
Composite Confidence Estimators for Enhanced Speculation Control

Daniel A. Jiménez
Department of Computer Science

The University of Texas at San Antonio
San Antonio, Texas, U.S.A
djimenez@acm.org

Abstract—This paper proposes a way to allow more effective
use of speculation control techniques by combining multiple
confidence estimators into acomposite confidence estimator.
This new class of confidence estimators provides improved
performance and finer speculation control.

This paper makes three contributions. First, we describe
techniques for building efficient composite confidence estima-
tors. Second, we present an improved statistical methodology
for evaluating confidence estimators. Finally, we use a detailed
microarchitectural simulator to evaluate the ability of our
estimator to support an energy reduction technique called
pipeline gating. Using previous confidence estimators, pipeline
gating reduces the amount of extra work due to mis-speculated
instructions by 22%, with a reduction in IPC of 5%. With the
same impact on IPC, our confidence estimators reduce extra
work by 31%.

I. I NTRODUCTION

Confidence estimation is a microarchitectural technique
that allows control over speculation by predicting whether
the speculation will be useful. Many proposed microarchi-
tectural techniques depend on confidence estimation to con-
trol speculation. Some techniques use a confidence estimator
to label a conditional branch prediction as having low or high
confidence. For example, throttling instruction fetch when
low-confidence branches are in the pipeline can save the
energy wasted on mis-speculated instructions.

A. PVN vs. SPEC

For these techniques to be effective, the accuracy of
the confidence estimator must be balanced between two
measures. The first measure is thepredictive value of a neg-
ative estimate(PVN), giving the probability that an estimate
of low confidence indicates a misprediction. The second
measure is thespecificity(SPEC), giving the probability that
a misprediction is estimated to have low confidence.

PVN and SPEC are inversely proportional to one another,
so we must rely on the flexibility and accuracy of the
confidence estimator to find the right trade-off. Figure 1
shows the trade-off between SPEC and PVN for the gshare
predictor using a confidence estimator we introduce. As the
figure illustrates, we can have a high PVN if we can accept a
very low SPEC, and vice-versa. The right trade-off for most
applications is somewhere in between these extremes. For

0.0 0.5 1.0
Normalized Threshold

0.2

0.4

0.6

0.8

SPEC
PVN

Figure 1. SPEC and PVN for gshareand Composite Estimator

instance, with the instruction fetch throttling example, when
the PVN is too low, too few instructions are fetched and
performance suffers. When the SPEC is too low, too many
instructions are fetched and too much energy is wasted.

B. New Confidence Estimators

Previously proposed confidence estimation techniques
provide only coarse control between PVN and SPEC and
have limited accuracy. We propose combining two or more
confidence estimators into acomposite confidence estima-
tor. With the same hardware budget and minimal extra
complexity, composite confidence estimators provide a finer
degree of speculation control, as well as increased accuracy
in the confidence estimates. Our experimental results show
the improvements of our estimators over previous work.
We illustrate the improvements with a detailed cycle-level
simulation of an energy reduction technique.

This paper makes the following contributions: 1) We
describe techniques for building composite confidence esti-
mators. These new confidence estimators are more accurate
and flexible than previously proposed estimators, with little
added complexity. 2) We present an improved statistical
methodology for evaluating confidence estimators. We show
that this methodology is superior to previous approaches
because it emphasizes the relationship between SPEC and
PVN. 3) We use a detailed microarchitecture simulator to
evaluate the ability of our estimator to support an energy



reduction technique calledpipeline gating. Using previous
confidence estimators [1] pipeline gating reduces the amount
of extra work due to mis-speculated instructions by 22%,
with a reduction in IPC of 5%. With the same impact on
IPC, our confidence estimators reduce extra work by 31%.

II. BACKGROUND AND RELATED WORK

In this section, we review several confidence estimation
techniques that have been proposed previously, as well as
several applications of confidence estimators. We also review
a statistical framework in which confidence estimators are
evaluated.

A. Confidence Estimation

Confidence estimators provide a level of confidence in a
prediction. In this paper, we focus on confidence estimators
that use run-time information to provide a level of confi-
dence for whether or not a branch prediction is correct.

