their operands ready in the front-end and it executes the re-
maining instructions out of program order in the back–end.
Thus an in-order core cascades to an out-of-order core. This
proposal, the Chained In-Order/Out-of-Order DoubleCore

Architecture (CIO2) has the following major benefits: it re-
duces the register file power, it reduces the instruction queue
and it does this without unnecessarily complicating the de-
sign.

This paper is organized as follows. Section 2 will first
describe the basic decoupled state-execute machine which
aims at reducing the register file power. The optimizations
of register file banking and writeback filtering are also de-
scribed. Section 3 describes the technique of pre–execution
and presents the CIO2 architecture. The simulation frame-
work is described in Section 4 and the architecture is evalu-
ated in Section 5. The paper is completed with a description
of related research in Section 6. Finally, Section 7 summa-
rizes the main conclusions.

2. Decoupled State-Execute Architecture

All current speculative superscalar microprocessors use
either some variation of the Future File [18] or some form of
centralized operand storage indexed via register mappings
[11].

Each of these alternatives has its strengths and weak-
nesses. A register-mapped architecture tends to suffer due
to the centralized storage. Keeping all in-flight values in
a single register file is inefficient in terms of energy and
poses some complexity problems in determining whether a
register is currently mapped or if it will be read again. Fast
branch misprediction recovery and the scalability of instruc-
tion queues are often considered the strong point of such an
architecture.

Instruction queues seem to be the bigger problem in a
Future File Architecture. In a Future File, registers that
have a computed value can be read from a logically in-
dexed register file (the future file) at the time of instruction
insertion. To make this work, the remaining in–flight val-
ues must be somehow obtained. The instruction queues in a
Future File Architecture are augmented to contain operand
values. This is inefficient because in addition to the regis-
ter tag, operands need to be broadcast to all the instruction
queue slots. Such an organization of the Instruction Queue
is normally referred to as Reservation Stations.

2.1. DSE Microarchitecture

The Decoupled State/Execute Architecture (DSE) is an
approach that combines the benefits of the two traditional
architectures introduced in the previous section. The basic
architecture vaguely resembles a Future File.

The microarchitecture of the DSE is shown in Figure 1.
The primary modifications are made to the front–end. The
DSE architecture proposes replacing the Future File with
a physically indexed register file, the Front-End Physical
Register File (FPRF). If all physical registers are maintained

BANK 3

BANK 2

BANK 1

BANK 0

FUs

WRITEBACK

INSTRUCTION FLOW

RESERVATION
STATIONS

Checkpoint
Stack

A
R

B
IT

R
A

T
E

FPRF

Load/Store Queue

Integer Queue

FP Queue

RAT

Figure 1. The Decoupled State/Execute Archi-
tecture

together, recovery times can be drastically improved as only
a single register mapping and free list restoration will be
necessary to rollback the processor to a previous execution
point.

The use of physical register indices to access register val-
ues available from the FPRF forces us to extend the pipeline
by one cycle. This cycle is used to implement register re-
naming using a register alias table (RAT), similar to the
MIPS R10000 [21]. In a second stage the FPRF is accessed
in case the register descriptor is associated with a computed
value. This is checked beforehand during the rename stage.

The remaining parts of the microarchitecture follow the
scheme of the Future File. After reading the available reg-
isters, the instructions are inserted into the reservation sta-
tions along with the operands that they have just read. This
is potentially more wasteful because, as indicated before,
operand-wide buses need to be laid out along the instruction
queue. The pre–execution technique described later will be
used to mitigate the problems of the reservation stations.

Note that the FPRF is drawn as a banked register file
in Figure 1. The FPRF is large and potentially expensive.
Banking is a well known technique that fits well in the DSE
architecture. The interaction is explained in the following
section.

2.2. Register File Banking

In general, the DSE architecture benefits from making
a clean separation between the state (FPRF in Front-End)
and the data-flow program execution (implemented by the
Instruction Queues and Execution Units in the Back-End).
This conceptually clean separation allows implementing
some optimizations with little complexity. The following
paragraphs explain some optimizations that can be imple-
mented simply yet effectively in the context of the DSE ar-

chitecture. The first of these optimizations is register file
banking.

