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ABSTRACT
Caches are essential to the performance of modern micro-
processors. Much recent work on last-level caches has fo-
cused on exploiting reference locality to improve e�ciency.
However, value redundancy is another source of potential
improvement. We find that many blocks in the working set
of typical benchmark programs have the same values. We
propose cache deduplication that e�ectively increases last-
level cache capacity. Rather than exploit specific value re-
dundancy with compression, as in previous work, our scheme
detects duplicate data blocks and stores only one copy of the
data in a way that can be accessed through multiple physical
addresses. We find that typical benchmarks exhibit signif-
icant value redundancy, far beyond the zero-content blocks
one would expect in any program. Our deduplicated cache
e�ectively increases capacity by an average of 112% com-
pared to an 8MB last-level cache while reducing the physical
area by 12.2%, yielding an average performance improve-
ment of 15.2%.

1. INTRODUCTION
Caches play an essential role in modern microprocessors

to bridge the gap between fast processor speed and high ac-
cess latency of main memory. A simple solution to improve
cache performance is to increase the cache size. However,
increased cache size leads to increased power and area con-
sumption. In a chip-multi processor (CMP), often more than
half of the chip area is occupied by caches that contribute
to significant power consumption [37, 18, 31]. In a conven-
tional cache, each block is associated with a requested mem-
ory block address and a copy of the data. Di�erent cache
blocks with di�erent addresses can contain copies of identical
data. These duplicated blocks waste cache capacity because
they store redundant information. As an example, Figure 1
shows the average percentage of duplicated blocks stored in
a 2MB last-level cache (LLC) in 18 randomly selected SPEC
CPU2006 benchmarks [11]. Thirteen of 18 benchmarks have
more than 20% duplicated cache blocks. For benchmarks
zeusmp and GemsFDTD, more than 90% of cache blocks
are duplicated. On average, 35% of cache blocks store du-
plicated data in the LLC.

Cache compression has been proposed to improve e�ec-
tive cache capacity [1, 2, 4, 19, 20, 40, 38, 10, 28]. Storing
compressed cache blocks potentially reduces cache misses by
increasing e�ective capacity. However, the processes of com-
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Figure 1: Average percentage of duplicated blocks in LLC.

pression and decompression significantly increase cache ac-
cess latency, thus degrading performance. The zero-content
augmented cache [8] was proposed to reduce the storage of
cache blocks that contain null data. Storing only physical
addresses and valid bits of null blocks in an augmented cache
saves cache area and improves overall performance. How-
ever, the percentage of zero-content blocks is relatively small
on average, the performance improvement is also small.

We propose cache deduplication to improve performance
significantly by exploiting value redundancy to increase ef-
fective cache capacity. Cache deduplication eliminates du-
plicated data stored in the cache. Instead of storing di�erent
copies of identical data, duplicated blocks are stored as ref-
erences to distinct data. The saved capacity can be used
to store more blocks to increase the overall e�ectiveness of
the cache, reducing the frequency of costly o�-chip memory
accesses.

This paper makes the following contributions:
• We find that widespread duplication exists in caches

and quantify the cache duplication e�ect in 18 SPEC
CPU2006 benchmarks.

• We propose a unified cache-deduplication technique
to improve cache performance with increased e�ec-
tive cache capacity. By exploiting block-level value re-
dundancy, cache deduplication significantly increases
cache e�ectiveness with limited area and power con-
sumption.

• We propose a novel LLC design with cache deduplica-
tion. Compared to a conventional LLC, the dedupli-
cated LLC uses similar chip area and power consump-
tion while performing comparably to a double-sized
conventional LLC.

Based on our experiments, cache deduplication improves
performance by 15.2% compared to a baseline 8MB LLC,
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which is comparable to a conventional 16MB LLC and su-
perior to 12MB and 14MB caches, while using 12.2% less
physical area than a conventional 8MB LLC.

In this paper, Section 2 motivates the proposed technique.
Section 2.2 describes cache deduplication in detail, followed
by a novel design of deduplicated LLCs in Section 3. Section
4 discusses the experimental methodology we use, followed
by the experimental results in Section 5. A detailed anal-
ysis is presented in Section 6. Related work is discussed in
Section 7, and we conclude in Section 8.

2. MOTIVATION AND CHALLENGES
2.1 Motivation

Conventional cache design wastes capacity because it stores
duplicated data. When a memory request is issued, the data
fetched from the main memory also is brought into caches for
future requests. This data is associated with a tag derived
from its physical memory address. However, cache blocks
with di�erent block addresses may contain identical data.
The same chunk of data is duplicated in the cache because
the tags di�er.

We measure the percentage of distinct blocks stored in a
2MB 16-way LLC during the execution of 18 SPEC CPU2006
benchmarks, each running for an interval of one billion in-
structions. We count the number of distinct blocks every 10
million instructions. The ratio of distinct blocks varies with
the workload, but there always are duplicated blocks stored
in the cache for all the benchmarks. Among the bench-
marks, hmmer has the smallest percentage of duplicated
blocks (2.7% on average) and zeusmp has the largest per-
centage of duplicated blocks (97.8%). On average, 35.1% of
cache blocks are duplicated for all the benchmarks.

i f ( serEng . needToStoreObject ( objToStore ) ) {
int vectorLength = objToStore≠>s i z e ( ) ;
serEng<<vectorLength ;
for ( int i = 0 ; i < vectorLength ; i ++) {

XercesStep ú data = objToStore≠>
elementAt ( i ) ;

serEng<<data ;
}

}

Listing 1: storeObject() in XTemplateSerializer.cpp
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Figure 2: Percentage of distinct blocks for null-block dedu-
plication and all repeating-block deduplication.

