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Abstract
Code placement techniques have traditionally improved instruction
fetch bandwidth by increasing instruction locality and decreasing
the number of taken branches. However, traditional code placement
techniques have less benefit in the presence of a trace cache that
alters the placement of instructions in the instruction cache. More-
over, as pipelines have become deeper to accommodate increasing
clock rates, branch misprediction penalties have become a signif-
icant impediment to performance. We evaluate pattern history ta-
ble partitioning, a feedback directed code placement technique that
explicitly places conditional branches so that they are less likely to
interfere destructively with one another in branch prediction tables.
On SPEC CPU benchmarks running on an Intel Pentium 4, branch
mispredictions are reduced by up to 22% and 3.5% on average.
This reduction yields a speedup of up to 16.0% and 4.5% on av-
erage. By contrast, branch alignment, a previous code placement
technique, yields only up to a 4.7% speedup and less than 1% on
average.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Code generation, Optimization

General Terms Performance, Experimentation

Keywords Compilers, Branch prediction

1. Introduction
As pipeline depths increase to support higher clock rates, the
penalty for a mispredicted conditional branch also increases, reduc-
ing the number of instructions executed per cycle. Improvements
in branch predictor accuracy can have a significant positive impact
on performance. Almost all modern microprocessors use a pattern
history table (PHT) to predict the outcomes of conditional branches
by tracking the tendency of a branch to be taken or not taken given
a branch address and histories of branch outcomes. Because of
strict timing and area limitations, PHTs have relatively few en-
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tries compared with the number of branches and branch histories.
Thus, mispredictions caused by conflicts in PHTs are inevitable.
In this paper, we evaluate pattern history table partitioning (PHT
partitioning), a code placement technique that places conditional
branches at addresses such that destructive interference in the PHT
is reduced. The compiler divides an abstract model of the PHT
into 2 or more partitions, each intended to predict branches with a
particular kind of behavior (e.g. branches that are strongly biased
to be taken). Conditional branch instructions are explicitly placed
such that their addresses tend to map to the most appropriate PHT
partition.

This paper makes the following contributions:
1. We present the first experimental study of an actual implemen-

tation of pattern history table partitioning. We evaluate this
technique on the Intel Pentium 4, a microprocessor that has
an instruction trace cache that significantly reduces the benefit
of traditional code placement techniques such as branch align-
ment [4]. On SPEC CPU integer benchmarks, our technique
reduces branch mispredictions by up to 22% and 3.5% on aver-
age. This reduction yields a speedup of up to 16.0% and 4.5%
on average. By contrast, branch alignment yields only up to a
4.7% speedup and less than 1% speedup on average.

2. We compare our algorithm with a modified version that be-
haves similarly to address adjustment with branch classifi-
cation, a previous technique [6]. Address adjustment reduces
branch mispredictions but tends to increase instruction counts.
When the algorithm is constrained to insert fewer no-ops, it im-
proves average speedup by only 1.5%. When more no-ops are
inserted, the technique results in a slight slowdown on average.
By contrast, our PHT partitioning achieves the same reduction
in branch mispredictions as aggressive address adjustment but
delivers a significant speedup.

1.1 Motivation

A first version of our technique builds on the observation that
branches tend to be highly biased to be either taken or not taken.
It makes sense to partition the PHT into two halves: one for biased
taken branches and one for biased not taken branches. This way,
branch instructions mapping to the same PHT entry will tend to
have similar behavior and will not interfere destructively with one
another. This observation has been made in previous work [23] and
generalized and exploited in microarchitectural simulation [6].

Figure 1 uses greyscale intensities to show the average value
of PHT entries before and after a transformation that maps biased
taken branches to even indices and biased not taken branches to
odd indices. These results are gathered from trace-based simula-
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Figure 1. Average PHT entries before and after compiler-based alignment.

tion facilitated by SimpleScalar / Alpha [2]1. Each pixel represents
the average value of an entry of the PHT for the SPEC CPU 2000
benchmark 176.gcc and a 4,096-entry GAs (Global Adaptive
set-based) [31] branch predictor. This predictor concatenates the 4
lower bits of the branch address with the last 8 branch outcomes to
form an index into the PHT. The PHT entries are two-bit saturating
counters that are incremented or decremented if the corresponding
branch was taken or not taken, respectively. Before the optimization
the pattern history table is a jumbled mess of counters with a sig-
nificant amount of destructive interference. After the optimization,
the pattern history table is divided into entries that predict mostly
taken on the left and mostly not taken on the right. The average
PHT entry is brighter on the right and darker on the left, illustrating
a reduction in destructive interference. The result of this reduction
in interference is that the misprediction rate for 176.gcc has been
cut almost in half, from 13.2% to 7.7%.

This nice result comes from the world of simulation, in which
we completely specify the design of the branch predictor. The chal-
lenge we address in this paper is to develop a similar optimization
for an existing microprocessor whose branch predictor is complex
and not well documented: Intel’s Pentium 4.

