
Kill the Program Counter: Reconstructing Program
Behavior in the Processor Cache Hierarchy

Jinchun Kim
Texas A&M University
cienlux@tamu.edu

Elvira Teran
Texas A&M University

eteran@tamu.edu

Paul V. Gratz
Texas A&M University
pgratz@gratz1.com

Daniel A. Jiménez
Texas A&M University
djimenez@cse.tamu.edu

Seth H. Pugsley
Intel Labs

seth.h.pugsley@intel.com

Chris Wilkerson
Intel Labs

chris.wilkerson@intel.com

Abstract
Data prefetching and cache replacement algorithms have
been intensively studied in the design of high performance
microprocessors. Typically, the data prefetcher operates in
the private caches and does not interact with the replace-
ment policy in the shared Last-Level Cache (LLC). Simi-
larly, most replacement policies do not consider demand and
prefetch requests as different types of requests. In particu-
lar, program counter (PC)-based replacement policies can-
not learn from prefetch requests since the data prefetcher
does not generate a PC value. PC-based policies can also
be negatively affected by compiler optimizations. In this
paper, we propose a holistic cache management technique
called Kill-the-PC (KPC) that overcomes the weaknesses of
traditional prefetching and replacement policy algorithms.
KPC cache management has three novel contributions. First,
a prefetcher which approximates the future use distance of
prefetch requests based on its prediction confidence. Second,
a simple replacement policy provides similar or better per-
formance than current state-of-the-art PC-based prediction
using global hysteresis. Third, KPC integrates prefetching
and replacement policy into a whole system which is greater
than the sum of its parts. Information from the prefetcher
is used to improve the performance of the replacement pol-
icy and vice-versa. Finally, KPC removes the need to prop-
agate the PC through entire on-chip cache hierarchy while
providing a holistic cache management approach with bet-
ter performance than state-of-the-art PC-, and non-PC-based
schemes. Our evaluation shows that KPC provides 8% better

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037701

performance than the best combination of existing prefetcher
and replacement policy for multi-core workloads.

Categories and Subject Descriptors B.3.2 [Memory Struc-
tures]: Cache memories

Keywords Memory Hierarchy, Data Prefetching, Cache
Replacement Policy

1. Introduction
Due to the combined pressures of increasing application
working sets [7, 21], the persistence of the Memory Wall [38],
and the breakdown of Dennard scaling [5], processor mem-
ory system hierarchies have continued to grow in com-
plexity, size, and performance criticality. In recent archi-
tectures, caches consume as much as 40% of the total die
area and 20% of energy consumption on chip [35]. With
so much of the available on-die resources invested in the
cache hierarchy, an efficient, high performance design re-
quires intelligent cache management techniques. While
many cache management and speculation techniques such
as alternate replacement policies [6, 14, 15, 18, 27], dead-
block/hit prediction [17, 20, 28, 33, 36], and prefetching
techniques [2, 10, 16, 19, 19, 23, 26, 31, 32] have been ex-
tensively explored, many of these are piecemeal, one-off so-
lutions that often interact poorly when implemented together
and typically only address one level of the memory-system
hierarchy. There has been little work exploring the interac-
tions between these policies across multiple levels of the
memory hierarchy and examining the information needed
across boundaries in the system from software to the core,
to the last level cache. This paper proposes a holistic, specu-
lative, multi-level cache management system that effectively
reconstructs program behavior in the processor memory hi-
erarchy to prefetch and manage placement of data across the
cache hierarchy.

Without coordination between cache management and
speculation techniques at different levels in the cache hi-
erarchy, schemes such as data prefetching and replacement

737

1.025
1.040

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

IP
C

 S
pe

ed
up

 o
ve

r
D

A
-A

M
PM

 +
 L

R
U

DA-AMPM + SHIP DA-AMPM + EAF

Figure 1: Performance of SHiP [36] (PC-based replacement
policy) and EAF [28] (non-PC-based replacement policy)
with the DA-AMPM prefetcher, normalized against DA-
AMPM with LRU.

often work at cross-purposes. Data prefetching is a well
known mechanism that significantly improves performance
by preloading future memory accesses into some level of the
cache ahead of its actual use. Previous work suggests ad-
vanced prefetching algorithms [2, 10, 16, 19, 23, 26, 31, 32]
to reduce the gap between processor speed and memory la-
tency. Most data prefetchers are trained by private L1 or L2
cache accesses to make timely prefetches far ahead of de-
mand requests. Often, however, the appropriate placement
within the shared LLC for these prefetched blocks is unclear.
A sophisticated cache replacement policy is the right tool to
solve this problem. Previous work [14, 17, 18, 20, 27, 28,
33, 36] shows a substantial gain can be achieved by placing
blocks predicted to be dead [20] at the vulnerable position in
the LRU stack. However, with data prefetches, the incremen-
tal benefit of replacement policy often becomes marginal or
sometimes even negative [11, 29, 37].

In particular, replacement policies which use the PC of
missing load to predict reuse [17, 18, 20, 33, 36] experi-
ence substantial interference from prefetched blocks, which
by definition do not carry demand fetch load PC values. Fig-
ure 1 compares the IPC speedup of a top performing, PC-
based replacement policy (SHiP [36]), and a recently pro-
posed non-PC-based replacement policy (EAF [28]) when a
high performance data prefetcher, DA-AMPM1 [11] is be-
ing used. In this figure, the performance is normalized to
DA-AMPM with the baseline LRU replacement policy. Al-
though SHiP typically shows better performance than EAF
when running without prefetching, we see that here EAF
outperforms SHiP across most applications. This is largely
because PCs are simply not available for prefetches, forc-
ing SHiP to use a static prediction (always dead or always
live) for prefetched blocks. On the other hand, EAF tracks
the physical addresses of recently evicted blocks in a bloom
filter to make a dead block prediction. When there is a cache
miss and the missing block is found in the victim filter, that
block is inserted with higher priority. The baseline assump-

1 Note: DA-AMPM is an extended version of AMPM [10], the 1st Data
Prefetching Championship winner.

tion is that if a block with high reuse is prematurely evicted
from the cache, it will be accessed soon after eviction [28].
Thus, EAF can make a per-block-based prediction for both
demand and prefetch that yields higher performance than
SHiP without relying on PCs.

To alleviate the harmful interference between prefetch-
ing and replacement policy, several works [11, 29, 37] pro-
pose to selectively prioritize the prefetch request over de-
mand request or vice versa. While these approaches show
some gains, there remains little integration between the tech-
niques, leaving critical program behavior information known
by the prefetcher out of the replacement/placement decision,
thus leaving performance on the table.

In this paper, we present a novel cache management
mechanism called Kill-the-PC (KPC) that integrates data
prefetching and replacement policy across multiple levels of
the cache hierarchy into a single system. KPC consists of
two main components. First, we develop a prefetcher (KPC-
P) that produces a proxy of future use distance based on its
prediction confidence. KPC-P generates a confidence value
which is used to determine which cache level to insert the
prefetched blocks. Second, we propose a replacement policy
(KPC-R) that quickly adapts to the dynamic program phase
using two small global counters. Each counter is exclusively
updated by demand or prefetch so that KPC-R can predict
useless cache blocks for both memory requests.