Banking memory structures is a popular technique that
can be used to reduce energy consumption and delays of
memory structures. In the case of register files [20] the
technique is not trivial. Register files are small structures,
and improvements in access time have small margins. Thus,
area and energy reductions will provide the main advantage.

This is a consequence of having a smaller number of lo-
cal ports implemented in each bank. Externally, the regis-
ter file will have as many global ports as an unconstrained
single–banked file. When a register is read it is first read
out from its bank using one of the local ports and then the
value is forwarded to a global port. Each bank must have at
least two local ports. Otherwise an instruction that sources
two registers mapped to the same bank could never progress
beyond the FPRF read stage.

Conflicts are handled in the access to the banked struc-
ture by adding an arbitration stage in front of the banked
structure. This arbitration logic analyzes the banks that will
be accessed in the next cycle and sets up the necessary sig-
nals. In addition it checks if all requests can be satisfied. If
this is not the case, the first instruction that cannot progress
is stalled along with all later instructions in that cycle.

A simple optimization known as read sharing [2] can
be used to reduce the number of conflicts. Read sharing
allows a single local port to be connected to multiple global
ports thus giving the impression that more local ports are
available in a bank.

Figure 2 shows the 9–stage pipeline of the DSE architec-
ture once banking has been implemented.

2.3. Elimination of transient values via Writeback
Filtering

In a basic writeback scheme, all physical registers are
written back into the register file once their value has been
computed. However, many of these writebacks are not nec-
essary. In an architecture that accesses operands after issue
(issue→read), if a value has a single consumer, the value
was forwarded using the bypass network, and it does not be-
long to a checkpoint, then there is no real reason to write it
back to the register file. This raises the possibility of block-
ing certain writebacks to reduce power consumption in the
register file.

The conceptual distinction of program state (front–end)
and execution (back–end) in the DSE architecture allows
us to propose such a technique employing simple logic.
The DSE architecture has the special characteristic that the
FPRF is only used to get values for the current program state
or for recovery paths. Taking into account this definition a
simple transient value elimination technique, consisting of
filtering those values that are not part of the processor state,

is proposed. In this research this technique is called Write-
back Filtering.

The concept of state must be clearly defined:

1. All physical registers that are currently mapped in the
RAT (front–end)

2. All physical registers that are mapped in any of the
RATs saved during the decode of branches and instruc-
tions likely to cause exceptions. These are saved in a
Checkpoint Stack structure.

The writeback filtering scheme is tightly coupled with
the rename logic.

For its implementation it is simpler to use a renamer like
the the Alpha 21264 [8] bit vector renamer. The bit–vectors
are arrays of bits where each bit identifies a physical reg-
ister. If the bit is active it means that the register belongs
to the current mapping of that checkpoint. Thus, checking
whether a physical register belongs to the processor state is
equivalent to checking whether the register bit is active in
any of the saved mappings or in the current mapping. This
can be done by OR’ing the different checkpoints with the
current mapping to obtain a global mapping which can then
be used to implement the filter.

3. Chained In-Order/Out-of-Order Dou-
bleCore Architecture

The DSE microarchitecture presented so far, with its
early operand read, is well suited to support an implemen-
tation of instruction pre–execution.

3.1. Motivation

In dataflow execution any instruction can start execut-
ing as soon as it has all of its operands available. In the
DSE architecture this may happen even before queue inser-
tion. The percentage of integer instructions that have all
operands available after FPRF access has been measured
over SPEC2000 using the Alpha ISA and the same architec-
ture as in Section 5. On average, around 40% of all integer
instructions belong to this group. The largest part corre-
spond to load address calculations (20%) and integer arith-
metic (15%). The remaining 5% corresponds to control
flow operations and Store Address calculation. This means
that about 40% of all integer instructions can potentially be
executed right after the FPRF read stage.