1.2 Paper Organization

This paper is organized as follows. In Section 2, we explore pre-
vious related work in optimizing for instruction fetch and branch
prediction. In Section 3 we give background into two-level adap-
tive branch prediction. In Section 4 we describe our optimization.
In Section 5 we describe our experimental methodology for eval-
uating the new optimization for the Intel Pentium 4 microproces-
sor. In Section 6 we give the results of our experiments showing
speedups and reductions in branch mispredictions. In Section 7 we
conclude and give directions for future research.

2. Related Work
In this section we discuss related work in code placement tech-
niques.

2.1 Profile Guided Code Placement

Hatfield and Gerald [8], McFarling [20], Pettis and Hanson [25],
and Gloy and Smith [11] have presented methods to reorder proce-
dures to improve locality based on profile data. McFarling presents
an algorithm for placing code so as to minimize conflict misses in
a direct-mapped instruction cache [19].

1 We use simulation only to generate Figures 1 and 7. All other results in
this paper are from a real Intel Pentium 4.

2.2 Code Placement for Reducing Branch Costs

Without respect to branch prediction concerns, it is generally better
for a frequently executed branch to be laid out such that it is usually
not taken. This way, the instruction cache is used more efficiently
as the hot path through the code is laid out sequentially. Also,
machines that fetch multiple instructions in a single cycle benefit
from not taken branches because they do not prematurely terminate
fetching and thus may exploit the full fetch width on every cycle
for which there is an instruction cache hit. Calder and Grunwald
present branch alignment, an algorithm that seeks to minimize the
number of taken branches by reordering code such that the hot path
through a procedure is laid out in a straight line [4]. Their technique
improves performance by an average of 5% on an Alpha AXP
21064. We make use of the “greedy” version of branch alignment
to compare against our proposed technique on a modern machine.
Young et al. present a version of branch alignment [32] based on
an algorithm for solving the Directed Traveling Salesman Problem
and show that both their algorithm and the greedy branch alignment
algorithm presented by Calder and Grunwald are close to optimal
with respect to minimizing the number of taken branches.

Software Trace Cache is a code-reordering optimization intro-
duced by Ramirez et al. that packs frequently used code in a section
of memory so as to minimize conflict misses in a direct-mapped in-
struction cache [26]. The Software Trace Cache idea also lays out
hot paths so that most branches are not taken. Ramirez et al. study
the effect of such code reordering techniques on branch prediction,
showing that branch prediction accuracy can be positively or neg-
atively affected by code reordering depending on the details of the
branch predictor [27]. For instance, by increasing the number of
not-taken branches, branch alignment techniques can skew the dis-
tribution of accesses to PHT entries. Software Trace Cache is eval-
uated through detailed microarchitectural simulation and assumes
a direct-mapped instruction cache.

2.3 Code Placement for Improving Branch Prediction
Accuracy

2.3.1 Address Adjustment

Chen and King first propose the idea of using code placement to re-
duce interference in pattern history tables [6]. They propose walk-
time address adjustment, a technique that adjusts branch addresses
at link-time to avoid interference in branch prediction tables. As
in our optimization, no-op instructions are inserted to move branch
addresses to positions less likely to interfere with one another and
the PHT is divided into partitions representing different kinds of
branch behavior. That research considered simple branch predic-
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tors evaluated through simulating the first 30 million branches of
8 SPEC CPU benchmarks. The research did not demonstrate an
improvement in performance for large or complex branch predic-
tors such as the ones encountered in modern microarchitectures.
The address adjustment technique yielding the best improvement
in branch prediction accuracy also places many extra no-op instruc-
tions on the critical path, a fact whose impact is not realized through
simulations that measure only misprediction rate. Extra inserted no-
ops with this technique can also hinder performance by violating
alignment heuristics. For instance, Chen and King’s address ad-
justment can move branch targets off of fetch block boundaries and
cause a decrease in the instruction fetch rate and an increase in in-
struction cache miss rates. Our technique minimizes both mispre-
diction rate and extra instruction count and is the first such tech-
nique to demonstrate significantly improved performance on a real
machine. Our technique also respects compiler alignment heuristics
designed to maximize the instruction fetch rate.

In Section 6 we configure our algorithm to behave similarly to
that of Chen and King’s best performing technique, branch classi-
fication. It shows the negative impact on performance of improving
misprediction rate without proper consideraton for keeping instruc-
tion count from increasing too much.

The practical impact of Chen and King’s work is to suggest
that address adjustment be taken into account by microarchitects
when designing a branch predictor. That is, address adjustment
enables good accuracy with smaller branch predictor. A smaller
predictor is desirable because it will have a lower access latency
and thus mitigate the negative impact on performance of a high-
latency predictor [14]. Our work addresses a different issue: how to
optimize for a fixed branch predictor in a real microarchitecture.

In the same spirit as our work and the work of Chen and King,
Milenkovic et al. suggest that compiler techniques could be used to
avoid destructive interference in branch predictors [23]. However,
they do not provide an algorithm or an implementation.