The confidence estimator produces a small integerraw
output. If this value is greater than a certain threshold, then
the branch prediction is estimated to have high confidence.
Figure 2 shows a block diagram of a dynamic (i.e. run-time)
confidence estimator. The structure is similar to a two-level
adaptive branch predictor [2]. The branch history and branch
PC are hashed to select an entry in a table of counters whose
behavior is a function of the particular confidence estimation
scheme. The raw output of the estimator is compared to
a statically determined threshold yielding an estimate of
either high or low confidence. As branches are predicted,
the branch predictor feeds information about its success
or failure in predicting branches back to the confidence
estimator. For example, a miss distance counter counts
the number of branches correctly predicted since the last
misprediction [3]. Dynamic confidence estimators have been
suggested in previous work [3], [4], [5], [6]. We describe
several confidence estimators in Section III.

Table
of Counters

History
Branch

Branch
PC

Predictor
Branch

Raw Output

Threshold ?
>

Estimate
Confidence

Figure 2. Dynamic Confidence Estimator Block Diagram

B. Evaluating Confidence Estimators

Manneet al. propose a statistical methodology for study-
ing the performance of confidence estimators. In this frame-
work, a confidence estimator returns one of two classifi-
cations: High Confidence (HC) or Low Confidence (LC).
The branch prediction itself is labeled either Correct (C) or
Incorrect (I). Four important statistics are associated with
confidence estimators:

SENS. The sensitivity of a confidence estimator is defined
as SENS = P [HC|C], i.e., the probability that a
correctly predicted branch is predicted to have high
confidencee

SPEC. The specificity is defined as SPEC = P [LC|I],
i.e., the probability that the confidence estimator
reports an incorrectly predicted branch as having
low confidence.

PVP. The predictive value of a positive estimate is de-
fined as PVP = P [C|HC], i.e., the probability that
a prediction estimated to have high confidence is
correct.

PVN. The predictive value of a negative estimate is
defined as PVN = P [I|LC], i.e., the probability
that a prediction estimated to have low confidence
is incorrect.

Dynamic confidence estimators based on threshold com-
parison can be tuned to yield different SENS, SPEC, PVP,
or PVN values.

For an application such as energy reduction, where parts
of the pipeline are throttled depending on the confidence
values of branches in the pipeline, we would like a confi-
dence estimator capable of providing a wide range of PVN

and SPEC values, since we want to find the right balance
between saving energy and decreasing performance. When
comparing dynamic confidence estimators as the threshold
is varied, Manneet al. emphasize the relationship of PVP

and PVN. However, since a high PVP is relatively easy to
achieve and unimportant to several speculation techniques,
we believe that emphasizing the relationship of PVN and
SPEC is a better approach. Our results in Section IV reflect
this improved methodology.

C. Applications of Confidence Estimation

Recent microarchitecture research has made use of con-
fidence estimation in many ways, such as energy reduc-
tion [1], [7], [6], load value prediction [8], [9], [10], ea-
ger/polypath execution [11], [12], [13], increasing branch
predictor accuracy [5], and more. We review some of these
applications.

Energy reduction.:Grunwald and Manne introduced
pipeline gating using a confidence estimator to reduce
the energy wasted processing wrong-path instructions [1].
When there are at least a certain number of low-confidence
branches in the pipeline, some pipeline stages are gated
(i.e. stalled), rather than wasting energy processing mis-
speculated instructions. Baniasadi and Moshovos extend



this work to consider other instruction flow information
when deciding whether and how much to throttle instruction
fetch [7]. For energy reduction, we need a confidence
estimator with a high PVN to avoid an adverse impact on
performance when too many branches are classified as low
confidence. We also need a high SPEC to identify enough
opportunities for energy reduction.

Load value prediction.: Load values have a great
deal of regularity that can be exploited to improve per-
formance [8]. Load value predictors can hide the latency
of loads from memory. The decision of whether to predict
a value or wait for the load to complete is made by a
confidence estimator. Lipastiet al. suggest a confidence
estimator that classifies loads as predictable, unpredictable,
or almost predictable [8]. Burtscher and Zorn use profile
based confidence estimators for load value prediction [9].
A high PVP and SENS makes sure that value prediction
is applied when it is likely to be profitable. A high PVN

suppresses value prediction when it suspects a misprediction,
while a high SPEC makes sure that the decision to suppress
value prediction was the right thing to do.