3.2. Adding Pre–execution of ready Instructions

Instruction pre–execution refers to this possibility of
executing instructions while they are still in the in–order

FETCH DECODE ARBRENAME FPRF QUEUE ISSUE EXE WB COMMIT

ROB
FPRF

IQ

FU
MAP

ICACHE

Figure 2. Pipeline of the DSE Architecture

front–end of the processor. The technique extends the in–
order front–end so that ready instructions may be executed
before they enter the instruction queues. Due to early exe-
cution, insertion into the queues is now unnecessary. This
saves energy. Instructions that obtain all operands from the
FPRF form a category that will be referred to as early ready.

The result is a processor that has an in–order exe-
cution core for early ready instructions followed by an
out-of-order execution core. Due to the in–order/out–of–
order chaining this new architecture is called Chained In-
Order/Out-of-Order DoubleCore Architecture (CIO2).

Pre-execution has the interesting side-effect that many
loads will have their address calculated some cycles earlier
and that some branches are resolved earlier. This enables
some improvements in IPC.

Pre–execution is implemented by adding a stage after the
FPRF read. During this stage a subset of early ready in-
structions are selected to execute in a collection of dedicated
functional units that are located next to the FPRF. Non–pre–
executable instructions cross the functional units as if they
were NOP operations and are then inserted in the reserva-
tion stations in the next cycle. A general implementation
of this scheme can be very complex due to the handling of
multi-latency instructions like multiplications, divisions or
floating point operations. Two limitations are imposed to
greatly simplify the processing scheme:

1. Only integer instructions may be pre–executed.

2. Only instructions with single-cycle latency will be can-
didates

FP pre–execution is disabled because little FP instruc-
tions obtain all their operands from the FPRF. In addition,
pre-executing multi-cycle operations is complex because all
operands generated during writeback may need to be by-
passed to instructions traversing the pre–execution stage.
This number should be minimized.

Pre–Execution is implemented as follows: once the in-
struction reads the operands, it tries to pre–execute during
the next stage. This depends on the availability of func-
tional units and registers. The pre–execution units have only
local bypasses and it is only possible to obtain one value us-
ing the local bypass. All other values need to be obtained

from the FPRF. This strategy also limits the bypass to in-
structions that belong to adjacent decode groups. In no
case will the pre–execution stage stall instructions. If an
early read instruction cannot be executed due to shortage
of resources, then it progresses to the back–end like other
non–pre–executable instructions. To better understand the
technique, Figure 3 shows the pipeline of the basic CIO2
architecture.

The pipeline shows how the CIO2 architecture adds an
additional pipeline stage to handle pre–execution. Adding
stages to the front-end means that there will be higher penal-
ties to pay for each branch misprediction. The effectiveness
of this scheme depends on how well the load pre-execution
capabilities can counter the additional latencies caused by
longer branch misprediction recovery.

4. Simulation Infrastructure

The evaluations have been performed using an execu-
tion driven simulator that makes use of the simplescalar 3.0
front–end [1]. The cycle–accurate back–end of the simu-
lator has been rewritten from scratch and models all of the
techniques presented in this paper: banking, read sharing,
writeback filtering and pre–execution.

To evaluate the CIO2 architecture all SPEC2000 bench-
marks have been run for 100 million of committed instruc-
tions. The benchmark regions have been selected using a
criteria based on SimPoint [13]. The simulated benchmark
suite consists of binaries compiled using cc DEC C V5.9-
008 on Digital UNIX V4.0 and using the -O2 optimization
level.

To study the behavior of the CIO2 microprocessor sev-
eral microarchitectures are simulated. They represent three
steps from a conventional baseline architecture to a fully op-
timized CIO2 architecture. Table 1 contains the parameters
of the baseline microarchitecture. These parameters also
apply to the other evaluated configurations unless explicitly
stated otherwise.