This phenomenon happens mainly because of program be-
haviors and input characteristics. Program behavior such as
copying and assignment generate duplicate data stored at
di�erent memory locations. Listing 1 shows a code snippet
of assignment in the SPEC CPU2006 benchmark xalancbmk.
Elements in the vector objToStore are stored in the bu�er

serEng. After running this code, there are two copies of
the same data stored in the cache. A similar phenomenon
happens with memory operations like memcpy() 1.

Another source of duplication is program input. For ex-
ample, the input of the SPEC CPU2006 benchmark zeusmp
is “a spherical blastwave with radius r=0.2 and located at
the origin” [11], which contains perfect symmetry, leading
to a significant amount of data similarity (97.8% of cache
blocks are duplicated in our experiment). Similar input
characteristics exist in benchmark GemsFDTD, in which
more than 90% of cache blocks are duplicated. Symmetric
data is common especially in scientific workloads, causing
copious duplication of non-zero values.

Previous cache-compression techniques proposed to com-
press specific values that cause data duplication [1, 8, 28]
such as zero. Based on our experiments, eliminating zero-
content (null) blocks can save only 13% of the cache capacity,
while eliminating all possible duplication leads to 47.5% of
cache blocks removed/invalidated, as shown in Figure 2. In
other words, almost half of the cache capacity can be saved
with data deduplication.

The majority of duplication contains non-zero data val-
ues resulting from input and/or computation with a random
distribution of the number of copies depending on program
behavior. As an example, we take a random execution point
of xalancbmk to show the nature of duplication degree and
duplicated data. At a random execution point, in a 2MB
cache, there are 14,931 distinct blocks out of 29,278 of cache
blocks (i.e., 51% of blocks are distinct). There are 2,414
chunks of data associated with two tags each, so 16% of
blocks are duplicated once. There are 1,157 zero-content
blocks. If only zero-content blocks are compressed, only 4%
of total capacity is saved. If all the duplication can be elim-
inated from the cache, more than 38% of the capacity of the
2MB cache can be saved, which is about three times larger
than a modern processor’s typical 256KB L2 cache.

2.2 Challenges of Cache Deduplication
Data deduplication is a specific compression technique to

eliminate duplicated copies of repeating data. It has been
used widely in disk-based storage systems [6, 39, 12]. With
data deduplication, only a single instance of identical data
is stored physically. The redundant data is stored as ref-
erences to the corresponding data in a deduplicated data
storage to improve storage utilization. Although commonly
used in disk storage and main-memory compression, data
deduplication is a challenge in caches with limited overhead
due to the following concerns:

How to detect duplication: The first challenge is the
way to compare data to detect possible duplication. Du-
plication can be detected by comparing the analyzed data
either with all the stored data or to a specific part of a tree-
based data array. Because caches contain a large number
of blocks, direct comparison with all blocks is prohibitively
expensive. A tree-based structure requires more metadata
to maintain the tree while the time complexity is still too
high for a large number of nodes. Indexing using a hash
function is a fast solution to find the data with which to
compare. However, simply using a hash function to index
the data array is ine�cient because of underutilization of

1Some compilers and ISAs generate specialized code so that
certain copies bypass the cache. For instance, Intel’s C com-
piler and libraries will use a non-temporal store for mem-
cpy() if the size of the data moved is larger than 256KB [9].
However, shorter instances of copying continue to lead to
significant cache data duplication.
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the data array. A practical duplication-detection technique
must be fast as well as storage-e�cient.

When to detect duplication: The second challenge is
the point at which to process duplication detection. Caches
play an important role in bridging the performance gap be-
tween processors and the main memory, in which access la-
tency is critical to the overall system performance. The
process of duplication detection should not a�ect the cache
latency.

Deduplication granularity: Previous work [40, 38,
2, 1, 8, 28] used sub-block level granularity to compress all
possible compressible data. Granularity at the sub-block-
level may lead to a higher rate of deduplication, but it also
causes increased access latency, additional power overhead,
and more complex hardware design. Although the e�ective
capacity can be increased more with sub-block-level dedu-
plication, the system performance may be degraded because
of the increased access latency. The trade-o�s among com-
pression degree and increased cache latency and overhead
makes compression granularity another challenge for cache
deduplication.

Write hit and replacement of duplicated blocks:
The last challenge in cache deduplication design is dealing
with write hits and replacement of duplicated blocks. When
a store instruction writes duplicate data, the updated block
must be allocated a new entry to di�erentiate from the pre-
vious value. When duplicate data is invalidated or evicted
from a deduplicated cache, all tags that are associated with
this data also should be invalidated. Previous work pro-
posed storing all possible tags in each data entry [23], which
is impractical in a cache design due to the limited capac-
ity. An intelligent and low-overhead data management is
required in a practical cache deduplication design.

3. DEDUPLICATED LAST-LEVEL CACHE
We propose a practical LLC design eliminating duplicated

cache blocks that we call a deduplicated LLC. To address the
challenges cited in the previous section, deduplicated LLC
uses augmented hashing to detect duplication, which is fast
and makes the most of the utilization of the cache capacity.
It uses post-process detection [17] to hide possibly increased
cache latency. It uses block-level-deduplication granularity
to compare the analyzed block with the data already stored
in the cache, regardless of its content, to exploit data du-
plication fully with limited overhead. For the replacement
policy of the duplicated blocks, we propose the distinct-first
random replacement (DFRR) policy for e�ciency.