Eager execution.: Branch mispredictions impose a
steep penalty on performance. One way to avoid this penalty
is to fetch and execute instructions from both directions ofa
branch until the branch is resolved. The processor executes
several threads in parallel, spawning threads at branches and
killing threads when the branches are resolved. This idea,
in various forms, is known as eager execution [11], [12]
and dual-path execution [13]. Since execution resources are
limited, eager execution is restricted to branches with low
confidence. If a low-confidence branch is fetched while the
processor is already executing multiple threads, spawning
yet another thread may not be feasible. Thus, a confidence
estimator must be consulted to decide when to execute both
paths. A high SPEC enables eager execution for most of the
mispredicted branches, while a high PVN ensures that eager
execution is exercised only when it is needed.

Increasing Branch Predictor Accuracy.:A confidence
estimator might indicate a high probability that a branch
prediction is incorrect. If this probability is over 50%, it
makes sense to invert the branch prediction. This technique
is known asbranch inversion[5]. This technique requires
a PVN greater than 0.5 and a high SPEC so that enough
incorrect predictions can be inverted to have a significant
effect on performance.

III. C OMPOSITECONFIDENCEESTIMATORS

In this section, we describe our technique for combin-
ing confidence estimators. We discuss our technique in an
abstract sense, then describe several composite confidence
estimators and branch predictors.

A. Combining Confidence Estimators

Confidence estimation is the task of classifying a branch
as having either high or low confidence. Such a classi-

fier produces a raw output that is roughly proportional
to the probability that the branch is correct. A threshold
is applied to this value to make the final classification.
There are several techniques in the statistical and machine
learning literature for combining classifiers for improved
accuracy [14]. One of the simplest is to take the sum of
the outputs of each classifier, then apply a threshold to that
sum to make the classification. We use this technique for
combining the outputs values of several confidence estima-
tors. The resulting combination, along with an appropriately
chosen threshold value, is acomposite confidence estimator.
Figure 3 shows the structure of a composite confidence
estimator. Several confidence estimators are assembled into
a single estimator by adding their respective raw outputs,
which is then compared with a statically selected threshold.

Estimator
Confidence

Estimator
Confidence

Estimator
Confidence

... +

Raw Output

Threshold?
> Confidence

Estimate

Figure 3. Composite Confidence Estimator Block Diagram

B. Branch Predictors

Before describing the various confidence estimators, it is
important to discuss the branch predictors for which we
are assigning confidence. We choose three branch predictors
from the literature for our evaluation of composite con-
fidence estimators. Confidence estimation becomes harder
as the branch predictor’s accuracy improves [4]. Thus, we
choose a use a realistic hardware budget to ensure that our
results are conservative. Each of the predictors is allocated
approximately four kilobytes of state, which is equivalentin
size to the branch predictor in the Alpha 21264 [15].

Gshare.: Based on the idea of two-level adaptive
branch prediction [2],gshareindexes a pattern history table
(PHT) of two-bit saturating counter with the exclusive-OR
of a global history shift register and the branch program
counter [16]. The high bit of the corresponding counter is
taken as the prediction. A value of 1 meanspredict taken,
while 0 meanspredict not taken. When a branch is executed,
the corresponding counter is incremented if the branch was
taken, or decremented otherwise. The outcome of the branch
is shifted into the history register, which records a 1 fortaken
and 0 fornot taken. We model agsharepredictor with 16K
entries.

Hybrid Predictor.: Hybrid predictors combine two or
more branch predictors to increase accuracy. We use a



McFarling-style hybrid predictor [16] of the type imple-
mented for the Alpha 21264. This predictor uses two branch
prediction components: a 4K-entry GAg [17] predictor in-
dexed soley by the history register, and a 1K-entry PAg
predictor, indexed by one of 1024 per-branch 10-bit history
registers, combined with a 4K-entry chooser table. The PHT
for the GAg predictor consists of two-bit saturating counters,
while the PHT for the PAg component contains three-bit
saturating counters.