Additionally, KPC-R and KPC-P are integrated to share
information. For example KPC-P learns from KPC-R to dy-
namically adjust a threshold for the prefetching fill level.
KPC-R monitors a sample of prefetched blocks in the LLC
to check if they could have been timely prefetches at the
L2 cache. If there are enough timely prefetches detected
by KPC-R, the fill level threshold becomes lower allowing
prefetches go all the way up to the L2 cache. On the other
hand, if the L2 cache is being polluted by a low fill level
threshold, KPC-P automatically increases the threshold. Fur-
ther, when KPC-P sends prefetch requests from the L2 to hit
in the LLC with a given confidence, that confidence is used
to update placement information withing the LLC’s replace-
ment stack. Critically, neither component depends on load
PCs, eliminating the hardware complexity of PC propaga-
tion through the entire on-chip cache hierarchy. Our anal-
ysis shows that KPC outperforms a prior unified memory
architecture [11] by 8.1% and best-of-class prefetch aware
replacement algorithms [29, 37] by 5% on single core and
8% on multi-core workloads.

The remaining sections are organized as follows. Sec-
tion 2 discusses the motivation for an integrated cache man-
agement without PCs. Section 3 describes the detailed de-
sign of KPC system. A performance evaluation is presented
in Section 4 and related works are presented in Section 5.
Finally, we conclude the paper in Section 6.

2. Motivation
In this section, we discuss the need for holistic cache man-
agement and explain why the PC is an inadequate input fea-

738

0%

20%

40%

60%

80%

100%
Useful Prefetch Hit by L2 Prefetch Useless Prefetch Demand

Figure 2: LLC allocation breakdown with DA-AMPM
prefetcher.

ture for holistic cache design, especially under the effect of
prefetching.

2.1 Why do we need a holistic cache management?
Previous studies [29, 32, 37] show that a large fraction
of prefetches are dead in the LLC. Figure 2 analyzes the
types of allocations within the LLC when the DA-AMPM
prefetcher is in use. More than 40% of LLC allocations
are filled by prefetching and approximately 90% of these
prefetches are useless, i.e., they will have no accesses in the
LLC (they are also pulled into the L2 and all hits to them
occur there). Ideally, an intelligent cache replacement policy
should detect these dead prefetches and evict them as soon as
possible from the LLC. However, as we noted in Figure 1,
both PC- and non-PC-based replacement algorithms often
yield negative impact when they are combined with prefetch-
ing. If we further break down the usage of prefetched blocks,
it is even harder for a replacement policy to predict correct
reuse behavior by itself. Some prefetched blocks are con-
stantly reused by demand (white) while some blocks are
only hit by another prefetch request from the L2 (grey).

In order to minimize the interference from prefetching,
Wu et al. propose PACMan [37], a prefetch-aware cache
management policy. PACMan dedicates a few sets of the
LLC to each of the three competing policies that treat de-
mand and prefetch requests differently and uses the policy
that shows the lowest number of cache misses. Competi-
tion between three different policies, however, increases the
overhead of set dueling [27], especially in a multicore en-
vironment. Similarly, Seshadri et al. propose ICP [29]. ICP
is also designed as a comprehensive mechanism to mitigate
prefetching interference. ICP simply demotes a prefetched
block to the lowest priority on a demand hit based on the
observation that most prefetches are dead after their first
hit. To address prefetcher-caused cache pollution, it also
uses a variation of EAF [28] to track prefetching accuracy
and inserts only an accurate prefetch to the higher priority
position in the LRU stack. ICP assumes, however, that all
prefetches are inserted only into the LLC, which restricts
the maximum benefit of prefetching. Additionally, with so-

phisticated, high-performance data prefetchers [11, 16, 19,
23, 26], demoting a prefetched block on the first hit actu-
ally degrades the overall performance. In fact, we found that
EAF [28] shows better performance than ICP with lower
hardware complexity and storage overhead when it is com-
bined with the DA-AMPM prefetcher. Critically, both PAC-
Man and ICP consider the data prefetcher as an indepen-
dent component that disturbs the LLC replacement policy
and attempts to isolate that disturbance. Neither technique
attempts to leverage information from the replacement pol-
icy to produce better prefetching algorithm.

Without a holistic approach that identifies how prefetched
blocks are used in the L2 and LLC, we cannot optimize
the efficiency of the precious on-chip cache resource. A
Unified Memory Optimizing (UMO) architecture [11] is the
most recent work to attempt holistic cache design. UMO’s
main idea is to design a data prefetcher that increases the
DRAM row buffer locality (DA-AMPM) and a replacement
policy that refers to the data prefetcher for better prediction
accuracy. However, UMO needs to access the L2 prefetcher
on every LLC access since its replacement policy depends
on the status map of DA-AMPM. Further, its prefetching
algorithm is still separated from the LLC replacement policy
and operates as a stand alone module. More importantly,
UMO assigns equal priority to a stream of prefetches whose
future use distance can be different from each other. In fact,
we find that PACMan and EAF achieve higher performance
than UMO when they are combined with DA-AMPM, which
necessitates a better approach for holistic cache design.

2.2 Why is a PC-based policy insufficient?
One way to implement a holistic approach is to use a PC
from the core pipeline for both prefetching and replace-
ment policy. Passing PCs throughout the load-store queue
and the all levels of cache hierarchy, however, requires ex-
tra logic, wire, and energy consumption. Additionally, there
is a significant organizational cost of extra communication
between front-end, mid-pipe, cache design, and verifica-
tion teams as new interfaces are defined, implemented, and
tested. When time-to-market is considered, incorporating
the PC into prefetching and replacement may be considered
too costly by industrial microarchitects. Moreover, modern
data prefetchers [11, 23, 26, 30] do not associate prefetches
with a particular PC. Thus, when the LLC allocates a cache
line brought by a prefetch request, there is no PC value that
can be used for reuse distance prediction. Even for demand
requests, the PC does not always correlate with reuse behav-
ior.

The baseline assumption of PC-based replacement algo-
rithms is that a given memory instruction will exhibit certain
memory use behavior over the program execution, regard-
less of which particular data location that instruction refer-
ences. This is not always true, however, since a single load
or store instruction might show variable cache line reuse be-
havior. For instance, if there is a load instruction located in
a nested loop, data brought by that load may or may not be
reused depending on the result of prior branches. In this sce-

739

for (i=0; i<n; i++) {
X = load(arr[i]); // PC Y loads arr[i]
Z = reuse(X); // PC Y is reused

}
(a) Original loop

X1 = load(arr[0]); // PC Y1 loads arr[0]
...
Xn = load(arr[n−1]); // PC Yn loads arr[n−1]

Z1 = reuse(X1); // PC Y1 is reused once
...
Zn = reuse(Xn); // PC Yn is reused once

(b) Unrolled loop

Figure 3: Loop unrolling example.

nario, using a single PC cannot provide a robust prediction.
Instead of using a single instruction address, it is possible to
accumulate a history of PCs. Although Lai et al. [20] intro-
duced and Liu et al. [22] later refine a dead block predictor
that collects a trace of PCs, using multiple PCs does not im-
prove accuracy in the LLC since most memory accesses are
filtered by upper-level caches, causing many important PCs
to be missed [17].

2.3 Impact of Compiler Optimizations
Compiler optimizations, such as loop unrolling, also affect
the performance of PC-based replacement algorithms. Con-
trary to the prior case where a single PC exhibits multiple
reuse behaviors, loop unrolling generates multiple PCs that
often show the same reuse behavior, necessitating a larger
prediction table to correlate PCs and reuse. Figure 3a shows
a typical example of a loop structure that loads data from an
array and reuses it in the same loop iteration. Without loop
unrolling, the original loop code will be repeated n times. As
a result, a single load instruction (PC Y) will be executed n
times and the resulting data (X) will each be reused once. In
other words, PC Y is responsible for n data reuses. Prior PC-
based replacement algorithms are designed to observe these
n instances of data reuse and update a prediction table by
increasing the reuse counter associated with PC Y.