2.4 Branch Allocation

Our idea is similar to branch allocation [16]. Branch allocation
uses the working set characteristics of branches to explicitly assign
each conditional branch a set of branch history table resources
at compile time. The analysis forms a conflict graph between
branches and uses a technique similar to register allocation to al-
locate branch history table resources among branches such that
destructive aliasing is reduced. However, branch allocation mod-
ifies the instruction set to allow branch instructions to explicitly
specify an index into the pattern history table. Branch allocation
is shown to improve misprediction rates through simulation. By
contrast, our research implicitly guides branches to destinations in
the PHT and thus requires no modification to the instruction set.

2.4.1 Static Correlated Branch Prediction

Young and Smith introduce static correlated branch prediction [33],
a technique that duplicates basic blocks with branches whose out-
comes are highly dependent on the immediately preceding program
path. This technique seeks to improve branch prediction accuracy
for machines where branches are statically predicted, i.e., the pre-
diction is determined at compile-time. This technique requires path
profiling which is more expensive than the edge profiling required
by our technique. Static correlated branch prediction duplicated
basic blocks resulting in significant code expansion while our tech-
nique does not. Most importantly, our technique addresses dynamic
branch prediction accuracy used in modern microprocessors, and
not older static branch prediction techniques.

2.5 Other Compiler-Related Branch Prediction

Some processors implement static branch prediction either implic-
itly through heuristics or explicitly through compiler-provided hint
bits that are set to indicate the likely direction of each branch. Some
branches can be predicted with a static bias bit, while others with
less biased behavior can use the dynamic predictor. Since the eas-
ily predictable branches are filtered out, aliasing in the dynamic
predictor is alleviated and accuracy is improved. This technique,
along with a methodology for choosing the bias bits, was intro-
duced by Chang et al. [5]. Patil and Emer study the technique,
measuring its utility in reducing destructive aliasing and refining
the heuristics used to decide which branches should be predicted
statically [24]. The Intel Pentium 4 instruction set includes hint bits
for conditional branches, but these hints are used only during trace
construction [13] and are unlikely to have an impact on dynamic
branch prediction accuracy.

3. Branch Prediction Background
In this section, we give background into two-level adaptive branch
prediction that is used in many modern microprocessors.

3.1 The Need for Branch Prediction

Modern pipelined microprocessors consult branch predictors to
speculatively fetch and execute instructions beyond conditional
branches. When a conditional branch is fetched, its outcome and
target may not be computed for many cycles. Nevertheless, instruc-
tion fetch must continue to feed the rest of the execution engine and
sustain performance. Branch predictors quickly predict the likely
direction of a branch and allow the processor to continue to fetch
instructions down the predicted path. Processors that implement
speculative execution execute instructions on the predicted path and
have a mechanism for rolling back and restarting execution if a
branch is mispredicted. A branch misprediction can be very costly
in terms of the number of wasted clock cycles and wasted energy
processing wrong-path instructions. As pipelines become deeper to
support higher clock rates, the penalty of a mispredicted branch
also increases and has a higher negative impact on performance.

3.2 Two-Level Adaptive Branch Prediction

Yeh and Patt observed that the outcome of a given branch is often
highly correlated with the outcomes of other recent branches [31].
This history of branch outcomes forms a pattern that can be used to
provide a dynamic context for prediction. In the branch prediction
scheme of Yeh and Patt, every time a branch outcome becomes
known, a single bit (0 for not taken, 1 for taken) is shifted into a
pattern history register. A pattern history table of two-bit saturating
counters is indexed by a combination of branch address and his-
tory register. The high bit of the counter is taken as the prediction.
Once the branch outcome is known, the counter is decremented if
the branch is not taken, or incremented otherwise, and the pattern
history is updated. Much research in the 1990s focused on refin-
ing this scheme of Yeh and Patt. For instance, hybrid predictors
that combine branch predictors to improve accuracy have been pro-
posed [21, 10] and implemented [15].

3.3 Destructive Interference in Pattern History Tables

Destructive interference occurs when two distinct branches with
opposite behavior coincidentally use the same counter in the pat-
tern history table. Destructive interference will lead to one of the
branches being predicted incorrectly. This situation is somewhat
similar to conflict misses in data caches where multiple items
in memory map to the same set in the cache resulting in cache
misses [22]. Several predictor organizations have been proposed
to deal with the problem of destructive interference [17, 29, 9], but
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the problem cannot be entirely eliminated because the number of
counters in pattern history tables is much less than the number of
branches and branch histories in typical programs. In this paper, we
present a software approach to reducing destructive interference.

Almost all approaches to reducing the impact of destructive in-
terference have been studied at the microarchitectural level through
simulation. The agree predictor uses a PHT to predict whether
branch outcome will agree with a bias bit either provided stati-
cally or learned online [29]. In this way, the agree predictor trans-
forms possibly destructive interference into constructive interfer-
ence since most branches are likely to agree with their bias. Our
technique is similar to this approach in that we statically group
branch instructions in a partition of the PHT with other branch in-
structions with similar behavior. Of course, our technique is a soft-
ware technique applied to a real machine, not a microarchitectural
innovation.

