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ABSTRACT
Last-level caches mitigate the high latency of main memory.
A good cache replacement policy enables high performance
for memory intensive programs. To be useful to industry,
a cache replacement policy must deliver high performance
without high complexity or cost. For instance, the costly
least-recently-used (LRU) replacement policy is not used in
highly associative caches; rather, inexpensive policies with
similar performance such as PseudoLRU are used.

We propose a novel last-level cache replacement algorithm
with approximately the same complexity and storage re-
quirements as tree-based PseudoLRU, but with performance
matching state of the art techniques such as dynamic re-
reference interval prediction (DRRIP) and protecting dis-
tance policy (PDP). The algorithm is based on PseudoLRU,
but uses set-dueling to dynamically adapt its insertion and
promotion policy. It has slightly less than one bit of over-
head per cache block, compared with two or more bits per
cache block for competing policies.

In this paper, we give the motivation behind the algorithm
in the context of LRU with improved placement and promo-
tion, then develop this motivation into a PseudoLRU-based
algorithm, and finally give a version using set-dueling to
allow adaptivity to changing program behavior. We show
that, with a 16-way set-associative 4MB last-level cache,
our adaptive PseudoLRU insertion and promotion algorithm
yields a geometric mean speedup of 5.6% over true LRU over
all the SPEC CPU 2006 benchmarks using far less overhead
than LRU or other algorithms. On a memory-intensive sub-
set of SPEC, the technique gives a geometric mean speedup
of 15.6%. We show that the performance is comparable
to state-of-the-art replacement policies that consume more
than twice the area of our technique.

1. INTRODUCTION
The last-level cache (LLC) mitigates long latencies from

main memory. A good replacement policy in the LLC allows
the cache to deliver good performance by replacing blocks
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that are least likely to be referenced again in the near future.
The least-recently-used (LRU) replacement policy is moti-
vated by the observation that, if a block has not been used
recently, then it is unlikely to be used again in the near fu-
ture. This intuition is reasonable, but leaves a considerable
amount of room for improvement.
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Figure 1: Random Design Space Exploration for Pseu-
doLRU Insertion and Promotion

There has been much previous work on last-level cache
replacement. From this work, we have ample evidence that
we can improve significantly over LRU, but at a cost. Even
the LRU policy itself is expensive: in a 16-way set associa-
tive cache, LRU requires four bits per cache block. Other
proposed algorithms improve on this cost.

This paper describes a last-level cache replacement al-
gorithm with very low overhead that delivers high perfor-
mance. The algorithm uses less than one bit per cache block;
on a 16-way set associative cache, it uses 15 bits per set or
less than 0.94 bits per block. It extends tree-based Pseu-
doLRU [11], a policy with performance similar to LRU. We
enhance it to deliver performance comparable with state-of-
the-art replacement algorithms. In particular, we compare
our technique with dynamic re-reference interval prediction
(DRRIP) [13] and Protecting Distance Policy (PDP) [6] and
find that it yields similar performance with much lower over-
head. Our technique gives a geometric mean 5.61% speedup
over LRU over all SPEC CPU 2006 benchmarks while DR-
RIP gives a comparable 5.41% speedup and PDP achieves
a similar 5.69% speedup. On a memory-intensive subset
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of SPEC, our technique gives a 15.6% speedup compared
with 15.6% for DRRIP and 16.4% for PDP. DRRIP requires
twice as much storage overhead as our technique and PDP
requires even more additional storage as well as a specialized
microcontroller for implementing its policy.

PseudoLRU, as its intellectual parent LRU, has an inher-
ent insertion and promotion policy: blocks are inserted into
the most recently used (MRU) position, and when they are
accessed again they are moved to the MRU position. How-
ever, there are many degrees of freedom in the choice of
insertion and promotion that are not exploited by LRU or
PseudoLRU. The basic idea of our technique is to explore
this space of possible insertion and promotion policies to
choose a policy that maximizes performance over a set of
training workloads. Figure 1 shows the speedups obtained
over LRU by a uniformly random sampling of the design
space for our technique, ranging from significant slowdowns
to speedups around 2.8% over LRU (see Section 4.1 for more
on this figure). Clearly most of the points in this random
sample are inferior to LRU, but there are some areas of im-
provement over LRU. Random search leaves significant po-
tential undiscovered, so we use genetic algorithms to further
explore the enormous search space.