3.1 Structure
Figure 3 shows the structure of a deduplicated LLC. It

consists of three decoupled structures: a tag array, a data
array, and a hash table. With cache deduplication, the map-
ping from the data store to the tag store is no longer one-to-
one. The structure of the data store is decoupled from that
of the tag store. The data array is used only to place dis-
tinct data, while the tag array keeps the semantics of cache
blocks by storing blocks with tags, pointers to the data ar-
ray, and other metadata. More than one tag can share a
data block. Cache-management techniques (e.g., intelligent
replacement policy, increased number of blocks, and so on)
are related only to the tag array. With the decoupled struc-
tures, changes in the tag array need not a�ect the design of
the data array.

3.1.1 Tag Array
The tag array is a set-associative structure that keeps the

semantics of cache blocks. Each entry in the tag array con-

tains the following fields: required metadata of a cache block
as in a conventional cache (e.g., tag bits, LRU bits, valid bit,
and dirty bit), a reference that indexes the data array, and
two references that point to other tag entries that maintain a
doubly-linked list of tags all pointing to the same data block.
The reference to a data entry, referred to as a tag-to-data
pointer (Tptr), identifies a distinct entry in the data array.
When there is a tag match, Tptr directly indexes the data
associated with this cache block. When a tag is inserted in
the tag array, it also is inserted into the doubly-linked list of
tags of duplicated blocks (if there are any) associated with
the corresponding data.

When a tag is replaced from the tag array, it also is deleted
from the linked list. With these pointers, all tags stored in
the tag array that share identical data are linked. The linked
list of tags of duplicated blocks is referred to as the tag-list
and the two pointers in each tag entry are referred to as
tag-list pointers. When there is a replacement in the data
array, all associated tags can be tracked along with the tag-
list of the data block and invalidated. The replacement of
the data array will be discussed in Section 3.2.3; in practice,
this process has very low latency. The tag array can be
treated as a conventional cache storing only metadata. It
uses requested memory addresses to search specific sets for
matching tags. When cache misses occur, the tag array
uses the regular cache replacement policy (i.e., least-recently
used (LRU) to choose replacement candidates rather than
replacement in the data array, which uses the DFRR policy).

In our experiments, we use the traditional least-recently-
used (LRU) replacement policy in the tag array for fair eval-
uation. The left-most structure shown in Figure 3 gives an
example of the tag array in a deduplicated LLC. This tag
array is a 4-way set-associative structure, with three sets.
As shown at the bottom of the structure, the second (from
left to right) tag entry in set[2] contains the tag t9, the Tptr
that indexes the corresponding data d1 - 0x1. One tag-list
pointer to the previous block in the tag-list - t6 and the
other tag-list pointer is set as NULL because there is no
next block of t9. As drawn in bold in Figure 3, Blocks t3,
t2, t1, t5, t4, and t8 are in the tag-list of duplicated data
d0, and t6 and t9 are in their own list. Blocks t7 and t10 are
distinct blocks, because there is only one tag in the tag-list
of each data block.

3.1.2 Data Array
Each entry in the data array contains a data frame, a

counter, a pointer, and a one-bit deduplication flag. The
counter (referred to as Ctr) indicates the number of tags
stored in the tag array that share this data. When a tag
is inserted into the tag array, the corresponding Ctr in the
data array is incremented by 1. When a tag is replaced
or invalidated from the tag array, the corresponding Ctr is
decremented by 1. When a Ctr becomes zero, the data block
can be reused. The pointer (referred to as a data-to-tag
pointer (Dptr)) identifies the head of the tag-list. Dptrs of
invalid entries are used to keep a free list of available data
entries. The one-bit deduplication flag indicates whether
the current data block has been analyzed for deduplication
(discussed in Section 3.3). The data array can be treated
as a direct-mapped cache, accessed only by Tptrs from the
corresponding tag entries. The structure shown in the mid-
dle of Figure 3 gives an example of a data array. There are
six entries in the data array; four of them are valid. Data
d0, located in 0x0, is shared by six blocks (Ctr equals 6),
heading with tag t3 in the tag-list. Data blocks d2 and
d3 are distinct blocks, linking to only one tag each, t7 and
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and t9 share data d1; t7 is a distinct block with data d2; and, t10 is inserted as a distinct block and has not been analyzed
for deduplication yet.

t10, respectively. However, d3 has not been analyzed for
duplication detection yet (i.e., the flag is unset).

3.1.3 Hash Table
The third structure in deduplicated LLC is an augmented

hash table. We use an augmented hash table to implement
a two-level look-up to make the most of the cache capac-
ity. The first level of look-up occurs in the hash table in-
dexed by the hashed data, and the second level occurs in
the data array redirected by the indices stored in the hash
node. To reduce the number of hash collisions, the hash ta-
ble is implemented as a sequence of small associative arrays
representing buckets. Each node in a bucket contains a 16-
bit pointer indexing the data array, a 1-bit valid bit, and a
15-bit partial-hash value.