One hardware technique in particular is closely related to our
approach. The BiMode predictor divides the predictor into three
tables: one PHT for biased taken branches, one PHT for biased not
taken branches, and a third chooser PHT that tracks the biases of
branches to decide which of the first two PHTs to use for predicting
a given branch [17]. This technique does in hardware what our
technique does in software. Again, note that our technique is a
more feasible approach since it does not require a change to the
microarchitecture and does not introduce a level of indirection and
delay into the critical path of the branch predictor.

3.4 Branch Prediction in the Intel Pentium 4

For this study, we choose the Intel Pentium 4 as our optimization
target. This very popular microprocessor is widely used in a range
of applications. It has several features that make it an interesting
candidate for our technique:

1. It has a 20-stage pipeline to support a high clock frequency.
This means that the Intel Pentium 4 will be sensitive to branch
predictor accuracy, as a mispredicted branch will incur a sub-
stantial cycle penalty.

2. It has an instruction trace cache [28] that stores decoded in-
structions in the order they were fetched rather than the order
they appear in the program text. This tends to reduce the im-
provement provided by traditional code placement techniques
that seek to improve instruction locality since the trace cache
has the effect of dynamically reordering frequently used sec-
tions of code. Our code placement technique is still able to im-
prove performance because the instruction fetch engine uses the
same branch outcome predictor to guide speculation whether it
is fetching from the second level cache or the trace cache [23]
(although a different predictor is used to predict the next trace
to fetch). This means that even when the Pentium 4 is fetching
from the trace cache it is still driving speculation by predict-
ing branches using branch addresses and those predictions are
improved by our technique.

3. The branch predictor of the Intel Pentium 4 is not well doc-
umented. From published Intel documentation [12], we know
that the branch predictor has a 4,096-entry branch target buffer
(BTB) with presumably correspondingly many entries in a
PHT. The predictor is able to fully predict loop back edges
with a trip count of between 1 and 16. It can correctly predict
branches with taken/not-taken pattern lengths between 1 and 4.
Beyond that information, what little is known publicly about
the Intel Pentium 4 branch predictor has been gathered through
reverse-engineering [23]. We hypothesize that the branch pre-
dictor uses some bits from the conditional branch fetch address
as part of an index into a PHT to make a prediction. We use
trial and error to determine which bits are the most likely to

both be used by the predictor and are feasible to be used by our
optimization.

4. Pattern History Table Partitioning
In this section, we describe the pattern history table partitioning
(PHT partitioning) technique. We first describe bimodal PHT par-
titioning that divides the PHT into two partitions, one for biased
taken branches and the other for biased not taken branches. We
then describe a variation called 4-way PHT partitioning that di-
vides the PHT into quadrants for branches that are combinations
of strongly and weakly biased taken or not taken. Figure 2 graphi-
cally illustrates the manner in which the PHT is partitioned in the
two versions.

4.1 The Basic Idea Behind Bimodal PHT Partitioning

The main idea for bimodal PHT partitioning is to place branches
with similar biases (i.e. taken or not taken) such that they use
the same half of the PHT. We assume that the branch prediction
algorithm uses at least one lower-order bit from the branch address,
along with branch history, for indexing the PHT. PHT partitioning
ensures that this bit is usually one value, e.g. 0, for biased not taken
branches and usually the other value for biased taken branches.
This task is accomplished by inserting multiple no operation (no-
op) instructions between regions in the code identified by the PHT
partitioning algorithm. This padding with no-ops changes the bits
in the addresses of every instructions; the goal is to maximize the
number of conditional branch instructions where the relevant bit
matches the branch bias.

4.1.1 Tracking Instruction Address Bits

The PHT partitioning algorithm performs an assembly of each
procedure to keep track of the sizes of all instructions so that the
algorithm can always compute the lower-order bits address of a
given instruction. This tracking of instruction sizes is non-trivial
in the Intel Pentium 4 ISA, where jump instructions may change
sizes depending on the magnitude of the distance to their targets;
after each proposed placement, the offsets are recomputed and the
sizes of jump instructions are adjusted accordingly. In addition,
the front-end compiler inserts alignment pseudo-ops so that e.g.
branch targets are aligned on 16-byte boundaries whenever such
alignment results in the insertion of fewer than 8 no-op instructions;
our algorithm tracks the address bits generated by this alignment.

There is no documentation explaining which address bits in the
Intel Pentium 4 are used in indexing the PHT, but we hypothe-
size that several of the lower order bits are used. In practice, we
find that using the fourth bit of the branch address provides the
best trade-off between improved branch prediction accuracy and
reduced instruction cache locality. Thus, we need only keep track
of addresses modulo 2

4
= 16. The beginning of each procedure is

aligned on a 16-byte boundary so that it begins at address 0 modulo
16. However, for the purpose of describing a general algorithm, let
us say that the goal of PHT partitioning is to assign the k

th bit of
the branch address, where k is a parameter chosen for the given mi-
croarchitecture. Thus, our algorithm needs to keep track of branch
address bits modulo 2

k .