The paper is organized as follows: in Section 2 we de-
scribe the basic idea of our technique within the context of
the LRU replacement policy. In Section 3 we give back-
ground into tree-based PseudoLRU and describe how our
technique extends it. In Section 4 we discuss our experimen-
tal methodology, including details of our genetic algorithms,
our workload neutral evaluation, and our simulation infras-
tructures. Section 5 gives the results of experiments showing
that our technique performs well in terms of improving per-
formance and reducing misses. We discuss related work in
Section 6. Finally, in Section 7, we give directions for future
research and conclude.

2. MOTIVATION
This section describes the motivation behind the proposed

algorithm.

2.1 LRU Replacement Policy
To provide context, we give a brief overview of LRU and

its implementation.

2.1.1 The Idea
The idea of the LRU policy is simple: when a cache set is

full and a new block must be inserted into this set, we evict
the block that was used least recently. The intuition behind
this algorithm is that the recency of use for a given block
is a good predictor for how long it will be before it is used
again.

2.1.2 The Implementation
The LRU policy may be implemented by maintaining the

cache blocks in a set as a recency stack. Consider a k-way
set associative cache. Each block has a distinct position in
the recency stack. The top of the stack at position 0 is the
most-recently-used (MRU) block, the next block at position
1 is the next-most-recently-used, etc., and the last block in
the stack at position k− 1 is the LRU block. When a block
in position i is accessed, blocks from positions 0 through
i−1 are pushed down by one while the block in position i is
moved to position 0. That is, a block accessed from within

the recency stack is promoted to the MRU position. When
a victim is required, it is chosen as the last item in the stack
in position k − 1, i.e. from the LRU position. An incoming
block replaces the victim in position k − 1, then moved to
position 0. That is, an incoming block is inserted into the
MRU position.

One way to implement the recency stack would be to order
blocks according to their position in the recency stack, i.e.
the block in position i in the recency stack would be kept
in way i in the set. This implementation requires no extra
space overhead, but incurs a frighteningly high cost in energy
and delay because of the constant movement of large chunks
of data between cache ways as the stack is updated.

A better implementation is to associate an integer from 0
through k − 1 with each block in a set. That integer gives
the block’s position in the recency stack. When blocks are
moved in the stack, only the values of the integers must be
changed. Maintaining the integers is conceptually simple,
but requires an extra log2 k bits per block, or k log2 k addi-
tional bits per set to store the positions. For a 16-way cache,
this works out to 4 extra bits per block or 64 extra bits per
set.

2.2 LRU Needs Improving
Although the intuition behind LRU seems good, memory

access behavior at the last-level cache is often more nuanced.
For instance, many blocks in the last-level cache are “zero-
reuse blocks” [20]. These blocks are brought into the cache
and used once, never to be reused again. Other blocks are
similarly used a few times and then not reused. These dead
blocks [4] must proceed from the MRU position down to the
LRU position before they are evicted, wasting the capacity
that might otherwise be allocated to more useful blocks.
Sometimes it makes sense to, for instance, place an incoming
block in the LRU position rather than the MRU position, so
that if it is not referenced again it will be quickly evicted.

2.3 Improving Placement and Promotion in LRU
Previous work has observed that LRU-like algorithms can

be improved by changing the insertion and promotion poli-
cies. The original LRU policy promotes accessed blocks to
the MRU position and inserts incoming blocks into the MRU
position. Qureshi et al. observed that sometimes placing an
incoming block into the LRU position provides a benefit [25].
Loh et al. as well as others have observed that promoting
a block up the stack but not all the way to MRU can also
yield a benefit [30, 13]. We generalize this notion into the
concept of a insertion/promotion vector, or IPV. For a k-
way set-associative cache, an IPV is a k + 1-entry vector of
integers ranging from 0..k−1 that determines what new po-
sition a block in the recency stack should occupy when it is
re-referenced, and what position an incoming block should
occupy. Let V [0..k] be an IPV. Then V [i] contains the new
position to which a block in position i should be promoted
when it is accessed, or if i = k the position where a new
incoming block should be inserted. If V [i] < i, then blocks
between positions V [i] and i − 1 are shifted down to make
room; otherwise blocks between positions i + 1 and V [i] are
shifted up to make room.