On each duplication detection, the new data are hashed
to a hash table entry containing a bucket of nodes as shown
in the right-most structure in Figure 3. To reduce access to
the data array, each node stores a partial hash value as well
as the index into the data array. The new data is compared
with indexed data only if the partial hash values match. For
the hash function, we use five-level exclusive-OR gates using
the same technology used for hashing long branch history for
high-performance branch predictors [35]. Each level of the
exclusive-OR gate halves the number of bits by taking the
exclusive-OR of the upper half of the input bits with the
lower half of the input bits. Hashing is completed within
one cycle assuming a clock period of at least 10 FO4 delays.

Based on our experiments, a small hash table is su�cient
to keep the percentage of hash collisions extremely low (less
than 1%). However, hash collisions are practically unavoid-
able when hashing a large set of possible keys (cache data).
We describe hash collision resolution in Section 3.4.

3.2 Operations
A deduplicated cache has di�erent operations on cache

hits and cache misses. On a cache access, the tag of the
requested block is compared in parallel with all tags in a
specific set of the tag array. If the look-up fails, a cache
miss has occurred; otherwise, a cache hit has occurred.

3.2.1 Cache Miss
On a cache miss, the requested block is brought from the

main memory as in a conventional cache. The placement of
the cache block then is separated into two parts: placement
in the tag array and placement in the data array. The data
of the block is placed in an invalid data entry randomly cho-
sen from the free list maintained using the Dptrs. The tag
of the block is placed in the corresponding set of the tag ar-
ray indexed using the memory address. The Tptr in the tag
entry and the Dptr in the data entry then are updated to
point to each other, and Ctr is increased by 1. If there is no
invalid entry in the set of the tag array, the regular replace-
ment policy (LRU in our experiments) is used to choose a
replacement victim. If there is no invalid entry in the data
array, we use DFRR to choose a data replacement victim
(detailed in Section 3.2.3).

At this time, the requested cache block is not analyzed for
duplication (with the deduplication flag unset). Instead, it
is placed in the cache directly with an unset deduplication
flag, indicating it has not been processed for deduplication,
and without incurring any deduplication latency. The du-
plication detection to this block will not be launched until
next cache miss occurs, as described in Section 3.3. The cor-
responding hash node of the data replacement victim then
is invalidated.

3.2.2 Cache Hit
A cache hit can be either a read hit or a write hit. In a

deduplicated cache, write hits modify the data of blocks, in-
curring re-hash of the updated data for another duplication
detection, while read hits are unrelated to deduplication.
Thus, the operations on read hits and write hits are di�er-
ent:

• When there is a read hit in the tag array, the Tptr in
the matching entry directly indexes the data array to
retrieve the requested data. Replacement information
then is updated in the tag array. The data array is
unchanged.

• When there is a write hit in the tag array, the re-
quested data is indexed by the Tptr. If it is a distinct
block (Ctr equals 1), the data can be modified immedi-
ately and the deduplication flag is unset to indicate an
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unanalyzed block. If it is a duplicated block, instead of
modifying the data array directly, an invalid data en-
try is allocated to place the updated data. In this case,
the write hit to a duplicated data is processed similar
to a cache miss. Then the dirty bit in the tag entry is
updated as well as the replacement information.

3.2.3 Distinct-first Random Replacement
We use a DFRR policy in data array replacement. To

find a replacement candidate, the DFRR policy goes to a
random position of the data array and checks if the data is
distinct. If it is distinct, the entry is chosen as replacement
victim; if not, another random entry is checked. To limit
the amount of checking, up to four locations can be checked
on each replacement. If there is no distinct block among the
checked blocks, the block with the fewest duplicates out of
the four entries is replaced. Corresponding tag entries are
back-invalidated in the tag array to maintain integrity.

Based on our experiments, on each data replacement, on
average 1.004 blocks are checked randomly to find the re-
placement victim. The intuition behind DFRR is that no
invalid data entry means there are too many distinct blocks,
so one or two random checks will be enough to find a distinct
block to replace. The latency of finding a new data entry
can be hidden completely.

3.3 An Example of Hash-based Post-Process
Deduplication

We propose to use hash-based post-process duplication de-
tection to process deduplication fast with limited overhead.
Hash-based post-process duplication detection is launched
on LLC misses to avoid possible increased latency. The
cache block that is under deduplication detection is blocked.
Delaying the detection process until the cache is less busy
and the processed block has less chance to be accessed (due
to locality) helps avoid dynamically increased cache latency.
Figure 4 gives an example of how it works. In this example,
the tag array is a 4-way associative structure with two sets,
the data array has three entries, and the hash table has four
buckets. Each bucket contains a chain of two nodes. Each
valid tag entry contains a Tptr pointing to the correspond-
ing data entry. For simple illustration, we do not show the
replacement states in the tag array, nor do we show Dptrs,
Ctrs, and deduplication flags in the data array.

On a cache miss to Block A, the requested block is fetched
from the main memory. The tag is inserted in the tag array
and the data d1 is inserted in an invalid data entry, as in
Step 1. On the next cache miss to Block B, during the
memory access time, the previously placed data d1 of Block
A is detected for duplication. The hash value of d1 indexes
a bucket in the hash table (Step 2). Because the bucket is
empty, the location of d1 and its hash value hd1 are placed
in this bucket. After Block B is fetched from the memory,
it is filled in the cache (Step 3).

On a cache miss to Block C, the previously placed data
d2 of Block B needs duplication detection. The bucket of
d2 is also empty, so the position of d2, 0x1, and its hash
value hd2 are inserted in the bucket (Step 4). Block C later
is filled in the cache by placing the tag in the tag array and
inserting the data in an empty data entry at 0x2 (Step 5).