Perceptron Predictor.:As an alternative to branch pre-
dictors based on saturating counters, we evaluate compos-
ite confidence estimators with theperceptron predictor, a
branch predictor based on neural learning [18]. The predictor
uses the branch PC to index a table of perceptrons, which
are vectors of small integer weights. The predictor computes
the dot-product of the weights vector and a global branch
history shift register, producing a signed integer value. If
the value is at least 0, the branch is predicted to be taken,
otherwise it is predicted not to be taken. Perceptron learning
is used to update the weights vector when the magnitude of
the dot-product value does not exceed a certain threshold, or
when the prediction was incorrect. To update the perceptron,
the elements of the weights vector are incremented or
decremented depending on whether there was positive or
negative correlation, respectively, between the corresponding
bit in the history register and the branch outcome. One
interesting aspect of this predictor is that the dot-product
output is highly correlated with the probability that the
branch is taken. Thus, this value has the potential to be used
as the basis of a confidence estimator [18].

As branch predictors become more accurate, confidence
estimation is harder because there are fewer mispredictions.
Figure 4 shows the misprediction rates of the branch pre-
dictors simulated on the SPEC 2000 integer benchmarks, as
well as the arithmetic mean misprediction rate.

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex

256.bzip2
300.twolf

Harmonic
           Mean

Benchmark

0

5

10

15

P
er

ce
nt

 M
is

pr
ed

ic
te

d

gshare
hybrid
perceptron

Figure 4. Misprediction Rates of Branch Predictors Simulated

C. Confidence Estimators

In this section, we describe several predictors from the
literature that we use as the elements of our composite

confidence estimators.
Enhanced JRS Estimator.:Jacobsenet al. describe

a confidence estimator based on counting the number of
branch predictions made since a misprediction [3]. A table
of miss distance counters (MDCs) is indexed by combining
branch history with branch PC. The output of the estimator
is the MDC value from the table is above a statically
determined threshold. Grunwaldet al. call this the JRS
confidence estimator after the initials of the original authors,
and describe an enhanced version that updates the history
register with the branch prediction in question before reading
the MDC; we study this enhanced version with four-bit
counters.

Up/Down Counter Estimator.:Klauseret al. introduce
up/downcounters for confidence estimation [5]. This scheme
is similar to the JRS estimator, but the counter is decre-
mented instead of cleared on a misprediction. Klauseret
al. explore using only two-bit counters, but we have found
additional benefit by using four bits.

Self-Estimator.: For a PHT-based scheme withn-bit
saturating counters, if a branch is predicted based on the
value c of a counter, we compute a valuec′ for the raw
output such that:

c′ =

{

c if the branch is predicted taken
2n − c − 1 if the branch is predicted not taken

We then estimate high confidence ifc′ exceeds some
threshold. For the McFarling hybrid predictor, we compute
the sum of the correspondingc′ values for the component
predictors and apply a threshold. For the perceptron predic-
tor, we use the magnitude of the dot-product value, scaled
by shifting to between 0 and 15, then apply a threshold.
For PHT-based predictors, Grunwaldet al. call this sort of
confidence estimator asaturating counters estimator[4].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate several composite confidence
estimators. We report statistics on the performance of the
confidence estimators.

A. Methodology

We use the 12 SPEC 2000 integer benchmarks running
under SimpleScalar/Alpha [19] to evaluate our confidence
estimators. Our evaluation runs skip the first 500 million
instructions, as several of the benchmarks have an initial-
ization period (lasting fewer than 500 million instructions),
during which branch prediction accuracy is unusually high.
Each benchmark executes at least 300 million branches
and over one billion instructions on theref inputs before
the simulation ends. Table I shows the microarchitectural
parameters used for the simulations.

Branch history shift register length has been observed to
have a significant impact on predictor accuracy [16], so for



Parameter Configuration
L1 I-cache 64KB

L1 D-cache 64KB
L2 cache 1024KB

BTB 512 entry, 2-way set-assoc.
Issue width 8

Pipeline Depth 7

Table I
PARAMETERS USED FOR THESIMULATIONS

gsharewe try all possible history lengths on thetrain in-
puts and keep the one with the lowest average misprediction
accuracy. For the perceptron and McFarling predictors, we
use configurations reported for the corresponding hardware
budget in the literature [15], [18].