With compiler loop unrolling, the actual correlation be-
tween PCs and data reuse transforms as shown in Figure 3b.
The compiler generates n consecutive load instructions and
places them ahead of the reuse function. In doing so, we can
reduce the number of branch instructions and achieve more
memory level parallelism. Unlike the original code, the un-
rolled loop contains n load PCs and each PC is associated
with a single reuse rather than the n reuses without unrolling.
To capture this reuse correlation without any conflicts be-
tween PCs, the PC-based replacement algorithm requires at
least n entries in its prediction table. Furthermore, training
n entries will take n times more iterations through the code
as a non-unrolled version. Since loop unrolling is a com-
mon optimization technique, PC-based algorithms will suf-
fer from hardware overheads and less prediction accuracy.

Note that, in the unrolled example, not every PC will be
used to access the predictor on every unrolled iteration, since
an initial demand read will load multiple words causing
subsequent iterations to hit in the L1. Because alignment of
data structures is typically not required to be on LLC block

boundaries, however, the particular PC that causes a miss
will vary from one entry to the unrolled loop to the next.

2.4 The PC can be replaced
Instead of extracting PCs from the front-end of core pipeline,
we propose using a simple global hysteresis mechanism that
quickly adapts to the dynamic program phase and provides
similar or higher prediction accuracy than PC-based pre-
diction. Figure 4 shows how the prediction counter value
changes over the program execution for PC-based predic-
tion and global hysteresis prediction. For PC-based predic-
tion, we profile the most frequently used PC in two SPEC
CPU 2006 benchmarks and track a prediction counter value
correlated to that PC. In this experiment, we use the predic-
tion mechanism proposed in SHiP [36]. If a cache block is
evicted without being reused, the PC that allocated this block
increases its prediction counter value. When the counter
reaches the maximum value of 7, cache blocks brought by
this PC are considered to be dead. Otherwise, if a cache
block is hit, the corresponding PC prediction counter de-
creases. For the global hysteresis experiment, we use a single
3-bit counter that is updated by every LLC hit and miss.

Figure 4a shows the training of the prediction counter
in cactusADM. This benchmark has a long streaming ac-
cess pattern in which all references are effectively dead on
arrival. Both prediction techniques eventually saturate their
prediction counters and predict most incoming cache blocks
to be dead. Some cache blocks with more temporal local-
ity may be preserved to be reused in the LLC. In the fig-
ure, we see that the global hysteresis approach learns faster
than the PC-based because it is updated on every LLC access
while only a subset of references touches any given entry in
the PC-based. Figure 4b shows that the prediction counter
changes frequently in sphinx3 because the working set size
is slightly larger than the size of LLC and there are some
LRU friendly blocks. Still, the global hysteresis adapts to
the program phase much faster than the PC-based prediction
for this workload.

The advantage of fast learning and dynamic adaptation
results in better prediction accuracy. Figure 5 shows the pre-
diction accuracy for PC and global hysteresis predictions. As
we expected, cactusADM shows similar prediction accuracy
for both PC and global hysteresis. For this workload even the
slower training of PC-based is sufficient because the stream-
ing access pattern does not change. Alternately, the global
hysteresis prediction produces much higher prediction accu-

740

0
1
2
3
4
5
6
7

0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06 7.0E+06

Pr
ed

ic
tio

n
Va

lu
e

Execution Cycle

Global PC

(a) cactusADM training time

0
1
2
3
4
5
6
7

0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06

Pr
ed

ic
tio

n
Va

lu
e

Execution Cycle

Global PC

(b) sphinx3 training time

Figure 4: Global hysteresis quickly trains and adapts to pro-
gram phases.

0%

20%

40%

60%

80%

100%

Pr
ed

ic
tio

n
A

cc
ur

ac
y

PC Global Hysteresis

Figure 5: Dead block prediction accuracy for PC and global
hysteresis.

racy for sphinx3. As described above, the global mechanism
more quickly adapts to the program behavior changes seen
in this application.

Why does the simple global hysteresis prediction work?
There are two main reasons behind this. First, the global hys-
teresis makes a dead block prediction only when the counter
is saturated. A single cache hit can change the direction of
prediction. Thus, there is a low risk of discarding useful
cache blocks. Second, data structures with similar temporal
locality tend to be accessed in a similar time frame. Typi-
cally, when a programmer writes an application, he or she
works at the data structure level (i.e., map, list, queue) rather
than hardware cache block level. As a result, when a func-
tion call accesses a data structure, the cache blocks in that
specific structure tend to be accessed at the same time. Thus,

L1D
Cache

L2
Cache

Last Level
Cache

DRAM

Train

Prefetch

Train

Dead Block
Prediction

Update TF

KPC System

KPC-P
Signature Table
Pattern Table

KPC-R
LLC Sampler

Global Counters

Timely
Prefetch

Figure 6: Design overview of the KPC system.

a small global counter can track the reuse behavior of the
LLC without complex hardware. In Section 4, we explore
several aspects of the global hysteresis prediction and their
impact on performance.

3. Design
Here we examine the design of our proposed holistic cache
management algorithm, KPC. KPC has two primary com-
ponents: KPC-P the prefetching component, and KPC-R
the cache replacement algorithm. These components are
co-designed and integrated to achieve high-performance
through the reconstruction of program behavior in the cache
hierarchy.

Figure 6 provides a high level design overview of KPC.
KPC-P is trained by L2 demand accesses and issues each
prefetch with a calculated prediction confidence. The confi-
dence value is used to control prefetch throttling, prefetch-
ing level within the cache hierarchy (i.e., L2 or LLC), and
prefetch promotion. A prefetch is issued only if its confi-
dence is higher than a set prefetching threshold constant
(TP)2. Typically, a prefetch whose predicted use is far in
the future is given a low confidence. KPC-R is trained by
both prefetch and demand LLC accesses. A small fraction
of LLC references are sampled to update the LLC sampler
and predictor. KPC-R also dynamically updates the fill level
threshold (TF) based on feedback about prefetch timeliness
from KPC-P. Thus, the entire KPC module provides a holis-
tic cache management scheme.

3.1 KPC-P: Confidence-based Prefeching
Next we describe in detail the design and mechanisms of the
KPC-P prefetching algorithm.

3.1.1 KPC-P Overview
KPC-P is designed to produce a per-prefetch confidence
value that controls the aggressiveness of prefetching. In-
spired by prior work on lookahead prefetching [16, 19, 30],
KPC-P monitors the pattern of cache block accesses in a

2 We empirically determined 25% for this threshold was optimal.

741

Signature Table (ST)

Page Last SIG P U

0xA 0 - 0 0 0 0 0 0 0 1

0xB 1
è 2

0x1
è 0x9 0 0 0 0 0 1 1 1

Page
0xB

Block 2

Update PT
SIG 0x1 è Delta +1

Pattern Table (PT)

Entry Delta Cdelta Csig

0x0

0x1
-1 2

7 è 8
+1 5 è 6

(a) Update the signature and delta pattern

Signature Table (ST)

Page Last SIG P U

0xA 0 - 0 0 0 0 0 0 0 1

0xB 2 0x9 1 0 0 0 0 1 1 1

I. Index SIG 0x9

Pattern Table (PT)

Entry Delta Cdelta Csig

0x9
+1 8

8
- -

0x10
-1 2

8
+1 6

II. Check Block (2+1) = 3

III. Lookahead SIG 0x49
= (0x9 << 3) XOR (+1)

(b) Confidence-based prefetching

Figure 7: KPC-P training and prefetching.

physical page, and then recursively prefetches future cache
blocks in that page until its prediction confidence falls be-
low a threshold, TP . To achieve this goal, the Signature Ta-
ble (ST), shown in Figure 6, records a compressed history of
past L1 cache block misses as a history of deltas (i.e., differ-
ences) between consecutive memory addresses to the current
physical page. This history, including the delta between the
last reference in the current page and the current reference
in the current page, is used as a signature to index into the
Pattern Table (PT) to look up the predicted next delta in the
current page. Once this prefetching prediction is made, the
PT also generates a “lookahead” signature, corresponding to
the predicted next reference in the current page. This looka-
head signature is used to re-reference the PT and produce
another predicted next delta, and in turn to produce another
lookahead signature, and so on.