On a cache miss to Block D, the data of Block C (located
at 0x2 ) hashes to a bucket containing a hash value hd1 and
index 0x0. Because the hash of the data of Block C equals
hd1, the data is compared with the data located at 0x0,
resulting in a match (Step 6). Thus, the Tptr of Block C
is updated to 0x0, and the data entry in 0x2 is invalidated
(Step 7). The Dptr of d1 is updated to point to Block C.

After requested Block D is fetched, it is filled in the cache
by placing its data in the empty entry at 0x2 (Step 8).

On a cache miss to Block E, the previously placed data d4
of Block D is analyzed for deduplication. The hash value of
d4 does not equal the one stored in the hash node, so there
is no further data comparison. A hash collision incurs. The
location of d4 and its hash value are inserted in the chain
of the hashed bucket (Step 9).

3.4 Hash Collision Resolution
Hash collisions are unavoidable with a practical hash func-

tion. In a deduplicated cache, a hash collision occurs when
the hash bucket is full. Thus, a strategy is required for hash
collision resolution:

• If there is a distinct block indexed in the current bucket,
this block is back-invalidated from the data array and
the tag array, respectively. The bucket node then is
updated to the location of the colliding data. This
procedure can be treated as a replacement in a hash
bucket.

• Because of the extremely low probability (lower than
0.1% in our experiments), if data indexed in the cur-
rent bucket are all duplicated, no replacement occurs
in this bucket. The current deduplication procedure
just exits and a new detection is launched if there
is any unanalyzed data. In this case, we may lose a
chance to eliminate a possibly duplicated block. How-
ever, it will not cause any extra cache misses to degrade
the cache performance because the mapping from the
tag to the data is kept one to one.

Based on our experiments, a hash bucket with 16 nodes is
su�cient to keep the rate of hash collision as low as 1%. We
give detailed analysis concerning hashing in Section 6.4.

4. METHODOLOGY
This section outlines the experimental methodology used

in this work.

4.1 Simulation Environment
We use the MARSSx86 cycle-accurate simulator [26], a

full- system simulation of the x86-64 architecture that runs
both single-core and multi-core workloads to evaluate the
proposed deduplicated LLC. It models an out-of-order 4-
wide x86 processor with a 128-entry re-order bu�er and co-
herent caches with MESI protocol as well as on-chip inter-
connections.

The micro-architectural parameters are consistent with
Intel Core i7 processors [21], including a three-level cache
hierarchy: L1 I-caches and L1 D-caches, L2 caches, and a
shared LLC. The L1 and L2 caches are private to each core.
The L1 I-cache and D-cache are 4-way 32KB each and the L2
cache is unified 8-way 256KB. The shared LLC is a unified
16-way 2MB-per-core cache. The default replacement pol-
icy for each cache is LRU. Access latencies to the L1 cache,
L2 cache, LLC, and main memory are 4, 10, 40, and 250 cy-
cles respectively, in keeping with the methodology of recent
cache research work [13, 15, 14, 7]; we show in Section 6.6
that our results are not changed significantly with alternate
latencies. For the deduplicated LLC, both the number of
sets and the associativity of the tag array can be increased
to accommodate more blocks. We evaluate both ideas by
doubling the number of sets and associativity of the tag
array, respectively. The reason to double the size of the
tag array is to compare the duplicated LLC with a double-
sized conventional LLC. The actual size of the tag array can
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Figure 4: An example of hash-based post-process last-level cache deduplication.

be increased arbitrarily to achieve better performance with
commensurate power and area consumption. Based on the
experiments, the evaluated deduplicated LLC with a double-
sized tag array fits in the area of the LLC of the baseline.
We show a detailed cost analysis in Section 6.

The replacement policy in the tag array is LRU, while the
replacement policy in the data array is the proposed DFRR.

We also compare our work with two cache-compression
techniques: adaptive cache compression [1] and ZCA cache [8].
With adaptive cache compression, the L1 and L2 caches have
the same configuration as in a conventional cache hierarchy.
Data stored in L1 and L2 caches are uncompressed and only
the LLC supports compression. The compressed LLC is a
unified 16-way (up to 32-way dynamically) 2MB-per-core
set-associative cache with decoupled tag and data stores.
Instead of storing a 64-byte data block, the data store is bro-
ken into 8-byte segments. An uncompressed 64-byte block
is stored as eight 8-byte segments, while a compressed block
is compressed into one to seven segments. Data segments
are stored continuously in each set with tag order. We con-
servatively ignore the very high cost of replacement in the
contiguous storage variant of the compressed cache.

In our experiments, the access latency of a compressed
LLC is constant at 24 cycles. We ignore the decompression
latency of 5 cycles to evaluate the cache-deduplication tech-
nique better. We also assume that the compression process,
occurring on each LLC replacement, can be hidden by the
memory-access latency. Thus, the extra compression latency
is ignored in our experiments.

With the ZCA cache technique, the L1 and L2 caches
have the same configuration as the baseline. The L3 cache
is a 2MB-per-core set-associative main cache along with an
8,192-entry, 8-way ZCA cache consuming 156KB of storage
overhead. Because accesses to the ZCA cache are in par-
allel with accesses to the main cache, the access latency is
unchanged.