B. Confidence Estimators Simulated

We simulate the enhanced JRS (hereafter, simply JRS) and
Up/Down confidence estimators, each using tables of 1024
4-bit counters and indexed using the method described in
Section III-C, consuming a small hardware budget of 512
bytes. We simulate the self-estimators of each branch pre-
dictor. We also simulate the following composite confidence
estimators:

JRS + Up/Down. This estimator uses 512 4-bit
miss distance counters and 512 4-bit Up/Down
counters. Each table is indexed using the method
described in Section III-C. The raw output of the
estimator is the sum of the indexed counters from
each table.
JRS + Self. This estimator uses JRS estimator with
1024 counters. The raw output is the sum of the
raw outputs of the JRS estimator and the self-
estimator.
Up/Down + Self. This estimator uses an Up/Down
estimator with 1024 counters. The raw output is the
sum of the raw outputs of the Up/Down estimator
and the self-estimator.
JRS + Up/Down + Self. This estimator adds the
raw output of the JRS + Up/Down estimator to the
raw output of the self-estimator.

C. Statistical Results

We report statistics for the entire range of threshold
values for each confidence estimator and branch predictor.
We examine plots of these statistics using techniques from
previous work, then look at improved plots that yield more
information.

1) PVP vs. PVN: We begin with the same statistical
evaluation given in other work [4]. Without having a partic-
ular application in mind, we can consider one confidence
estimator to be better than another if it has higher PVN

and PVP values. Figure 5 shows a graph with PVP plotted

against PVN for several of the confidence estimators. From
this graph, we see that the individual JRS and Up/Down
estimators have high PVP and PVN values compared with
the composite Up/Down + JRS estimator, but the composite
estimator has a wider range of PVP and PVN values, making
it more flexible.

0.94 0.96 0.98
PVP

0.4

0.6

0.8

P
V

N

Up/Down Estimator
JRS Estimator
Composite Up/Down + JRS

Figure 5. PVP vs. PVN for gshare

2) Distribution of Confidence Estimates:The perfor-
mance of a confidence estimator cannot be summarized
with a single type of statistic. For instance, for many
optimizations it is important for the confidence estimator to
have a high PVN. However, it is meaningless to say that a
confidence estimator has a high PVN and high PVP without
also discussing the SPEC value. The predictive value of a
negative (i.e. low-confidence) estimate can be made almost
arbitrarily high if we allow many false positives, i.e., if the
SPEC is low. Moreover, since branch predictors generally
have high accuracy, it is easy to achieve a high PVP. Note
the small range of PVP values in Figure 5.

To illustrate the nature of this problem, Figure 6 shows a
histogram of the cumulative percentage ofgshare-predicted
branches estimated to have low confidence for varying
thresholds. For the each estimator, as the threshold is in-
creased, more branches are estimated to have low con-
fidence. The JRS estimator overestimates the number of
mispredicted branches, consistently labeling many more
branches as having low confidence for each threshold value.
The Up/Down estimator underestimates mispredictions, la-
beling many fewer branches as having low confidence. The
composite JRS + Up/Down estimator strikes a balance be-
tween the two. From this histogram we cannot directly infer
that the composite estimator is better than the other two, but
we see the potential for a more even-handed distribution of
confidence estimates.

3) PVN vs.SPEC: To get a more informative comparison
of confidence estimators, we must compare PVN with SPEC.
Both of these values are important for many applications that
use confidence estimation when deciding whether to take an
action, such as pipeline gating or eager execution. We need
a high PVN so that we do not needlessly take the action, and



0 0.5 1
Normalized Threshold Value

5

10

15

20

P
er

ce
nt

ag
e 

of
 B

ra
nc

he
s

Composite Up/Down + JRS
Up/Down Estimator
JRS Estimator

Figure 6. Distribution of Confidence Estimates

we need a high SPEC so that we have ample opportunity to
take the action when it is appropriate.

Figure 7 shows a plot of the SPEC values of several
confidence estimators forgshare against their respective
PVN values for the entire range of feasible thresholds.
Higher values in both thex- andy-axes are better. From the
graph, we can see that both the JRS and Up/Down estimators
are better than the composite, but only in certain narrow and
mutually exclusive ranges. The composite JRS + Up/Down
estimator has slightly lower PVN and SPEC, but covers a
much wider range of values. Thus, the composite estimator is
likely to be more appropriate for an application that requires
flexibility in the confidence estimator. In Section V, we give
an example of such an application.