Figure 7 illustrates the prefetching mechanism of KPC-
P when an L2 access occurs to physical page 0xB with an
offset of 2 in that page. In the next two subsections we
describe the operation of KPC-P using this example.

3.1.2 KPC-P Training
When the L2 cache accesses a block of offset 2 in page
0xB, KPC-P begins by searching for a matching page entry
in the ST. Figure 7a shows that the page 0xB was recently
accessed, is currently being tracked by the ST, and that the
last block offset accessed in this page was 1. Further, we
see that the most recent delta history signature in this page
(SIG) is 0x1. Thus, the PT is indexed with the signature 0x1.
We see that the PT currently has two valid deltas stored at
index 0x1, -1 and +1. Because the current reference delta
of +1 matches one of these, the +1 delta entry’s occurrence
counter (Cdelta) is incremented, adding confidence to the
prediction of a signature of 0x1 leading to a delta of +1.
The signature occurrence counter (Csig) is also incremented.
We will discuss in Section 3.1.3 how these two counters are
used to estimate prefetch confidence. Each physical page
has its own ST entry, but all pages contribute to building up
predictions in a single PT, which is shared by all pages. This
accelerates delta pattern learning times.

Based on the current reference, the last block offset and
history signature in the ST must also be updated. A new
history signature 0x9 is constructed by shifting the prior

signature (0x1) to the left 3-bits and XORing it with the
current delta (+1). This new value is stored as the new
current signature. The last offset into the page (Last) is also
updated to 2.

The ST also maintains two bit-vectors to track the status
of each cache block within each page. The prefetched (P),
and used (U) vectors work together to ensure cache blocks
are not redundantly prefetched, and enable the calculation
of a general prefetching effectiveness metric, which is used
to throttle future prefetches. The used bit is now set, which
prevents block 2 from being prefetched again by any future
predictions. Finally, we check to see if the prefetch bit corre-
sponding to block offset 2 was previously set. If it was, then
prefetching for that block is considered to be timely. The ST
resets both prefetch and used bits when a block is evicted
from the L2 cache.

3.1.3 KPC-P Prefetching
After updating both tables, KPC-P begins confidence-based
prefetching, as illustrated in Figure 7b. First, (I on the figure)
the PT is indexed by the updated signature 0x9. Any of
the deltas in a PT entry can be prefetched, as long as their
corresponding confidence, calculated as C0 = Cdelta/Csig ,
is above the prefetching threshold TP . In this example, 0x9
was seen 8 times and each time it was always followed by
a +1 delta, giving a confidence of 8/8 = 1 or 100%. Based
on this 100% confidence, KPC-P will plan to prefetch block
offset (2 + 1 = 3) within the physical page 0xB.

However, before the actual prefetch request is issued,
KPC-P must check the status bit-vectors in the ST to prevent
redundant prefetching. If either the corresponding used bit or
prefetch bit is already set, KPC-P simply drops the prefetch
request. Otherwise, the prefetch is issued and the prefetch
bit in the ST is marked to prevent future redundant prefetch
requests to that line. Next, KPC-P generates a new, specula-
tive signature based on the demand signature (0x9) and the
predicted next cache block delta (+1) (III in the figure), cre-
ating the first speculative lookahead signature 0x49. KPC-P
then continues to recursively index the PT. The lookahead
mechanism described here is similar to signature lookahead
prefetching [19].

Without a proper throttling mechanism, KPC-P can be too
aggressive and pollute the cache through infinite recursion

742

when individual deltas in the PT have 100% confidence.
To prevent this from happening, KPC-P calculates a path
confidence according to the following formula:

Cn = α ∗ Cn−1 ∗ Cdeltan/Csign (1)

where n is the current iteration depth and Cn−1 was the path
confidence of the previous iteration. Here we use the global
pefetching accuracy α as a scaling factor, preventing infinite
recursion on 100% confident prefetches. Note that α is eas-
ily calculated by dividing the number of timely prefetches
observed at the ST by the number of prefetch requests at the
PT. KPC-P uses two 10-bit counters to track these numbers
and calculate α. KPC-P also has a small global history regis-
ter that records a prefetch request that goes beyond the 4KB
physical page boundary. Thus, the global history register is
able to provide a signature when there is a new page that
is not tracked by the ST. For simplicity, the global history
register is not shown in Figure 7.

The main advantage of KPC-P is that each prefetch re-
quest has a proxy of its future use distance in the form of
its path confidence Cn. In general, as the depth of lookahead
prefetching increases, the confidence decreases. KPC-P ex-
ploits this confidence to support the replacement policy in
the LLC. Only when the confidence is higher than the fill
level threshold TF , is a prefetched block also inserted into
the L2 (TF is dynamically adapted by KPC-R as described
in Section 3.2.1). Low confidence prefetches with long pre-
dicted use distances stay in the LLC waiting for a prefetch
request with higher confidence to pull them into the L2. Sec-
ond, if a prefetch request is a hit in the LLC, the cache block
is promoted within the replacement stack of the LLC only
when the prefetch confidence is higher than TF . Otherwise,
a prefetch request with low confidence does not change the
replacement state. Low confidence indicates two possible
scenarios: a long use distance, or an inaccurate prefetch re-
quest. In either case, it is best to avoid cache pollution by
not filling a low confidence prefetch into the L2. Further-
more, not promoting on a prefetch hit with low confidence
ensures that the LLC can evict these blocks earlier than other
blocks with higher priority. Thus, KPC-P uses prefetch con-
fidence to integrate prefetching with the replacement policy,
and provides a tool for holistic cache design.

3.2 KPC-R: Global Hysteresis Replacement
Here we examine the design and implementation of KPC’s
global hysteresis replacement algorithm, KPC-R.

3.2.1 KPC-R Overview
KPC-R is a low overhead replacement policy that uses a
global hysteresis to predict dead blocks by tracking global
reuse behavior. Similar to prior work [28, 36], KPC-R as-
sociates the cache recency stack with 2-bit re-reference pre-
diction value (RRPV) counters [14] that represent eviction
priority. A cache block with a small RRPV counter has
low eviction priority whereas a cache block with maximum
RRPV may become the next victim in its set. To train the
global hysteresis, KPC-R randomly samples 64 sets in the

LLC Sampler
Tag Type Used LLCP Level

A Demand 0 è1 X X

B Prefetch 0 è1 X X

A Demand 0 X X

B Prefetch 0 X X

C Prefetch 0 è1 0 è1 LLC

Sampler
Hit

L2
Prefetch

Sampler
Miss

DGH--

PGH--

DGH++

PGH--

PGH++

Figure 8: KPC-R global hysteresis update mechanism.