4.1.2 Profiling Requirements

The PHT partitioning algorithm requires edge profiles, i.e., infor-
mation from a training run about how often any edge in the control
flow graph has been traversed. This way the algorithm can infer
the biases of branches to be taken or not taken. Not every branch
can be placed with the most appropriate PHT partition, so the fre-
quency information from the edge profiles is used to prioritize the
frequently executed branches for placement.
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Figure 2. Each box represents the PHT. Bimodal PHT partitioning divides the PHT into two halves; 4-Way PHT Partitioning divides it into
four quadrants.

4.1.3 Choosing Regions

Placing multiple no-op instructions in arbitrary locations of a pro-
gram can have a negative impact on performance because it can de-
crease useful fetch bandwidth. Thus, PHT partitioning places no-
op instructions only where it is unlikely that they will hurt per-
formance. Each procedure is divided into a number of regions be-
tween which no-ops may be inserted by PHT partitioning. The ba-
sic blocks are scanned in the sequence they appear in the procedure
to build regions. The first region begins with the first basic block in
the procedure. Regions may be ended by a basic block if it satisfies
one of the following rules:

1. The basic block does not fall through. For instance, no-ops
inserted after a basic block ending in a jump or a return will not
be executed and thus will have no impact on fetch bandwidth.

2. The basic block ends in a conditional branch that is taken at
least 99.9% of the time and at least 100 times. This way, no-
ops on the fall-through path will be executed relatively infre-
quently. We require that the branch be taken at least 100 times
so that we do not needlessly increase code size by padding very
infrequent basic blocks that are unlikely to have any impact on
performance. We refer to this rule as the frequency heuristic.

4.1.4 Padding Between Regions

Once regions are chosen for a given procedure, the PHT partition-
ing algorithm visits each region in sequence. It determines the ef-
fect of inserting each possible number of one-byte no-op instruc-
tions from 0 through 2

k
− 1 on assigning branches to their proper

partitions. For each proposed number of no-ops to insert, the algo-
rithm recomputes the addresses of every branch instruction in the
region, taking into account changes in branch instruction lengths
and compiler-inserted alignment pseudo-ops. It inserts the number
of no-ops that maximizes the number of branches assigned to their
proper PHT partitions, weighted by edge frequency. That is, it in-
serts a number of no-ops that maximizes the number of dynamic
branches in the profiled run assigned to their proper partition. It is
important to note that inserting no-ops between regions composed
of multiple basic blocks provides only coarse control over the ad-
dresses of branches. For example, in the SPEC CPU 2000 bench-
mark 254.gap , 85% of the static branches are assigned to their
proper PHT partition, versus 53% before applying PHT partition-
ing.

4.2 Four-Way PHT Partitioning

Bimodal PHT partitioning uses one address bit to divide the PHT
into two partitions. Since the branch predictor presumably uses
more than one address bit, it behooves us to investigate using more

than one bit to divide the PHT into more than two partitions. But
what behavior should each of the new partitions seek to capture?

Four-way PHT partitioning divides the PHT into 4 regions,
separating branches into 4 classes of behavior: strongly biased
taken, strongly biased not taken, weakly biased taken, and weakly
biased not taken. We define strong branch behavior to mean that
the behavior is encountered at least 95% of the time, e.g. we say a
branch is strongly biased taken if it is taken at least 95% of the time
it is executed. We decided on the 95% threshold based on behavior
we observed in the profiles we gathered. On average, approximately
50% of the dynamic branches in our benchmark suite were either
taken or not taken 95% of the time. Thus, choosing 95% as our
threshold for strong behavior should ensure a balanced distribution
of branches to PHT partitions.

The details of 4-way PHT partitioning are the same as bimodal
PHT partitioning except for the procedure for determining the best
number of no-ops to insert between regions. We choose a number
of no-ops to insert that maximizes a fitness function defined as
follows. The fitness function is the sum over all branches in the
region of:

1. The frequency with which the branch agrees with its bias if both
the strength and bias match the PHT partition to which it is
mapped,

2. Half of the frequency with which the branch agrees with its bias
if only the bias matches the PHT partition,

3. 0 if neither bias nor strength match.

Thus, branches that agree in both strength and bias with their
assigned PHT partition are most preferred, branches that agree in
only bias are preferred less, and branches that agree in neither
strength nor bias are avoided.

We found that, for the Intel Pentium 4, using the third and sixth
bits of the branch address yielded the best trade-off between im-
provement in branch prediction and reduced instruction cache lo-
cality due to the inserted no-ops. Thus, for 4-way PHT partitioning,
from 0 through 2

6
−1 = 63 no-op instructions may be inserted be-

tween regions.

5. Methodology
In this section, we explain our experimental methodology for eval-
uating the effect of PHT partitioning.

5.1 Benchmarks

Table 1 shows the benchmarks used for this study. We used the
following criteria for choosing the benchmarks for this study:
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1. We chose SPEC CPU [30] benchmarks from the 1995 and 2000
suites.

2. We chose the integer benchmarks from SPEC CPU. It is cus-
tomary to use the integer benchmarks in branch prediction stud-
ies because they represent a class of applications sensitive to
branch predictor accuracy.