4.2 Benchmarks
The benchmarks used in the experiments are selected ran-

domly from the SPEC CPU2006 benchmark suite. We use
SimPoint [29] to identify a single one-billion-instruction char-
acteristic interval (i.e., SimPoint) of each benchmark. Each
benchmark is compiled for the x86-64 instruction set and
run with the first ref input provided by the runspec com-
mand. Benchmarks are categorized into three groups based
on the average percentage of duplicated blocks:

• Deduplication-sensitive benchmarks: average percent-
age of duplicated blocks is greater than 50%;

• Deduplication-friendly benchmarks: average percent-
age of duplicated blocks is between 20% and 50%; and,

• Deduplication-insensitive benchmarks: average percent-
age of duplicated blocks is lower than 20%.

Table 1 shows the group and the percentage of dupli-
cated blocks of each benchmark as well as the LLC misses
per 1,000 instructions (MPKI), instructions per cycle (IPC),
and the number of instructions fast-forwarded (FFWD) to
reach the interval given by SimPoint in a baseline system.
Memory-intensive benchmarks are shown in boldface.

Group Benchmark % Duplicated MPKI IPC FFWD
Blocks (LRU) (LRU)

Dedup-sensitive (S)
zeusmp 97.1% 9.05 0.580 405B

GemsFDTD 90.6% 16.46 0.466 1060B
calculix 63% 0.04 1.130 4433B

sphinx3 54.6% 9.00 0.530 3195B

Dedup-friendly (F)

gcc 37.3% 1.38 1.292 64B
gobmk 34.9% 0.35 1.072 133B
tonto 34.9% 0.04 1.259 44B

xalancbmk 33.4% 35.95 0.144 178B
h264ref 30% 0.09 1.700 8B

gromacs 28.8% 0.59 1.244 1B
astar 27.9% 9.7 0.366 185B
mcf 24.7% 83.54 0.126 370B

bzip2 22.1% 0.886 1.127 368B

Dedup-insensitive (I)
perlbench 18.2% 1.67 0.882 541B

libquantum 16.1% 24.82 0.162 2666B
cactusADM 9% 24.7 0.22 81B

milc 7% 1.01 1.299 272B
hmmer 2.7% 2.75 0.844 942B

Table 1: The 18 SPEC CPU2006 benchmarks with LLC
cache misses per 1,000 instructions for LRU, instructions
per cycle for LRU in a 2MB cache, and number of instruc-
tions fast-forwarded to reach the simpoint (B = billions).
Memory-intensive benchmarks in boldface.

For multi-core workloads, we randomly generate 12 mixes
of quad-core workloads from the 18 benchmarks, listed in
Table 2 with their characteristics of duplication. Each bench-
mark in a workload runs simultaneously with the others,
restarting after one billion instructions, until all of the bench-
marks have executed at least two billion instructions.

5. EXPERIMENTAL RESULTS
In this section we analyze the performance and overhead

of cache deduplication.
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Mixes Benchmarks
mix1 (FFSF) gcc, gobmk, zeusmp, xalancbmk
mix2 (ISSF) milc, sphinx3, zeusmp, gobmk
mix3 (SSSF) GemsFDTD, zeusmp, calculix, xalancbmk
mix4 (FFSS) astar, gobmk, calculix, GemsFDTD
mix5 (FISF) sphinx3, milc, zeusmp, xalancbmk
mix6 (IFSS) hmmer, gcc, sphinx3, calculix
mix7 (IFFF) hmmer, gcc, xalancbmk, gromacs
mix8 (FSSF) gcc, calculix, GemsFDTD, h264ref
mix9 (FFII) gobmk, gromacs, hmmer, perlbench
mix10 (FIIF) h264ref, hmmer, libquantum, xalancbmk
mix11 (IISF) libquantum, hmmer, GemsFDTD, tonto
mix12 (ISFF) perlbench, zeusmp, mcf, gcc

Table 2: 12 mixes of quad-core workload (‘F’ stands for
deduplication-friendly, ‘S’ for deduplication-sensitive and ‘I’
for deduplication-insensitive).

5.1 Performance Improvement
In a deduplicated cache, both the number of sets and the

associativity of the tag array can be increased to place more
cache blocks. In a compressed cache, the number of sets
cannot be increased and the associativity is increased dy-
namically up to twice as large as an uncompressed cache.
In a ZCA cache, up to 64MB null blocks can be mapped.

We compare the performance of each technique with a
double-sized conventional cache as an upper bound (doubled-
sets). In our experiments, we show the performance im-
provement (normalized to an 8MB conventional LLC) of an
8MB compressed LLC, an 8MB deduplicated LLC with dou-
bled number of sets (16,384 sets, 16-way), an 8MB dedupli-
cated LLC with doubled associativity (8,192 sets, 32-way),
an 8MB conventional LLC with a 8,192-entry ZCA cache,
and a 16MB conventional LLC (16,384 sets, 16-way).

Figure 5 shows the LLC cache misses normalized to an
8MB conventional LLC of each technique for quad-core work-
loads. On average, ZCA cache reduces the LLC misses
by 5.5%. Cache compression reduces the LLC misses by
12%. Cache deduplication in a doubled-set LLC reduces
average misses by 18.5%. Cache deduplication in a doubled-
associativity LLC reduces average misses by 19%. The doubled-
size conventional LLC reduces the cache misses by 18.4%.