LLC, and duplicates their tags in a separate structure called
the LLC sampler. The sampler is managed using true LRU
replacement (unlike the real cache, which uses RRPV coun-
ters). When an LLC access is a hit in the sampler, the global
hysteresis decreases, indicating that references during this
program phase are more likely to be used again. Because the
reuse behavior can be different between demand requests
and prefetches, KPC-R has two global hysteresis counters,
one for each request type. If there is a sampler miss, KPC-R
searches for a victim block using the LRU replacement pol-
icy within the sampler. If the victim was never used in the
sampler, KPC-R increments the global hysteresis based on
its allocation type. Note that this global hysteresis is a per-
core counter and not shared by different cores on the same
chip.

3.2.2 KPC-R Training
Figure 8 shows the update algorithm of KPC-R. In the fig-
ure there are three different training scenarios: Sampler
Hit, Sampler Miss and L2 prefetch. The first two cases
are straightforward. If there is a hit in the sampler, KPC-
R marks the used bit for that cache block and decrements
the Demand Global Hysteresis (DGH) or Prefetch Global
Hysteresis (PGH) based on its allocation type, indicating
greater likelihood that references during this phase will be
reused. Once the used bit is set, additional hits to the same
cache block do not decrease the DGH.

If there is a miss in the sampler, KPC-R replaces the LRU
victim in the sampler. As shown in the figure, if the used bit
is set, the victim does not update either the DGH or PGH.
Alternately, if the victim is not accessed by either demand
or prefetch request, KPC-R increases the global hysteresis
value, indicating greater likelihood of references being dead
during this program phase.

When there is an L2 prefetch hit in the sampler, KPC-R
checks whether this block was allocated by an LLC prefetch
through the 1-bit “Level” status in the sampler. If the hit
block was filled with an LLC prefetch, KPC-R marks the
used bit and LLC prefetch bit in the sampler. Remembering
an LLC prefetched block in the sampler allows KPC-R to
dynamically update the fill level threshold TF . Figure 9
shows how KPC-R updates TF based on timely prefetch

743

LLC Sampler
Type Used LLCP Level

Prefetch 1 1 LLCWas it
LLCP?

Signature Table (ST)

Page Last SIG P U

0xB 3 0x49 1 0 0 0 1 1 1 1

FC++

TF
Highest

Lowest

90
75
50
25

FC == MAX?

TF ↓
FC = 0

Figure 9: KPC-R updates fill level threshold for KPC-P

Demand Prefetch

Promotion Always Promote if (Cn > TF)
=¿ Promote

Insertion if (DGH == MAX) if (PGH == MAX)
=¿ Dead =¿ Dead

Fill Level Always L2 and LLC if (Cn < TF)
=¿ LLC

Table 1: KPC-R prediction table.

feedback from KPC-P. Because KPC-P has prefetch and
used bits in the ST, it can detect timely prefetched cache
blocks. When a timely prefetch is detected by the ST, KPC-
P probes the LLC sampler to see if this block was initially
prefetched into the LLC and brought up to the L2 later by an
additional prefetch request. If so, the additional L2 prefetch
request would have been unnecessary if the prefetch fill level
was initially set to the L2. Whenever this event is detected
by sampler, KPC-R increments the fill level counter (FC) by
one. If the FC becomes saturated, then the fill level threshold
TF decreases to allow more prefetches to be filled into the
L2 cache.

To avoid TF becoming too low and KPC-P polluting the
L2 cache, we track the global prefetching accuracy α to in-
crease the fill level threshold. A low α value implies that
KPC-P is likely to pollute the L2 cache with aggressive
prefetching. Therefore, KPC-P increases TF by one level
when α becomes lower than TF . Thus, KPC-R helps the
data prefetcher by setting a dynamic prefetching level and
provides another tool for holistic cache design. Table 1 sum-
marizes the prediction mechanism of KPC-R.

3.2.3 KPC-R Placement/Replacement
Based on the insertion and promotion policy described in
Table 1, KPC-R predicts an incoming demand (or prefetch)
block to be dead when the DGH (or PGH) is saturated. Dead
blocks are inserted to the “LRU” position (RRPV = 3) and
do not change other cache blocks’ RRPV status. If the global
hysteresis is not saturated, the incoming block is inserted to
the “near LRU” position (RRPV = 2). Demand requests are
always inserted into both L2 and LLC, while a prefetch’s
fill level is determined by its confidence value. If there is a
cache hit, the promotion scheme is based on its access type

Core Parameters

1-4 Cores, 3.2 GHz
256 entry ROB, 4-wide

64 entry scheduler
64 entry load buffer

Branch Predictor 16K entry gshare
20 cycle mispredict penalty

Private L1 Dcache 32KB, 8-way, 4 cycles
8 MSHRs, LRU

Private L2 Cache 256KB, 8-way, 11 cycles
16 MSHRs, LRU, Non-inclusive

Shared L3 (LLC) 2MB/core, 16-way, 34 cycles,
LRU, Non-inclusive

Main Memory
1-2 64-bit channels

2 ranks/channel, 8 banks/rank
1600 MT/s

Table 2: Simulator parameters.

and confidence value. For demand requests, KPC-R always
promotes reused block to the “MRU” position (RRPV = 0).
For prefetch requests, KPC-R promotes a reused block only
when its prediction confidence is higher than the current fill
level threshold (Cn > TF), as described in Section 3.1.3.

4. Evaluation
In this section, we evaluate the KPC system. First, we
present the evaluation methodology and compare the per-
formance of KPC with recently proposed replacement algo-
rithms and data prefetchers. We also show in-depth analysis
on prefetching coverage with a sensitivity study.

4.1 Methodology
We compare KPC with various prefetching and replace-
ment algorithms using the ChampSim simulator, an ex-
tended version of the simulation infrastructure used in the
2nd Data Prefetching Championship (DPC-2) [25]. The
detailed simulation parameters can be found in Table 2.
We collect SimPoint [24] traces from 16 memory inten-
sive SPEC CPU2006 [1] applications, 3 server workloads
from CloudSuite [7], and one machine learning workload
trace from mlpack [3] that does collaborative filtering on
real world data sets [8]. Since our SimPoint methodology
does not work with the server workloads (CloudSuite and
mlpack), we instead collect the server workload traces af-
ter fast-forwarding at least 30B instructions to get past the
benchmark’s initialization phase. For all experiments, each
trace is warmed up with 200M instructions and simulation
results are collected over the next 1B instructions. The base-
line replacement policy is LRU replacement for all caches
unless otherwise stated. We compare against two prefetch-
aware replacement policies, UMO [11] and PACMan [37].
We also compare against two prefetch non-aware replace-
ment policies, EAF [28] and SHiP [36]. Since the original
SHiP algorithm does not work well with a data prefetcher as
it requires a PC for every insertion, we implement a modi-
fied version of SHiP (SHiP+) that uses a single PC value to
represent all prefetch requests.

744

1.092

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

IP
C

 S
pe

ed
 u

p
ov

er

D
A

-A
M

PM
 +

 L
R

U
UMO PACMan EAF SHiP+ KPC-R KPC

Figure 10: Single core performance compared to DA-AMPM + LRU

4.2 Performance
Single-core Performance: Figure 10 shows the single-core
IPC speedup. All results are normalized to the baseline con-
figuration, where the DA-AMPM prefetcher [11] is used
with LRU replacement in the caches. In general, KPC has
similar or better performance versus the other cache manage-
ment schemes. The geometric mean improvement of KPC is
9.2%, 5% higher than the best prior work scheme, the op-
timized PC-based replacement policy (SHiP+) [36], 5.8%
higher than the prior work on prefetch aware mechanism
(PACMan) [37], and 8.1% higher than previously proposed
unified memory architecture (UMO) [11]. We also plot the
performance of our replacement scheme KPC-R combined
with the prior work DA-AMPM. Since KPC-R is not co-
designed for operation with DA-AMPM, we see that the per-
formance of this combination is only marginally better than
SHiP+.