0.2 0.4 0.6 0.8
SPEC

0.4

0.6

0.8

P
V

N

Up/Down Estimator
JRS Estimator
Composite Up/Down + JRS

Figure 7. SPEC vs. PVN for gshare

4) Other Branch Predictors:Thus far, we have only ap-
plied composite confidence estimators to thegsharebranch
predictor. However, many other branch predictors with better
accuracies have been proposed and implemented. We eval-
uate our confidence estimators with the McFarling hybrid
predictor and the perceptron predictor. As we observed in
Section IV-B, both of these predictors have robust self-
estimators, i.e., the predictor’s internal state can produce a
raw output capable of generating a confidence estimate.

Figure 8 shows a graph of SPEC vs. PVN for the percep-
tron predictor. As we observed previously forgshare, the
JRS and Up/Down estimators separately have higher SPEC

and PVN than the composite JRS + Up/Down estimator

in specific areas. However, when we add the self-estimator
into the raw output, the composite JRS + Up/Down + Self
estimator has higher SPEC and PVN than any of the other
estimators at all threshold values.

0.2 0.4 0.6 0.8
SPEC

0.2

0.4

0.6

P
V

N

Up/Down Estimator
JRS Estimator
Composite Up/Down + JRS
Composite Up/Down + JRS + Self

Figure 8. SPEC vs. PVN for a Perceptron Predictor

Figure 9 shows a graph of SPEC vs. PVN for the
McFarling-style hybrid predictor. At some points, the com-
bined JRS + Up/Down + Self estimator is more accurate
than the other estimators. Again, both composite estimators
have wider ranges than the individual estimators.

0.2 0.4 0.6 0.8
SPEC

0.2

0.4

0.6

P
V

N

Up/Down Estimator
JRS Estimator
Composite Up/Down + JRS
Composite Up/Down + JRS + Self

Figure 9. SPEC vs. PVN for a McFarling Hybrid Predictor

V. A PPLICATION OFCOMPOSITECONFIDENCE

ESTIMATORS

Although we can compare confidence estimators with one
another to get an idea of which one is better, it is difficult to
tell how much better without actually using the estimators in
an application. In this section, we give results of a detailed
cycle-level simulation of an energy reduction optimization
using composite confidence estimators.

A. Pipeline Gating for Energy Reduction

Manneet al. propose a technique called pipeline gating
for reducing the energy demands of high performance pro-
cessors without significantly reducing performance [1]. The
idea is to control rampant speculation by using a confidence
estimator to throttle various stages of the pipeline when



several unresolved branches with low confidence are in-
flight. When a branch misprediction seems imminent, it does
not make sense to waste energy by continuing to fetch and
execute instructions whose results are likely to be thrown
away. Other research has proposed similar energy reduction
techniques [7], and a similar mechanism is used in G3 and
G4 PowerPC processors [20] to trigger instruction fetch
throttling when temperature exceeds a certain threshold. An-
other contribution to this line of research comes from Seznec
and Vandierendonck who propose controlling the instruction
fetch rate using confidence estimation to reduce wrong-path
speculation and save energy [6]. Branchtap [21] is another
technique that throttles speculation based on confidence to
reduce the cost of recovering from mispredictions1.

We simulate a form of pipeline gating using our confi-
dence estimators. We modify SimpleScalar/Alpha to cease
instruction fetch when there are three or more unresolved
branches with low confidence. Instruction fetch continues
when enough branches have resolved so that there are fewer
than three unresolved branches with low confidence. Manne
et al. find that gating with three low-confidence branches
yields the best energy reduction. Having tried other values,
we reach the same conclusion. We simulate pipeline gating
with all threshold values for each confidence estimator. Note
that there is no “best” threshold value. Since the threshold
controls the trade-off between energy and performance, the
choice of threshold should be made to fit the particular
application.

1) Reduction in Extra Work:The goal of pipeline gating
is to eliminate as much needless work as possible. We
measure this extra as the number of useless instructions per
cycle, i.e., the average number of all executed instructions
minus the number of committed (i.e., useful) instructions per
cycle.