Reducing cache misses translates into improved perfor-
mance. Figure 6 shows the performance improvement of
each technique normalized to an 8MB conventional LLC.
The ZCA cache improves performance by 6.9%. The com-
pressed cache yields an average speed-up of 10.8% compared
to the baseline. Cache deduplication in a doubled-set LLC
gives an improvement of 15%, and cache deduplication in a
doubled-associativity LLC yields a speed-up of 15.2%. The
upper-bound 16MB conventional cache delivers an average
speed-up of 15.1% compared to the 8MB baseline. A 12MB
conventional LLC delivers an 8.7% speed-up, and a 14MB
LLC delivers an 8.9% speed-up.

Overall, the deduplicated LLC performs comparably to a
double-sized conventional LLC.

6. DETAILED ANALYSIS
In this section, we give detailed analysis of cache dedu-

plication with respect to capacity, storage, and power over-
head, hashing e�ectiveness, and the cache sensitivity to dif-
ferent sizes of hash table.

6.1 Effective Cache Capacity
Figure 7 shows the average amount of duplication in each

quad-core workload. On average, each block of data stored
in the data array is shared by 2.23 tags. In other words,
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Figure 5: Reduction in LLC misses normalized to 8MB con-
ventional LLC.
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Figure 6: Performance Improvement normalized to 8MB
conventional LLC.

e�ective cache capacity is increased by 112% with cache
deduplication. For workloads mix6, mix7, mix9, mix10, and
mix11, which all contain the most deduplication-insensitive
benchmark hmmer, cache deduplication still works by elim-
inating duplication by about 38%.

6.2 Storage
Although the e�ective capacity is increased, the physical

area is reduced. Table 3 shows the detailed storage require-
ments of both the baseline and the deduplicated LLC in a
quad-core CMP. The 8MB deduplicated LLC occupies only
87.8% of the physical area of a conventional 8MB LLC (i.e.,
it reduces physical area by 12.2% compared to the conven-
tional LLC). The area savings lead to reduced leakage power
cost, as shown in Section 6.3.

6.3 Power and Energy
Table 4 shows the results of CACTI 6.5 simulations [24]

to determine the leakage and dynamic power of the dedu-
plicated LLC compared to the conventional LLC. The tag
array is modeled as the tag store of a conventional 16MB
set-associative cache. The data array is modeled as a 4MB
direct-mapped cache with 37 bits of tags. The hash table is
modeled as the data store of a 512KB direct-mapped cache
with block size of 4 bytes.

Due to the nature of deduplicated caches, accesses to the
LLC are increased while accesses to the main memory are
decreased. Based on the experiments, compared to an 8MB
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Figure 7: Average amount of duplication.

Conventional LLC Deduplicated LLC
Each tag store entry contains:

Tag 29 bits 28 bits
Status (valid+dirty+LRU) 6 bits 6 bits

Tptr - 17 bits
Rptrs - 36 bits

Number of tag entries 131,072 262,144
Total size of tag store 560KB 2784KB

Each data store entry contains:
Data 512 bits 512 bits
Dptr - 18 bits
Ctr - 18 bits

Dedup flag - 1 bit
Number of data entries 131,072 65,536
Total size of data store 8192KB 4392KB

Additional structure(s):
Size of hash table - 8,192
Length of chain - 16

Size of node - 32 bits
Total size of hash table - 512KB

TOTAL SIZE 8,752KB 7,688KB
Table 3: Storage cost analysis.

conventional cache, the number of accesses to the tag array
of the 8MB deduplicated cache is increased by 38% and the
number of accesses to the data array is increased by 33%.
The number of accesses to the o�-chip main memory is de-
creased by 26% with the deduplicated LLC.

Compared to the energy cost of accessing caches, the en-
ergy cost of accessing the o�-chip memory is significantly
higher. According to the results of previous work [33], the
energy consumed to activate and precharge a page and to
read a block is 5nJ with a row bu�er size of 8KB. Thus, as
shown in Table 5, the average dynamic energy consumption
of the deduplicated LLC accesses is 3.3% higher than that of
the conventional LLC, while the dynamic energy cost of the
memory accesses is reduced by 34.5% with the deduplicated
LLC.

Structures Dynamic Energy Dynamic Power per Leakage Power
per Read Port (nJ) Read Port at max freq (W) per Bank (W)

Conventional
Tag store 0.0389 0.0605 0.5205
Data store 1.3148 2.0482 3.0297

Total 1.3537 2.1087 3.5502

Deduplicated
Tag array 0.1225 0.2564 0.9207
Data array 0.8793 2.3149 1.8441
Hash table 0.0234 0.0746 0.0445

Total 1.0543 2.6534 2.9278

Table 4: Dynamic and leakage power of each LLC design.

6.4 Hashing

Number of Look-ups.
Figure 8 shows the average number of look-ups in each

deduplication process. On each duplication detection, the
analyzed data is compared with all the data indexed in the
hash bucket until a match occurs or it mismatches with
all the data. On average, there are 4.9 look-ups in each

Structures Dynamic Energy (J)

Conventional
Tag store 0.0005
Data store 0.0175
Memory 0.0222

Deduplicated
Tag array 0.0021
Data array 0.0156
Hash table 0.0009
Memory 0.0165

Table 5: Dynamic energy cost of each LLC and main mem-
ory.

duplication detection. The number of look-ups is related
to the deduplication latency, described in Section 6.5. For
workloads such as mix6, mix10, and mix11, the number of
look-ups is higher because of the nature of deduplication-
insensitive benchmarks: most analyzed data is distinct, caus-
ing more look-ups in each duplication detection.
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Figure 8: Average number of look-ups for data comparison.