Non-PC-based algorithms such as EAF and KPC-R
show less performance improvement for mcf, sphinx3, and
xalancbmk. These benchmarks exhibit a large number of
LLC misses; the reuse behavior of missing cache blocks in
these apps is correlated to a large set of various PCs. In this
case, each PC value serves as a unique identifier for reuse
prediction and shows higher performance gain than non-PC-
based schemes. Still, EAF and KPC-R show reasonable per-
formance on these benchmarks. When both prefetching and
replacement policy are integrated into one holistic system
(KPC), mcf and xalancbmk experience more performance
degradation. In this case, both benchmarks benefit from
DA-AMPM’s aggressive prefetching, which brings more
cache lines, achieving more coverage with lower utilization.
When confidence is low, KPC dynamically throttles down
its lookahead prefetching and has fewer timely prefetches
leading to lower performance gains. Aggressive prefetching
does not hurt overall performance in a single core environ-
ment since only one core is exclusively using the LLC. How-
ever, when there are multiple applications competing for the
shared resource [4], prior cache management schemes fail to
achieve good performance. The multi-core performance of
KPC in the next section clearly shows the benefit of dynamic
throttling.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

W
ei

gt
he

d
Sp

ee
du

p

UMO PACMan EAF SHiP+ KPC-R KPC
1.016 1.027Geomean: 1.042 1.060 1.1411.081

Figure 11: 4-core multiprogrammed workloads perfor-
mance.

0.950

1.000

1.050

1.100

EAF SHiP+ PACMan KPC-R

IP
C

 S
pe

ed
up

 o
ve

r
D

A
-A

M
PM

 +
 L

R
U

Replacement Policy

Adjacent BOP DA-AMPM KPC-P

Figure 12: Various combinations of prefetching and replace-
ment algorithms.

Multi-core Performance: Since other schemes have no
mechanism to regulate the aggressiveness of the prefetcher
based on use and replacement, KPC shows superior per-
formance improvement in a multi-core environment. For
multi-core experiments, we randomly generate 54 mixes of
4-core workloads and assign each workload to a different
core. Figure 11 shows the normalized weighted speedup
of the six different techniques we tested in this work. The

745

0%

20%

40%

60%

80%

100%

120%

140%

D K D K

astar bwaves bzip2 cactus Gems gromacs lbm leslie3dlibquantum mcf milc omnetpp soplex sphinx3 xalancbmk zeusmp Data Graph SAT mlpack Average

Covered Uncovered Over Prefetched

Figure 13: Prefetching coverage: DA-AMPM vs. KPC-P.

graph is sorted by weighted speedup order. On average, KPC
achieves a 14.1% speedup and outperforms SHiP+ by 8.1%.
Out of the 54 mixes, KPC shows best performance on 52
mixes. For the remaining mixes, SHiP+ or EAF beats KPC
by less than 2%. The substantial performance gap between
KPC and other techniques is mainly due to the cooperation
between KPC-P and KPC-R described in Sections 3.1 and
3.2.
KPC-R with other data prefetchers: To further validate
the synergy between KPC-R and KPC-P, we also evaluate
different types of data prefetchers with various replacement
policies. Figure 12 plots the performance of various combi-
nations between data prefetchers and replacement policies.
Here, along with KPC-P and DA-AMPM, we also evalu-
ate an adjacent cache line prefetcher (Adjacent) [9] and
Best-Offset Prefetcher (BOP) [23] (BOP was the winner of
the 2nd Data Prefetching Competition (DPC-2) [25]). Both
prefetchers are offset-based spatial prefetchers which ex-
hibit different characteristic compared to streaming based
prefetchers (e.g., DA-AMPM and KPC-P). The performance
is normalized to DA-AMPM with LRU. Since UMO shows
the least improvement, we have removed it from this fig-
ure. Figure 12 shows that KPC-R still achieves great per-
formance versus other techniques regardless of prefetching
algorithms. In particular, KPC-R achieves the best perfor-
mance when it is combined with KPC-P. KPC-R adds 3.8%
performance on the top of KPC-P while PACMan shows the
second best performance of 2.3% above KPC-P with LRU.
To summarize, the global hysteresis replacement scheme
works well for both spatial and streaming based prefetchers,
however, its gain is maximized when KPC-R is used with
KPC-P due to the synergistic effect of holistic cache man-
agement.

4.3 Analysis
Prefetching Coverage: Figure 13 shows prefetching cover-
age of DA-AMPM and KPC-P. Each prefetcher is labeled
by its first letter. On average, KPC-P covers 61% of on-chip
cache misses with 3% over prefetched blocks while DA-
AMPM covers 59% misses with 13% over prefetches. Over
prefetches represent the sum of prefetches never used prior
to eviction, caused by aggressive prefetching. Compared to

0
10
20
30
40
50
60
70
80
90

100

0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08

Fi
ll

L
ev

el
 T

hr
es

ho
ld

 (T
F
)

Execution Cycle

mcf lbm SAT Solver

Figure 14: Dynamic adaptation of fill level thrshold TF .

KPC-P, DA-AMPM produces 10% more over prefetched
blocks. In particular, we can see that DA-AMPM generates
a higher fraction of over prefetching for mcf, xalancbmk,
and SAT solver, where DA-AMPM achieves greater perfor-
mance. Note that for these benchmarks, the actual number
of prefetches is also higher for DA-AMPM. While this does
provide some gain for these benchmarks, the over prefetch-
ing becomes a serious issue when multiple applications con-
tend for shared resources such as LLC capacity and memory
bandwidth, as shown in Figure 11. Since KPC is designed to
adapt prefetch placement and aggressiveness by closely inte-
grating the prefetcher and replacement policy, KPC exhibits
less performance gain for single-core but achieves much
higher benefit in a multi-core environment.
Dynamic Fill Level Thrshold: Figure 14 shows the dy-
namic adaptation of the fill level threshold TF over program
execution. As we see, each benchmark prefers a different TF
value. For example, KPC lowers TF for lbm since most of
prefetches are useful in the L2 cache. The timely prefetch
feedback from KPC-P to KPC-R quickly adjusts the TF
value. On the other hand, KPC does not change TF for mcf
since its reference pattern is unpredictable. For SAT Solver,
TF frequently changes due to program phase, based on its
global prefetching accuracy. Thus, KPC dynamically adapts
its fill level threshold to each individual application.

746

Structure Entry Component Storage

Signature Table 256

Valid (1 bit)
Tag (16 bit)

Last offset (6 bit)
Signature (12 bit) 43776 bits
Prefetch (64 bit)

Used (64 bit)
LRU (8 bit)

Pattern Table 512
Csig (4 bit)

Cdelta (4*4 bit) 24576 bits
Delta (4*7 bit)

LLC Sampler 64

Valid (1 bit)
Tag (16 bit)
Type (1 bit)
Used (1 bit) 1600 bits

LLCP (1 bit)
Level (1 bit)
LRU (4 bit)

Hysteresis 1 DGH (3 bit) 3 bits
1 PGH (3 bit) 3 bits

Misc. - Registers 284 bits
43776 + 24576 + 1600 + 6 + 284 = 70242 bits ≈ 8.57 KB

Table 3: KPC storage overhead.