5. Evaluation

In this section the DSE and CIO2 architectures are evalu-
ated. The evaluation is performed using the following three

FETCH DECODE ARBRENAME FPRF ISSUE EXE WB COMMITQUEUEPREEXEC

��

��

FPRF MAP

ICACHE

ROB

IQ

FU

Figure 3. Basic CIO2 pipeline

Table 1. Parameters of the baseline configuration
Fetch/Issue/Commit Width 4 instructions/cycle

D-L1 size 32 KB, 4-way, 2 rd/wr ports, 2 cycle latency
D-L2 size 1 MB, 4-way, 2 rd/wr ports, 10 cycle latency

Memory Width / Latency 32 bytes / 150 cycles
Global Ports to the Register File 8 Read & 4 Write

Reorder Buffer Size 128
Integer/FP Physical Registers 160 / 160

Load/Store Queue 32 entries
Integer/FP Queue 32 entries / 32 entries

different configurations:

1. Baseline: The baseline architecture is a centralized
DSE architecture whose parameters are shown in Table
1. It implements a single-bank FPRF with 8 read and
4 write ports and it does not implement any of the op-
timizations discussed in Section 2. The pipeline length
is 9 stages.

2. DSE-OPT: A banked DSE model with all optimiza-
tions active is used to better evaluate the potential of
the DSE architecture. It implements a FPRF with 8
banks. Each bank has two read ports and two write
ports. This model uses the read sharing and writeback
filtering optimizations. The pipeline length is 10 stages
(see Figure 2).

3. CIO2: The CIO2 architecture, the target of this eval-
uation, is a DSE architecture extended with pre–
execution. It uses a FPRF with 8 banks, each of which
has two read ports and three write ports. Of the three
write ports, two are statically assigned to the out–of–
order back-end and the remaining port is statically as-
signed to the pre–execution units. All optimizations
are used and writeback filtering is applied to both the
pre–execution units and to the back–end core. The
length of the pipeline is 11 stages (see Figure 3)

5.1. IPCs

Figure 4 shows the IPCs that are obtained by the three
evaluated configurations. As can be seen, the differences

are very small in this case. The analysis of these results is
complex, but here are the main points: First, the FPRF in
the front–end has fewer register file accesses than a central-
ized register file after the issue queues. This results in less
bank conflicts and thus less IPC reduction compared to a
model such as [19]. Second, in the case of the CIO2 archi-
tecture, the pre–execution of instructions helps improve IPC
because many loads have their address calculated one cycle
earlier. The performance of the architectures must be fur-
ther analyzed taking into account the fact that the pipeline
lengths are different. The DSE-OPT and, more notably, the
CIO2 configurations have deeper pipelines than the base-
line and will suffer from higher branch misprediction re-
covery times. The effectiveness of the pre–execution tech-
nique is enough to recover and even increase the IPC values
for some benchmarks. On average the variations are mini-
mal. The DSE-OPT architecture loses 0.83% IPC while the
CIO2 loses only 0.28%.

5.2. Register File Analysis

The FPRF is optimized using three different techniques:
read sharing, banking, and writeback filtering. There are
several performance factors to check. Here the main con-
cern is energy. Energy is a function of two parameters: the
energy consumed by each register file access and the num-
ber of accesses to each register file. Table 2 lists the number
of reads to the FPRF in each of the three configurations. The
percentages of reduction compared to the baseline are also
shown. These numbers have been obtained for runs of 100

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

IP
C

Baseline
DSE-OPT

CIO2

Figure 4. IPCs achieved by the three configurations

million of committed instructions:1 The number of writes is
analyzed in the next section.

Both the DSE-OPT and the CIO2 architecture perform
considerably less register file reads. The main force be-
hind this reduction is the technique of read sharing. The
CIO2 architecture performs about 5–8% more register reads
than DSE-OPT. Pre–execution generates many values early.
These values are written back into the FPRF only two cy-
cles after the read. The probability that instructions will
read this register is still very high (it decreases with instruc-
tion distance).