Figure 10 shows a plot of the decrease in IPC against the
decrease in extra work for the perceptron predictor2. The
perceptron predictor is the most accurate of the three branch
predictors simulated, and thus presents the most difficult
situation from which to extract energy savings from avoiding
useless work. Still, composite confidence estimators are able
to provide a wide range of IPC vs. energy savings. The
lowest threshold JRS estimator yields a decrease of 13.1%
in extra work, at a cost of a 3.4% lower IPC. The composite
JRS + Up/Down + Self estimator, now using the scaled
perceptron output as a component, achieves a greater savings
of 16.5% with a smaller performance penalty of only 2.6%.
Furthermore, the JRS + Up/Down + Self estimator provides
a much wider range of energy savings than either the JRS
or JRS + Up/Down estimators, allowing more fine-tuning
of the pipeline gating technique. Note that the perceptron

1The work by Seznec and Vandierendonck as well as the work by Akl
and Moshovos both cite the technical report version of this paper.

2For space reasons, we omit discussion of decrease in extra work for
gshareand hybrid predictors.

self-estimator provides a modest savings in energy without
the extra hardware of a composite estimator.

0 1 2 3 4 5
Percentage Decrease in IPC

0

10

20

30

40

P
er

ce
nt

ag
e 

D
ec

re
as

e 
in

 E
xt

ra
 W

or
k JRS Estimator

Composite Up/Down + JRS
Composite Up/Down + JRS + Self
Self

Figure 10. Decrease in Performance vs. Decrease in Extra Work
for Perceptron Predictor

The potential for energy reduction is due to the number
of mis-speculated instructions executed per cycle. Figure11
shows the number of mis-speculated instructions per cycle
for each benchmark using the perceptron predictor. The base
case of no pipeline gating is shown, as well as the results
for three confidence estimators that each reduce IPC by at
most 5%. For197.parser, 2.0 instructions are wasted on
each cycle in the base case. With the JRS estimator, only
1.19 extra instructions are wasted per cycle, a reduction of
40% over the base case. The composite JRS + Up/Down
estimator reduces the number of mis-speculated instructions
by 50% to 1.0 per cycle.

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex

256.bzip2
300.twolf

Harmonic
           Mean

Benchmark

0.0

0.5

1.0

1.5

2.0

E
xt

ra
 W

or
k

No pipeling gating
JRS
JRS + Up/Down
JRS + Up/Down + Self

Figure 11. Extra Instructions per Cycle, Perceptron Predictor

B. Implementation

One concern when considering a new hardware mech-
anism is the cost in terms of transistors and power. The
additional cost of our new confidence estimators is minimal.
For each confidence estimator we have studied in this paper,
the hardware budget does not exceed 512 bytes of SRAM.
Since we suggest that our designs can be used with an
energy saving technique, it is important to note that the
additional hardware itself will contribute a small amount



to the energy requirements of the processor. To provide
perspective, we used the Wattch microarchitecture simulator
to gather statistics on power [22]. We find that a hybrid
branch direction predictor (i.e., not including the BTB) with
twice the hardware budget of our confidence estimators
consumes a negligible 0.32% of the total power of the
simulated microprocessor. The most complex of our designs
adds two 5-bit adders to this budget.

VI. CONCLUSION

As microprocessors rely more on speculation to break
control and data dependencies, confidence estimators will
play a greater role in microarchitecture designs. Compos-
ite confidence estimators exploit the best characteristics
of multiple estimators to provide enhanced control over
speculation. Composite confidence estimators are able to
achieve high degrees of accuracy even when misprediction
rates are low, unlike previously proposed estimators. We
have shown that our new estimators are able to give a wider
range of control over the trade-off between SPEC and PVN

as well as increased accuracy in both dimensions. Using a
cycle-level microarchitectural simulator, we have shown how
our new estimators enable pipeline gating to deliver more
levels of energy savings with less sacrifice in performance.

VII. A CKNOWLEDGMENTS

This research was supported by the following grants
from the National Science Foundation: CCR-0311091, CCF-
0545898/0931874, CRI-0751138. Thanks to Calvin Lin
helpful feedback on an early draft of this paper.