Hash Collisions.
With a practical hash algorithm, hash collisions are un-

avoidable. Figure 9 shows the average percentage of hash
collisions for each quad-core workload. On average, the per-
centage of hash collisions is as low as 1%.
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Figure 9: Hash collision.

6.5 Process Latency
The deduplication latency is hidden by the memory ac-

cess. On each LLC miss, the duplication detection is launched
to analyze a previously stored cache block. The analyzed
data is hashed to a bucket and compared with all the data
indexed in that bucket until a match occurs or mismatches
with all the indexed data. Data comparison is completed
well within one cycle using a simple circuit, assuming 12
FO4 delays [2]. Thus, the duplication detection takes (num-
ber of look-ups ◊ (1 + data comparison)) cycles on average,
which is less than 10 cycles and thus totally hidden by the
memory-access latency of 250 cycles.

In adaptive cache compression, as claimed in [1, 2], com-
pression latency is 3 cycles and decompression latency is 5
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cycles. The extra access latency is on the critical path to
degrade performance. Even if the compression latency of
3 cycles can be hidden by the memory-access latency, the
decompression latency is unavoidable.

6.6 Hash Table Sensitivity
The size of the hash table in our experiments is 8,192

buckets with 16 nodes per bucket, leading to a 512KB stor-
age overhead. Reducing the size of the hash table to 4,096
buckets leads to an increased number of look-ups of 5.7 on
average, and the percentage of hash collision is increased
to 1.3%. The performance improvement is barely changed;
the di�erence is 0.1%. We performed experiments to mea-
sure the behavior of our technique in the presence of context
switching. Space constraints prevent a full discussion, but
our results indicate that our technique yields at least the
same improvement compared to the baseline configuration
in the presence of OS context-switching among multiple ap-
plications.

7. RELATED WORK
Data deduplication is used in disk-based storage systems

to reduce storage consumption [6, 39, 12]. Address corre-
lation [32] analyzed the phenomenon of data duplication in
the L1 cache without giving a feasible implementation. Non-
redundant data cache [22] proposed a sub-block-level cache-
deduplication technique, requiring value-based data storage
and an extra value search on the critical path. Content-
based block caching [23] was an inline deduplication tech-
nique designed to improve disk-based storage systems re-
quiring significant storage overhead, which is impractical in
caches. The mergeable cache architecture [3] proposed to
merge blocks from di�erent processes with the same address
and similar data. Villa et al. [36] proposed compressing
zero-content data in the cache for energy reduction. Dusser
et al. [8] proposed an augmented cache to store null blocks
to increase e�ective cache capacity. The HICAMP architec-
ture [5] applies deduplication to main memories. It uses an
associative hash table, su�ers from underutilization, practi-
cal design issues, and lack of consideration for collisions in
the hash table. CATCH [16] proposed using cache-content-
deduplication only in instruction caches without data mod-
ification.

Data compression is another technology to eliminate re-
dundant data. Yang et al. [38] proposed frequent value com-
pression in first-level caches. Zhang et al. [40] proposed
the frequent value cache (FVC) based on the observation
of frequent value locality to hold only frequently accessed
values in a compressed form. Alameldeen et al. [2] pro-
posed frequent pattern compression (FPC), a pattern-based
compression scheme for L2 caches. By storing common
word patterns in a compressed form with certain prefixes,
FPC provides a compression ratio comparable to more com-
plex schemes. To reduce useless decompression overhead,
Alameldeen et al. [1] proposed an adaptive policy to trade
dynamically between the benefit of compression with the
cost overhead. Hallnor et al. [10] proposed a unified com-
pression scheme to compress and decompress data in the
LLC, main memory, and memory channels. Although the
unified compression scheme eliminates the additional com-
pression and decompression expense required in transferring
data between the LLC and the main memory, it cannot
avoid compression/decompression overhead incurred with
data transferring between di�erent cache levels. Base-delta-
immediate compression [28] is another data-compression al-
gorithm representing data using a base value and an array

of di�erences. For value- or pattern-based compression, be-
sides the complex compression and decompression logic and
unavoidable decompress latency, another drawback is that
most cache-management policies cannot be used e�ciently
in a compressed cache because of the variation of block sizes.
Linearly compressed pages [27] is another recently proposed
technique for main memory compression.

The V-way cache [30] was proposed to vary the associa-
tivity of a cache on a per-set basis to increase the e�ec-
tive cache capacity. Line distillation was proposed to retain
only used words and evict unused words in a cache block
to increase e�ective cache capacity. Motivated by skew-
associative caches [34] and cuckoo hashing [25], Zcache [31]
was proposed to provide higher associativity than the num-
ber of physical ways by increasing the number of replace-
ment candidates.

8. CONCLUSION
We propose a practical deduplicated last-level cache with

limited overhead to improve performance by increasing e�ec-
tive cache capacity. By exploiting block-level data duplica-
tion, cache deduplication significantly increases the e�ective-
ness of the cache with limited area and power consumption.
Compared to a conventional LLC, a deduplicated LLC uses
similar chip area and power consumption while performing
comparably to a double-sized conventional LLC.

This paper evaluates cache deduplication in LLCs. In fu-
ture work, we will extend cache deduplication to core caches
and exploit redundant information-elimination techniques in
other storage units. The sequentially allocated nature of the
data array in the deduplicated cache o�ers opportunities for
power gating.
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