Table 2 shows also the number of conflicts during reads
to the FPRF. The number of conflicts is well below 1% of
all accesses. Conflicts happen rather infrequently in the
DSE/CIO2 architectures. In any case, a conflict is not very
problematic, as there is no recovery procedure involved.
This keeps complexity low.

The FP benchmarks show a larger number of conflicts
than integer benchmarks. This may come as a surprise, as
FP and integer instructions access different register files,
which should reduce the conflict rate. However, the fact
that FP instructions normally have two sources while most
integer instructions normally have a single source is what
increases the conflict rate for SpecFP benchmarks.

5.2.1 Effectiveness of Writeback Filtering

The way writeback is handled differs from configuration
to configuration. The baseline architecture does not use a
writeback filter. All values generated are written back into

1The number of speculative instructions that actually cross the decode
stage is much higher. Hence the large numbers of accesses

the FPRF. On the other hand, the DSE-OPT and the CIO2
architectures implement a writeback filter and are thus able
to reduce the number of writebacks.

Table 3 shows the total number of writes to the regis-
ter files for the three configurations in executions of 100
million committed instructions. The baseline has the high-
est number of writes as it does not implement any filtering.
In comparison, the DSE-OPT configuration performs up to
28% less writes for the integer benchmarks and up to 40%
less for FP benchmarks. For the CIO2 architecture these
numbers are 26% for the integer benchmarks and 36% for
the FP benchmarks. The percentage of filtered writebacks
is also shown in Table 3.

The CIO2 architecture generates some more writebacks
than DSE-OPT. This is because pre–executed values are less
likely to be filtered as they are in most cases still part of the
current RAT.

The availability of register file access numbers allows to
give some energy reduction values. A model for the energy
consumption of the register file, similar to [15], has been
used. Under such circumstances the DSE-OPT architecture
achieves a reduction of 75% in the register file energy, while
the CIO2 architecture reduces the energy by 67%. Note that
the CIO2 architecture not only performs more accesses, but
it also has one additional write port in the front–end for pre–
execution writebacks.

5.3. Reductions in Instruction Queue Usage

Pre–executed instructions have the important property
that they do not need to be entered in the instruction queues.
This can lead to large energy reductions in the CIO2 back–

Table 2. Number of FPRF Reads and Conflicts (%)
Configuration SpecINT SpecINT SpecFP SpecFP

FPRF Reads FPRF Read Conflicts FPRF Reads FPRF Read Conflicts
Baseline 666 ∗ 106 0% 1010 ∗ 106 0%

DSE-OPT 512 ∗ 106 (−23%) 0.19% 889 ∗ 106 (−11%) 0.49%
CIO2 562 ∗ 106 (−15%) 0.26% 945 ∗ 106 (−6%) 0.54%

Table 3. Number of FPRF Writes and Percentage of Filtered Writes
Configuration SpecINT SpecFP

Int Writes FP Writes Filtered Int/FP Int Writes FP Writes Filtered Int/FP
Baseline 856 ∗ 106 49 ∗ 106 0%/0% 409 ∗ 106 720 ∗ 106 0%/0%

DSE-OPT 622 ∗ 106 28 ∗ 106 28%/43% 307 ∗ 106 374 ∗ 106 25%/48%
CIO2 638 ∗ 106 29 ∗ 106 25%/40% 330 ∗ 106 389 ∗ 106 19%/45%

Table 4. Number of Integer Queue Insertions
Configuration DSE-OPT CIO2

Integer Queue Insertions 1308 ∗ 106 872 ∗ 106

Address Issues From LSQ 1095 ∗ 106 587 ∗ 106

end. The number of queue insertions has been measured
to estimate the reduction in the activity of the instruction
queues.

The pre–execution technique mainly affects integer op-
erations. Thus only the integer queues (IQ) will see a reduc-
tion in their usage. However, the LSQ is also optimized by
this technique as it reduces the number of address calcula-
tions that need to be performed. The baseline has identical
behavior to DSE-OPT in this case and is not shown. Table
4 contains the statistics generated for DSE-OPT and CIO2
averaged over all benchmarks of SPEC2000.