3. We omitted the benchmarks from SPEC CPU 95 that are sub-
stantially duplicated in SPEC CPU 2000, e.g. 126.gcc .

4. We omitted 124.m88ksim and 252.eon because they failed
to compile and run correctly with our compiler infrastructure.

5.2 The Camino Compiler

In this paper we introduce the Camino Compiler Infrastructure.
Camino was developed to study code placement optimizations at
the level of assembly language. Camino uses GCC as its front-end
to compile C programs to x86 assembly language. Camino reads
the assembly language into an internal representation consisting
of a list of procedures with control flow graphs (CFG). Camino
transforms the code, then uses GCC as a back-end for assembling
and linking. Camino is capable of instrumenting code to gather ba-
sic block counts as well as edge and path profiles; only edge pro-
files were gathered for this research. Camino is the infrastructure in
which we implement the code placement optimizations mentioned
in this paper: greedy branch alignment and pattern history parti-
tioning. Camino was developed using GCC 2.95.4 as the front-end
and back-end; however, for this study we use the latest version of
GCC available as of this writing, GCC 3.4.2, for most of the bench-
marks. We revert to GCC 2.95.4 for 176.gcc , 253.perlbmk ,
and 255.vortex because the combination of Camino and GCC
3.4.2 results in the failure of those programs to compile correctly.

5.2.1 Optimizations in Camino

Camino implements the greedy branch alignment as described by
Calder and Grunwald [4]. The point of the algorithm is to lay out
basic blocks in a procedure such that basic blocks incident on fre-
quently executed edges are placed adjacent to one another. Basi-
cally, a priority queue of control flow graph edges is generated in
order of the frequency with which each edge is traversed accord-
ing to the edge profiles from a training run. The algorithm removes
edges from the queue in descending order of edge frequency. For
each edge removed, the basic blocks incident on that edge are laid
out adjacent to one another in the program text if no previously cho-
sen edge succeeds the predecessor block or precedes the successor
block. Once all basic blocks have been laid out, conditional branch
senses are modified so that branches between adjacent basic blocks
fall through.

Camino also implements GCC’s heuristics for aligning code for
maximum performance, e.g. aligning certain branch targets on 16-
byte boundaries.

5.3 Compiling and Running the Benchmarks

We compile each benchmark using the edge profiling option of
Camino. We run each benchmark on train inputs provided by
SPEC to gather profiles. We use ref inputs to measure the program
behavior we report in Section 6. The programs are linked statically.
We subsequently compile several versions of each benchmark:

• A baseline using only the GCC optimization flags recom-
mended by SPEC for x86 Linux:
-O3 -fomit-frame-pointer .

• A version using the baseline optimizations and greedy branch
alignment.

• A version using the baseline optimizations and bimodal pattern
history table partitioning.

• A version using the baseline optimizations and 4-way pattern
history table partitioning.

• Two versions (explained in Section 6.3) in which PHT partition-
ing is configured to behave similarly to other previous work.

We run the programs on a Dell workstation with 2GB SDRAM
featuring an Intel Pentium 4 at a clock frequency of 2.8 GHz. The
computer runs the Fedora Core 2 Linux operating system. We kill
as many background daemon processes as possible to provide a
quiescent system for our runs. We use the Unix /usr/bin/time
command to measure execution time. We use the OProfile profiling
system to measure numbers of branch mispredictions [18]. The
reported times and mispredictions are for the measured user process
only, not for the whole system. We run each benchmark 5 times
and compute speedups based on the median running times. The
OProfile system uses the performance counters of the Intel Pentium
4 to count branch mispredictions. We collect branch misprediction
statistics in separate runs because the method by which branch
mispredictions are counted involves somewhat frequent interrupts
of the user process and might have the effect of perturbing timing
results.

5.3.1 Code Expansion

Each code placement technique resulted in a very slight expansion
of the generated executable. This expansion never exceeded 1.5%
of the total size of the executable and was usually much less.

5.3.2 Compilation Times

The PHT partitioning algorithm exhaustively computes a fitness
function for each proposed number of no-op instructions to insert
for each region. Each evaluation of this fitness function requires
that part of the job of assembling the region be done in order to
find the addresses (modulo 64) of each branch instruction in the
region. We implemented a number of algorithmic optimizations to
keep this extra overhead to a minimum. On average, compilation
of programs using the PHT partitioning technique takes 16% more
time than compilation using only the baseline optimizations.

6. Results
In this section, we give the results of experiments showing the
benefit of PHT partitioning. We begin by showing the speedups
achieved on the benchmark. We then give insight into how these
speedups were achieved by showing the effect of the technique on
reducing mispredictions.