Prefetcher Replacement Total Storage

DA-AMPM: 4.8 KB

UMO: 20 bits ≈ 4.81 KB
PACMan: 30 bits ≈ 4.81 KB

EAF: 32 KB ≈ 36.8 KB
SHiP: 7.18 KB ≈ 11.98 KB

KPC-R: 0.23 KB ≈ 5.03 KB
KPC-P: 8.34 KB KPC-R: 0.23 KB ≈ 8.57 KB

Table 4: Storage overhead comparison.

Global Hysteresis Sensitivity: We also investigated the per-
formance sensitivity of the global hysteresis to its counter
bit-width (figure removed for brevity). We changed the
width of global hysteresis from 1-bit to 10-bits and mea-
sured the geomean performance. Surprisingly, we find that,
for single-core, the performance of KPC is very insensitive
to the width of the global hysteresis counter. Even for a 1-bit
counter, performance drops by only 1.2%. For multi-core,
however, we found that using a counter width below 2-bits
suffers from substantial performance degradation. Though
the global hysteresis is a per-core counter, multiple appli-
cations put additional memory pressure on the LLC and
frequently toggle the prediction of a 1-bit global hystere-
sis, causing performance degradation. The final design of
KPC uses 3-bit global hysteresis because there is no visible
difference in performance above 3 bits.
Storage Overhead: Table 3 shows the storage overhead of
KPC. All together, KPC requires a modest 8.57KB of state
per core, with only 2% of the overhead coming from KPC-R.
Most of the storage overhead lies with KPC-P, since KPC-R
only uses a small sampler and two narrow hysteresis coun-
ters per core. Table 4 presents a storage comparison be-

tween KPC and previous cache management schemes. Note
that the storage overhead of KPC is comparable to exist-
ing state-of-the-art replacement algorithms while providing
higher performance.

Moreover, unlike PC-based schemes, KPC does not re-
quire extra logic/wires to propagate PC values through from
the instruction fetch unit, to the load store queue, and then
the entire cache hierarchy. Both UMO and PACMan rely
on set dueling [27] that only requires two or three global
counters. In doing so, their storage overheads are very small
but come with the cost of low performance improvement.
In particular, in multi-core environments, set dueling based
policies show less performance gain than others because the
learning overhead from set dueling monitors grows as the
number of cores increases [37].

5. Related Work
This section reviews some of the most relevant techniques
proposed in cache replacement policy and data prefetching.

5.1 Replacement Policy
PC-based replacement: Lai et al. [20] first introduced a
concept of dead block prediction to prefetch data into dead
blocks in the L1 cache. The prediction is made by learning
a trace of PCs that leads to the last access for a cache block.
If a specific trace is known to generate a dead block, the
trace based predictor speculates that other blocks accessed
by the same trace is likely to be dead in near future. Khan et
al. proposed a much simplified but more powerful sampling
dead block predictor (SDBP) [17] using a single instance
of PC rather than a trace of PCs. Rather than learning ev-
ery access to the cache, SDBP samples a small number of
sets using partial tags. If the last PC that accessed a cache
block is known to be dead in the sampled sets, SDBP up-
dates prediction counter. Once the prediction counter goes
above certain threshold, then the corresponding block is pre-
dicted dead. Wu et al. proposed a signature-based hit pre-
dictor (SHiP) [36] to predict how soon a block will be re-
referenced. SHiP’s structure consists of a table of 3-bit sat-
urating counters that are indexed by the PC of the memory
instruction that caused the block’s fill. Counters are incre-
mented on every hit, and decremented on an unused evic-
tion. The predictions are used to determine the placement
position of incoming blocks following the RRIP policy [14].
If the block is predicted to have a far reuse, its placement
position will be ”distant re-reference interval”, otherwise the
block will be predicted to have an ”intermediate re-reference
prediction” and be place accordingly. Two recent replace-
ment policies have been proposed which attempt to approx-
imate Belady’s optimal replacement policy, either through
sampling-based learning [12] or a perceptron learning ap-
proach [34].
Non-PC-based replacement: Qureshi et al. [27] proposed
a simple bimodal insertion policy (BIP) that places most
incoming cache blocks in the LRU position. In this way,
BIP protects the cache from thrashing caused by streaming
data and results in higher hit rate. In addition, to choose be-

747

tween bimodal policy and traditional LRU policy, Quresh et
al. [27] propose a set dueling mechanism that dedicates few
sets of the cache to each of the two competing policies.
Later, Jaleel et al. [13, 14] further improves the bimodal
insertion and set dueling mechanism by predicting the re-
reference interval using the RRIP chain, as discussed in Sec-
tion 3.2.1. Seshadri et al. proposed a mechanism that tracks
the addresses of recently evicted blocks in a structure called
Evicted-Address Filter(EAF) [28]. If an incoming block’s
address is present in the EAF it is predicted to have high
reuse, all other blocks are predicted to have low reuse. These
predictions are used to decide the placement positions of
blocks. Blocks predicted to have high reuse will be inserted
with a high priority, i.e., at the MRU position, blocks pre-
dicted to have low reuse will be inserted in a low priority po-
sition such as the LRU position, and will be quickly evicted
from the cache.

5.2 Data Prefetcher
Srinath et al. proposed a feedback directed prefetcher which
estimates accuracy and decides where in the LRU stack to
insert the prefetched blocks in the cache [32]. However, the
feedback directed prefetcher requires additional prefetch bit
in the every cache block and its replacement policy does not
cover dead blocks brought by demand requests. The main
prefetching algorithm of KPC-P is inspired by prior con-
fidence based data prefetchers [16, 19]. B-Fetch [16] in-
troduced a lookahead prefetching mechanism with the sup-
port from branch predictor. SPP [19] eliminates the com-
plex hardware support from branch predictor and register file
while covering both sequential and complex memory access
patterns. Though the confidence mechanism is adopted from
prior works [16, 19], the KPC-P uniquely leverages prefetch-
ing confidence to control both prefetching and cache place-
ment/replacement.

5.3 Prefetch-aware Replacement
As described in Section 2.1, a handful of techniques exist
which attempt to integrate prefetching and replacement into
a combined scheme. PACMan [37] is designed to mitigate
the degree of prefetch-induced interference. The main idea
is to have multiple cache insertion/promotion policies and
select the best policy using set dueling [27]. However, as
noted in Section 2.1, the learning overhead of set dueling
with multiple policies increases as the number of core grows
in a processor. Seshadri et al. propose ICP [29] for LLC
prefetching. ICP always demotes prefetched blocks after
their first hit. This is mainly because most prefetches are
dead after the first access. However, prefetching every block
into the LLC does not maximize the performance of data
prefetchers. In addition, to demote a prefetched block after
its first hit, ICP requires additional prefetch bit for every
cache line in the LLC. Unified Memory Architecture [11] is
the most recent work which examines holistic cache design.
UMO uses the DA-AMPM prefetcher to increase the DRAM
row buffer locality and change the replacement algorithm
that exploits the prefetcher’s map structure. UMO requires

additional access to the L2 data prefetcher on every LLC
access since the replacement policy needs to lookup the map
table of DA-AMPM at the L2 cache.

To the best of our knowledge, KPC is the first technique
to leverage prefetch confidence in its replacement policy and
cache level placement. This integrated approach provides
significant performance improvement versus all prior tech-
niques.