REFERENCES

[1] D. Grunwald and S. Manne, “Pipeline gating: Speculation
control for energy reduction,” inProceedings of the 25th
Annual International Symposium on Computer Architecture,
June 27–July 1 1998.

[2] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive branch pre-
diction,” in Proceedings of the 24th ACM/IEEE International
Symposium on Microarchitecture, November 1991, pp. 51–61.

[3] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning
confidence to conditional branch predictions,” inProceedings
of the 29th Annual International Symposium on Microarchi-
tecture, December 1996, pp. 142–152.

[4] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun, “Con-
fidence estimation for speculation control,” inProceedings
of the 25th Annual International Symposium on Computer
Architecture, June 27–July 1 1998, pp. 122–131.

[5] A. Klauser, S. Manne, and D. Grunwald, “Selective branch
inversion: Confidence estimation for branch predictors,”In-
ternational Journal of Parallel Programming, vol. 29, no. 1,
pp. 81–110, February 2001.

[6] H. Vandierendonck and A. Seznec, “Fetch gating control
through speculative instruction window weighting,” in2007
International Conference on High Performance Embedded
Architectures and Compilers (HiPEAC 2007), 2007, pp. 120–
135.

[7] A. Baniasadi and A. Moshovos, “Instruction flow-based front-
end throttling for power-aware high-performance processors,”
in International Symposium on Low Power Electronics and
Design (ISPLED), August 2001.

[8] M. H. Lipasti, C. B. Wilderson, and J. P. Shen, “Value
locality and load value prediction,” inProceedings of the 7th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VII), October 1996.

[9] M. Burtscher and B. G. Zorn, “Prediction outcome history-
based confidence estimation for load value prediction,”Jour-
nal of Instruction-Level Parallelism, vol. 1, May 1999.

[10] M. Black and M. Franklin, “Neural confidence estimation for
more accurate value prediction,”Lecture Notes in Computer
Science: High Performance Computing – HiPC 2005, vol.
3769/2005, pp. 376–385, 2006.

[11] A. K. Uht and V. Sindagi, “Disjoint eager execution: An
optimal form of speculative execution,” inProceedings of the
28th Annual International Symposium on Microarchitecture,
December 1995.

[12] A. Klauser, A. Paithankar, and D. Grunwald, “Selective
eager execution on the polypath architecture,” inProceedings
of the 25th Annual International Symposium on Computer
Architecture, June 1998.

[13] M. Farrens, T. Heil, J. E. Smith, and G. Tyson, “Restricted
dual path execution,” Computer Science Department, Univer-
sity of California, Davis, Tech. Rep. CSE-97-18, November
1997.

[14] K. Tumer and J. Ghosh, “Error correlation and error reduction
in ensemble classifiers,”Connection Science, Special issue on
combining artificial neural networks: ensemble approaches,
vol. 8, no. 3,4, December 1996.

[15] R. E. Kessler, “The Alpha 21264 microprocessor,”IEEE
Micro, vol. 19, no. 2, pp. 24–36, March/April 1999.

[16] S. McFarling, “Combining branch predictors,” Digital West-
ern Research Laboratory, Tech. Rep. TN-36m, June 1993.

[17] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch
predictors that use two levels of branch history,” inPro-
ceedings of the 20th Annual International Symposium on
Computer Architecture, May 1993.

[18] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” inProceedings of the 7th International Sympo-
sium on High Performance Computer Architecture (HPCA-7),
January 2001, pp. 197–206.

[19] D. Burger and T. M. Austin, “The SimpleScalar tool set
version 2.0,” Computer Sciences Department, University of
Wisconsin, Tech. Rep. 1342, June 1997.

[20] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa,
R. Philip, and J. Alvarez, “Thermal management system for
high performance PowerPC microprocessors,” inProceedings
of COMPCON ’97, February 1997.

[21] P. Akl and A. Moshovos, “Branchtap: improving performance
with very few checkpoints through adaptive speculation con-
trol,” in ICS ’06: Proceedings of the 20th annual international
conference on Supercomputing, New York, NY, USA, 2006,
pp. 36–45.

[22] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions,” in Proceedings of the 27th International Symposium
on Computer Architecture, Vancouver, British Columbia, June
2000.