The results show that it is possible to reduce the number
of integer queue insertions by 33%. For the address calcula-
tion the reduction is around 47%. Although all loads/stores
are inserted in the LSQ, there are still improvements in the
energy because only a 53% of loads/stores need to issue the
address calculations to the ALUs. If the architecture uses a
separate queue for the address calculation, that queue would
see a decrease in the energy of 47%.

6. Related Work

There is a large amount of research related to the topics
discussed in this paper. Unfortunately, due to space con-
straints, only the most relevant will be covered.

The body of related work on register file energy opti-
mization is large. Many recent papers have proposed mech-

anisms to reduce the number of the ports by means of mod-
ifying the register file architecture, such as [22] [17] [12]
[10] [19] [20]. A reduced number of ports may be more ef-
ficient both in terms of energy and access time, which can
improve performance. The mechanism proposed in this pa-
per is quite orthogonal to these, and also benefits from a
reduced number of ports.

The Writeback Filtering technique that has been evalu-
ated is related to other work performed in the context of
centralized out–of–order architectures such as the work by
Ponomarev et al. [14] and also in the context of VLIW
architectures [16]. However, as can be seen there are sig-
nificant differences in the complexity between our proposal
and these two papers.

The Pre–execution technique that leads to the CIO2 ar-
chitecture is a direct derivation of the DSE architecture. The
authors are unaware if there exists any direct prior research,
but there are some similarities with previous research. For
example, [6] extends the rename stage to implement several
optimizations, notably constant propagation. These opti-
mizations allow pre–execution of some operations in the
front-end. Compared to this proposal, we achieve higher
degrees of pre-execution (40% in our proposal vs 25% in
[6]). In [3], a technique to pre–execute load addresses
is presented. It works by tracking the stack pointer and
pre–computing addresses when the value is available early.
Again, pre–execution in the context of CIO2 is much more
general as all integer single–cycle instructions are candi-
dates for pre–execution, not only load address computa-
tions.

The goals of pre–execution are to eliminate instructions
before they enter the instruction queues. This leads to less
power consumption and, to a limited extent, to the possibil-
ity to implement smaller queues. The amount of research
that has been done in relation to instruction queues is also

very large. But in the general case the approach is to elim-
inate inherent inefficiencies in the IQ design as is done in
[7], [4], [5] and [9]. Instead, our approach does not modify
the instruction queue architecture but reduces the number of
instructions that have to be processed.

7. Conclusions

This paper has presented the Chained In–Order/Out–of–
Order DoubleCore Architecture (CIO2). The CIO2 archi-
tecture integrates several techniques to reduce the energy
of the register file and of the instruction queues. The pa-
per proposes a subset of the architecture, the decoupled
state–execute architecture (DSE), which tries to capture the
best from the Future File and from the centralized physi-
cal register file architecture. This architecture is then ex-
tended with banking, writeback filtering and instruction
pre–execution, three techniques that provide excellent re-
sults with little complexity. While the optimizations to the
register file reduce its energy by around 70%, the addition
of pre–execution reduces the number of integer queue in-
sertions by 33%. It also reduces the number of address cal-
culations that have to issue from the LSQ by about 50%.
The new architecture, despite its lower energy consumption
and longer pipeline loses only 0.28% IPC on average when
running the Spec2000 benchmarks.

Acknowledgements

This work has been supported by the Ministry of Science
and Technology of Spain under contract TIN–2004–07739–
C02–01, the HiPEAC European Network of Excellence un-
der contract IST-004408, and by the Barcelona Supercom-
puting Center (BSC-CNS).

References

[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infras-
tructure for computer system modeling. IEEE Computer,
2002.

[2] R. Balasubramonian, S. Dwarkas, and D. Albonesi. Reduc-
ing the complexity of the register file in dynamic superscalar
processors. In Proc of the 34th Intl. Symp. on Microarchi-
tecture, 2001.