6. Conclusion
Kill-the-PC reconstructs program behavior in the cache hi-
erarchy by taking a holistic approach to cache management.
Tightly integrating L2 prefetching and LLC management
into one unified solution, KPC is effective at making sure
data is as close to the processor core as possible when it is
needed by a demand access. In addition to being an effective
prefetcher for complex delta patterns, the prefetching com-
ponent, KPC-P, feeds confidence information about each in-
dividual prefetch to the LLC replacement component, KPC-
R. A low confidence prefetch is less likely to interfere with
the contents of the LLC, and as confidence in that prefetch
increases, its position within the LLC replacement stack is
solidified, and it eventually is brought into the L2 cache,
close to where it will be used in the processor core. In ad-
dition to effectively predicting dead LLC blocks by observ-
ing program phase behaviors, KPC-R also gives feedback to
KPC-P to help decide on the optimal fill level for prefetches.

While KPC-P and KPC-R can each stand on its own as
an effective solution within its own domain, the combina-
tion of both is more effective than replacing either compo-
nent with a state-of-the-art solution. KPC provides a 9.2%
performance benefit versus a baseline system with a top-of-
class prefetcher, besting the nearest competitor by 5%. Fur-
ther, across our suite of multicore mixes, KPC improves per-
formance by 14.1% versus a prefetching+LRU baseline and
extends its lead over the best of class competitor to 8.1%.

Acknowledgments
We thank the National Science Foundation, which par-
tially supported this work through grants CCF-1320074 and
I/UCRC-1439722, and Intel Corp. for their generous sup-
port.

References
[1] Standard Performance Evaluation Corporation CPU2006 Benchmark

Suite. http://www.spec.org/cpu2006/.
[2] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme

to reduce data access penalty. In Supercomputing, 1991. Supercom-
puting’91. Proceedings of the 1991 ACM/IEEE Conference on, pages
176–186. IEEE, 1991.

[3] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A.
Mehta, and A. G. Gray. MLPACK: A scalable C++ machine learning
library. Journal of Machine Learning Research, 14:801–805, 2013.

[4] N. D. Enright Jerger, E. L. Hill, and M. H. Lipasti. Friendly fire:
understanding the effects of multiprocessor prefetches. In Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 177–188, 2006.

[5] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In Computer

748

Architecture (ISCA), 2011 38th Annual International Symposium on,
pages 365–376. IEEE, 2011.

[6] V. V. Fedorov, S. Qiu, A. L. Reddy, and P. V. Gratz. Ari: Adaptive
llc-memory traffic management. ACM Transactions on Architecture
and Code Optimization (TACO), 10(4):46, 2013.

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi.
Clearing the clouds: a study of emerging scale-out workloads on mod-
ern hardware. In ACM SIGPLAN Notices, volume 47, pages 37–48.
ACM, 2012.

[8] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems (TiiS),
5(4):19, 2016.

[9] R. Hegde. Optimizing application performance on intel core microar-
chitecture using hardware-implemented prefetchers. Intel Software
Network, 2008.

[10] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level
Parallelism, 13:1–24, 2011.

[11] Y. Ishii, M. Inaba, and K. Hiraki. Unified memory optimizing ar-
chitecture: memory subsystem control with a unified predictor. In
Proceedings of the 26th ACM international conference on Supercom-
puting, pages 267–278. ACM, 2012.

[12] A. Jain and C. Lin. Back to the future: leveraging belady’s algorithm
for improved cache replacement. In Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on, pages 78–
89. IEEE, 2016.

[13] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely Jr, and
J. Emer. Adaptive insertion policies for managing shared caches. In
Proceedings of the 17th international conference on Parallel archi-
tectures and compilation techniques, pages 208–219. ACM, 2008.

[14] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer. High perfor-
mance cache replacement using re-reference interval prediction (rrip).
In ACM SIGARCH Computer Architecture News, volume 38, pages
60–71. ACM, 2010.

[15] D. A. Jiménez. Insertion and promotion for tree-based pseudolru last-
level caches. In Proceedings of the 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 284–296. ACM, 2013.

[16] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jiménez.
B-fetch: Branch prediction directed prefetching for chip-
multiprocessors. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 623–634.
IEEE Computer Society, 2014.

[17] S. Khan, Y. Tian, and D. A. Jiménez. Sampling dead block prediction
for last-level caches. In Microarchitecture (MICRO), 2010 43rd An-
nual IEEE/ACM International Symposium on, pages 175–186. IEEE,
2010.

[18] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A.
Jiménez. Improving cache performance by exploiting read-write
disparity. In Proceedings of the 20th Internatial Symposiym on High
Performance Computer Architecture (HPCA), pages 452–463. IEEE,
2014.

[19] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson,
and Z. Chishti. Path confidence based lookahead prefetching. In
Microarchitecture (MICRO), 2016 49rd Annual IEEE/ACM Interna-
tional Symposium on. IEEE, 2016.

[20] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-
block correlating prefetchers. In Computer Architecture, 2001. Pro-
ceedings. 28th Annual International Symposium on, pages 144–154.
IEEE, 2001.

[21] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Sparkbench: a
comprehensive benchmarking suite for in memory data analytic plat-
form spark. In Proceedings of the 12th ACM International Conference
on Computing Frontiers, page 53. ACM, 2015.

[22] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts:
A new approach for eliminating dead blocks and increasing

cache efficiency. In Proceedings of the IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 222–233, Los
Alamitos, CA, USA, 2008. IEEE Computer Society. doi:
http://doi.ieeecomputersociety.org/10.1109/MICRO.2008.4771793.

[23] P. Michaud. A best-offset prefetcher. In High Performance Computer
Architecture (HPCA), 2016 IEEE 20th International Symposium on.
IEEE, 2016.

[24] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder. Using simpoint for accurate and efficient simulation.
In ACM SIGMETRICS Performance Evaluation Review, volume 31,
pages 318–319. ACM, 2003.

[25] S. H. Pugsley, A. R. Alameldeen, C. Wilkerson, and
H. Kim. The 2nd Data Prefetching Championship (DPC-2).
http://comparch-conf.gatech.edu/dpc2/.

[26] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian. Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers. In
High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, pages 626–637. IEEE, 2014.

[27] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer.
Adaptive insertion policies for high performance caching. In ACM
SIGARCH Computer Architecture News, volume 35, pages 381–391.
ACM, 2007.

[28] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, pages 355–366.
ACM, 2012.

[29] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry. Mitigating prefetcher-caused pollution
using informed caching policies for prefetched blocks. ACM Transac-
tions on Architecture and Code Optimization (TACO), 11(4):51, 2015.

[30] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti. Efficiently prefetching complex address
patterns. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture, 2015.

[31] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial memory streaming. In ACM SIGARCH Computer Architecture
News, volume 34, pages 252–263. IEEE Computer Society, 2006.

[32] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pages 63–
74. IEEE, 2007.

[33] E. Teran, Y. Tian, Z. Wang, and D. A. Jiménez. Minimal disturbance
placement and promotion. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 201–211.
IEEE, 2016.

[34] E. Teran, Z. Wang, and D. A. Jiménez. Perceptron learning for
reuse prediction. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[35] J.-Y. Won, P. Gratz, S. Shakkottai, and J. Hu. Having your cake and
eating it too: Energy savings without performance loss through re-
source sharing driven power management. In Low Power Electronics
and Design (ISLPED), 2015 IEEE/ACM International Symposium on,
pages 255–260. IEEE, 2015.

[36] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer. Ship: Signature-based hit predictor for high performance
caching. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 430–441. ACM, 2011.

[37] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr, and J. Emer.
Pacman: prefetch-aware cache management for high performance
caching. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 442–453. ACM, 2011.

[38] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications
of the obvious. SIGARCH Comp. Arch. News, 23:20–24, March 1995.
ISSN 0163-5964.

749