6.1 Speedup
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Figure 3. Speedup for SPEC CPU integer benchmarks.
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Benchmark Description # Branches
099.go Plays the game of go. Pattern matching. 9,511
129.compress Compresses files with Lempel-Ziv adaptive encoding. 205
130.li Lisp interpreter running the Gabriel benchmarks. 967
132.ijpeg Compression/decompression for JPEG images. 1,703
164.gzip Compresses files with Lempel-Ziv coding. 794
175.vpr Placement and routing program for FPGAs. 1,248
176.gcc C compiler (gcc 2.7.2.2) for the Motorola 88100. 27,961
181.mcf Single-depot scheduling for mass transportation. 294
186.crafty Plays chess using alpha-beta search. 3,787
197.parser Parses English text to produce grammar analysis. 3,869
253.perlbmk Stripped-down version of Perl v5.005 03. 9,007
254.gap Language for group-theoretic computation. 6,263
255.vortex Object-oriented database program. 8,644
256.bzip2 Compresses files with block-sorting compression. 756
300.twolf Standard-cell placement and routing. 3,052

Table 1. Description of SPEC CPU integer benchmarks with the number of conditional branches executed at least once.

Figure 3 shows the speedups achieved for each benchmark and
on average by greedy branch alignment, bimodal PHT partition-
ing, and 4-way PHT partitioning. On average, 4-way PHT par-
titioning performs the best at an arithmetic mean 4.5% speedup.
This technique yields a speedup of up to 16.0% in the case of
129.compress and 11.4% for 130.li . The speedup is greater
than 1.0 on 13 of the 15 benchmarks.

Bimodal PHT partitioning, a simpler technique, yields a 3.4%
speedup on average. It speeds up 176.gcc by 11%. The speedup
is greater than 1.0 on 12 of the 15 benchmarks. In a few instances,
bimodal PHT partitioning outperforms 4-way PHT partitioning, but
the magnitude of the aggregate speedup of 4-way PHT partitioning
leads us to prefer it over bimodal.

Greedy branch alignment, a code reordering technique that lays
out basic blocks so that most branches are not taken, achieves
only a 0.2% speedup on average. The speedup is greater than 1.0
on only 7 of the 15 benchmarks. The lack of improvement from
greedy branch alignment is almost certainly due to the fact that the
Intel Pentium 4 uses an instruction trace cache that has the effect
of reordering code dynamically, negating much of the benefit to
instruction fetch of branch alignment.

6.2 Reduction in Branch Mispredictions

Figure 4 shows the number of branch mispredictions per 1000
instructions (MPKI) for each benchmark. Clearly, there is a wide
variation in branch prediction accuracy over all the benchmarks.
For instance, 099.go incurs about 37 mispredictions for every
1000 instructions. On the other hand, 255.vortex incurs less
than one misprediction for every 1000 instructions. Note: the MPKI
figures are all computed with respect to the instruction count of
the original program, so e.g. the extra no-ops introduced by PHT
partitioning do not artificially decrease MPKI.

The highly variable MPKI can obscure the effect on mispre-
dictions of the various techniques. Figure 5 shows the MPKI for
each benchmarks normalized to the MPKI for the baseline opti-
mizations. This gives a more clear and balanced picture to explain
why PHT partitioning provides superior performance. For instance,
when 4-way PHT partitioning is used for 130.li , this benchmark
incurs 16.2% fewer mispredictions that it does with the baseline
optimizations. On average, normalized MPKI is reduced by 3.5%.

Note that the magnitude of the improvement in MPKI does not
always correspond to the magnitude of the performance improve-
ment. This is due to the fact that there are many other components
to the microarchitecture than just branch prediction, and the extent
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Figure 4. Mispredictions per 1000 instructions (MPKI) for SPEC
CPU integer benchmarks.

to which these factors affect performance varies from one bench-
mark to another. For instance, a benchmark with very few cache
misses might be very sensitive to branch prediction accuracy, while
another with a high number of misses might not be improved at all
by branch prediction optimizations. Also, some branches are more
important than others in terms of their ability to affect performance.
The minimum penalty of a mispredicted branch on the Intel Pen-
tium 4 is 20 cycles, but the maximum penalty is much higher due to
wrong-path effects such as cache pollution and resource contention
with right-path instructions. Thus, it might be more important to
predict certain branches correctly than others; we plan to research
this issue in future work.

For instance, although the best speedup for 4-way PHT parti-
tioning is achieved on 129.compress , this benchmark incurs
slightly more mispredictions that it does with the baseline opti-
mizations. We hypothesize that this apparent paradox is due to the
fact that 6 static branches account for over 50% of all the branches
executed during a run of the program. With so few branches domi-
nating the program, a small variance in the misprediction penalty in
one of these branches can have a large impact on performance. That
is, it is likely that one or more of these 6 branches has a high mis-
prediction penalty, and our optimization removes this high penalty
by removing the mispredictions. In retrospect, 129.compress
might be considered a poor benchmark for branch prediction stud-
ies because of its very small working set of branches, but we in-
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clude it in this study for completeness. Nevertheless, we are confi-
dent that we have demonstrated that our technique achieves a sig-
nificant speedup: when we exclude 129.compress as well as
181.mcf which is the outlier with the lowest speedup, the arith-
metic mean speedup is 4.2% and the average improvement in nor-
malized MPKI is 41̇%.
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Figure 5. Normalized mispredictions per 1000 instructions for
SPEC CPU integer benchmarks.