[3] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev,
and R. Ronen. Early load address resolution via register
tracking. In Proc. of the Intl. Symp. on Computer Architec-
ture, 2000.

[4] A. Buyuktosunoglu, D. Albonesi, S. S. ands David Brooks,
P. Bose, and P. Cook. A circuit level implementation of and
adaptive issue queue for power-aware microprocessors. In
Proc. of the 11th Great Lakes Symposium on VLSI, pages
73–78, 2001.

[5] D. Ernst and T. Austin. Efficient dynamic scheduling
through tag elimination. In Proc. of the 29th Annual Intl.
Symp. on Computer Architecture, pages 37–46, 2002.

[6] B. Fahs, T. Rafacz, S. J. Patel, and S. S. Lumetta. Continuous
optimization. In Proc. of the 32th Annual Intl. Symp. on
Computer Architecture, 2005. (to appear).

[7] D. Folegnani and A. Gonzalez. Energy-effective issue logic.
In Proc. of the 28th Annual Intl. Symp. on Computer Archi-
tecture, pages 230–239, 2001.

[8] R. Kessler. The Alpha 21264 microprocessor. IEEE MICRO,
19, Mar. 1999.

[9] I. Kim and M. Lipasti. Half-price architecture. In Proc. of
the 30th Annual Intl. Symp. on Computer Architecture, pages
28–38, 2003.

[10] N. S. Kim and T. Mudge. Reducing register ports using de-
layed write-back queues and operand pre-fetch. In Proc. of
the 17th ACM Intl. Conf. on Supercomputing, June 2003.

[11] J. Liptay. Design of the IBM Enterprise System/9000 high-
end processor. IBM Journal of Research and Development,
36(4), July 1992.

[12] I. Park, M. D. Powell, and T. Vijaykumar. Reducing register
ports for higher speed and lower energy. In Proc. of the 35th
Annual Intl. Symposium on Microarchitecture, Dec. 2002.

[13] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood,
and B. Calder. Using SimPoint for accurate and efficient
simulation. In Proc. of the Intl. Conf. on Measurement and
Modeling of Computer Systems, June 2003.

[14] D. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose. Re-
ducing datapath energy through the isolation of short-leved
operands. In Proc. of the 12th Intl. Conf on Parallel Archi-
tectures and Compiler Techniques, 2003.

[15] S. Rixner, W. J. Dally, B. Khailany, P. R. Mattson, U. J. Ka-
pasi, and J. D. Owens. Register organization for media pro-
cessing. In Proc of the 6th Intl. Symp. on High Performance
Computer Architecture, pages 375–386, 2000.

[16] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon.
Exploiting data forwarding to reduce the power budget of
vliw embedded processors. In Proc. of the Conference on
Design, automation and test in Europe, pages 252–257,
2001.

[17] A. Seznec, E. Toullec, and O. Rochecouste. Register
write specialization register read specialization: a path to
complexity-effective wide-issue superscalar processors. In
Proc. of the 35th Intl. Symp. on Microarchitecture, pages
383–394, 2002.

[18] J. E. Smith and A. R. Pleszkun. Implementation of precise
interrupts in pipelined proccessors. Proc. of the 12th Intl.
Symp. on Computer Architecture, pages 34–44, 1985.

[19] J. Tseng and K. Asanovic. Banked multiported register files
for high-frequency superscalar microprocessors. In Proc. of
the 30th Annual Intl. Symp. on Computer Architecture, 2003.

[20] S. Wallace and N. Bagherzadeh. A scalable register file ar-
chitecture for dynamically scheduled processors. In Proc. of
the 5th Intl. Conf. on Parallel Architectures and Compilation
Techniques, pages 179–184, 1996.

[21] K. C. Yeager. The MIPS R10000 superscalar microproces-
sor. IEEE Micro, 16:28–41, Apr. 1996.

[22] V. Zyuban and P. Kogge. The energy complexity of register
files. In Intl. Symp. on Low Energy Electronics and Design,
pages 305–310, 1998.