6.3 Impact of Minimizing Extra No-Op Instructions

There is an important trade-off between reducing the number of
mispredicted branches and increasing the number of no-op instruc-
tions fetched. The previous work of Chen and King achieved a sig-
nificant reduction in misprediction rate using an optimization sim-
ilar to PHT partitioning; however, this reduction comes at the cost
of many extra no-op instructions being executed.

Chen and King define the Maximum Motion Distance (MMD)
as the maximum number of no-op instructions that may be inserted
after a branch instruction [6]. A lower MMD will tend to reduce the
number of extra no-ops fetched while a higher MMD provides more
flexibility for placing branches to reduce destructive interference.
Our technique uses a frequency heuristic to decide whether to insert
no-ops after a conditional branch: if the branch is taken less than
99.9% of the time, then we do not place no-ops after it because they
have the potential to decrease fetch bandwidth with extra fetched
no-ops.

Figure 6 illustrates the impact of extra no-op instructions. For
this experiment, we modify the PHT paritioning algorithm to ignore
the frequency heuristic and accept an MMD parameter that will be
used to determine how many no-ops may be placed after a branch.
The resulting algorithm is similar to the link-time algorithm of
Chen and King. (However, the modified algorithm still respects
alignment heuristics as described before.)

Figure 6 (a) shows the normalized MPKI for the unmodified
and modified PHT partitioning algorithms. With an MMD of 4, the
modified algorithm yields an average normalized MPKI of 0.991,
a reduction of less than 1% in the number of mispredictions. With
an MMD of 32, the modified algorithm yields a normalized MPKI
of 0.966, a reduction of 3.5%. The original algorithm also yields a
normalized MPKI of 0.966.

However, the original algorithm yields a much better speedup
than the modified versions because it uses the frequency heuristic.
Figure 6 (b) shows that the average speedup of the original algo-
rithm is 4.3%, while the speedups for the modified algorithm with
MMDs of 4 and 32 are 1.5% and -0.4% respectively. Indeed, the
most aggressive form of the modified algorithm with the highest
reduction in mispredictions yields a negative speedup. Thus, it is

imperative that a PHT partitioning algorithm avoid placing no-op
instructions on frequently executed paths.

6.4 Potential for Influencing Branch Predictor Design

PHT partitioning has the potential to simplify the design of future
branch predictors. A branch predictors must supply its prediction
within a single clock cycle [14]. However, as clock rates increase,
the amount of time available to make a prediction becomes shorter.
One option available to microarchitects is to reduce the size of the
PHT and thus decrease its access latency, allowing the branch pre-
dictor latency to fit in a single clock period. For instance, the ag-
gressively clocked AMD Athlon uses a small 2K-entry GAs pre-
dictor, four times smaller than the 8K-entry GAs used in the previ-
ous generation AMD K6 core [7]. However, the resulting decrease
in branch predictor accuracy can decrease some of the performance
advantage gained by increasing the clock rate. PHT partitioning can
allow designers to use smaller tables but sustain the same mispre-
diction rates as previous generation processors. Figure 7 shows the
effect on misprediction rate of PHT partitioning with PHTs varying
from 256 to 64K entries for the 176.gcc benchmark using a sim-
ulated GAs predictor with an 8-bit history length. For reference, the
Intel Pentium 4 branch predictor has 4,096 entries [12]. A predictor
with only 256 entries and bimodal partitioning achieves a mispre-
diction rate of 4.3%, while a predictor with 8,192 entries with no
partitioning achieves a higher misprediction rate of 4.8%. Thus,
accuracy can be sustained or even improved even though techno-
logical contraints may force the PHT to become smaller.
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Figure 7. Simulated Misprediction Rates for Various Sized PHTs
on 176.gcc .

7. Conclusion
This paper has introduced a technique for pattern history table
partitioning for reducing branch mispredictions. By dividing the
branch predictor’s pattern history table into partitions and grouping
branches with similar behaviors into the same partition, our tech-
nique reduces destructive interference in the PHT and decreases
branch mispredictions, resulting in an improvement in perfor-
mance. Our technique requires only edge profiles which can be
collected by many popular compilers. Thus, our technique can be
readily incorporated into compilers that exploit feedback directed
optimization.

We plan to extend our work in PHT partitioning in several ways.
We believe that the full potential of our technique has not been
demonstrated due to the limited public knowledge of branch pre-
dictor implementations in industrial CPUs. We are attempting to
reverse-engineer branch predictors of several platforms so that we
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Figure 6.

can better target our optimizations for the characteristics of those
microarchitectures. We are adapting our algorithm to microarchi-
tectures that use global history but not branch address in indexing
the PHT; this entails controlling branch senses (e.g. jge vs. je )
rather than branch addresses to partition the PHT. By predicting
more branches correctly, our technique reduces the amount of en-
ergy wasted on wrong-path computations. We are planning to mea-
sure the benefits to energy reduction of branch prediction optimiza-
tions. We also plan to explore the use of static branch prediction
heuristics [1, 3] to avoid the costly profiling step.

Although microarchitectural research in improving branch pre-
diction accuracy has been heavily explored, relatively little work
has been done to improve accuracy with software-only techniques.
We believe that this approach has great potential to improve perfor-
mance in current and future microprocessors.
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