2.4 Example IPVs
The normal LRU insertion and promotion policy is given

by VLRU = [0, 0, ...., 0]. LRU insertion as in Qureshi et
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al. [25] is given by VLRUinsertion = [0, 0, ...., 0, k − 1]. If
we let V = [0, 0, ..., 0, k/2, k − 1] then an incoming block
is inserted into the LRU position, then if it is referenced
again it is promoted into the middle of the stack, and then
a third reference promotes it to MRU. Figure 2 graphically
illustrates the transition graph representing LRU for k = 16.
The vertices of the graph are the recency stack positions.
The solid edges represent change in position when a source
node’s block is accessed. The dashed edges represent the
new position to which a block is shifted to accommodate a
block moving into its position.

2.5 Finding A Good Placement and Promo-
tion Vector

As a proof of concept, we propose to explore the space of
IPVs to find one that works best for a given set of bench-
marks. (In Section 4 we refine this approach with a statisti-
cally valid methodology but for now we are simply demon-
strating the idea.) Ideally, we would find the optimal IPV
giving maximum benefit. We evaluate each IPVs by mea-
suring the speedup it yields over normal LRU on the SPEC
CPU 2006 benchmark suite [29] using a simulator.

Within this framework there are many possible IPVs. For
a k-way set associative cache there are kk+1 possible inser-
tion and promotion policies. For example, for k = 16, there
are 2.95× 1020 different IPVs. An exhaustive search for the
vector providing the best speedup would require simulat-
ing the 29 SPEC benchmarks 295 quintillion times. Barring
improvements to our 200-CPU cluster, we estimate that
this parallel search would require over 300 billion years of
wall clock time by which time the Sun will no longer be
shining and cosmic inflation will have long since moved all
galaxies outside the Local Group beyond the boundaries of
the observable universe [21]1. Thus, we turn to a heuris-
tic search technique: we use a genetic algorithm to evolve
a good IPV. We take traces from multiple simpoints [28] of
the SPEC CPU 2006 benchmarks collected using the ver-
sion of CMP$im distributed for the 2010 cache replacement
championship [2]. We simulate a 4MB 16-way set associative
last-level cache (other configuration details of the simulator
are given in Section 4). The genetic algorithm evolves an
IPV that results in the a good arithmetic mean speedup
over all the benchmarks. The results are shown in Figure 3.
The best insertion/promotion vector found by the genetic
algorithm is [ 0 0 1 0 3 0 1 2 1 0 5 1 0 0 1 11 13 ]. An
incoming block is inserted into position 13. A block refer-
enced in the LRU position is moved to position 11. A block
referenced in position 2 is moved to position 1, etc. Figure 3
illustrates the transition graph for this vector.

The vector specifies some counterintuitive actions. For
instance a block referenced in position 5 is moved to MRU,
while a block referenced in position 4 is moved to position
3. Note that blocks can also move to new positions as a
consequence of being shifted to accommodate other blocks;
e.g., a block in position 3 may move to MRU by being first
being shifted to position 4 to accommodate the promotion of

1We can significantly improve this time by eliminating de-
generate IPVs for which it is impossible for a block to be
promoted to MRU, i.e. if the graph induced by adding edges
for all possible changes of position does not include a path
from insertion to MRU. However, given resources available
to us the resulting exhaustive search would still take billions
of years.

another block, then moved to position 0 from 4. Thus, some
aspects of the vector go against intuition. However, recall
that it is intuition that led to the LRU policy, which is often
no better than random (see Figure 4) so for this work we
will suspend our intuition in favor of that of the machine.

2.6 Performance Improvement
Figure 4 shows the speedup over LRU given by the tech-

nique described above: Genetic Insertion and Promotion for
LRU Replacement (GIPLR) (please see Section 4 for details
of the simulation methodology). The figure also shows the
speedup of random replacement. GIPLR yields a 3.1% geo-
metric mean speedup over LRU. Random replacement per-
forms better on some workloads and worse on others, giving
a geometric mean performance of 99.9% of LRU. Tree-based
PseudoLRU performs on average about as well as true LRU.

The vector is the result of an incomplete search of a huge
design space. Thus, some of the elements of the vector are
not optimal; for instance, replacing the first 12 elements of
the vector with 0s yields a slight improvment in the speedup
from 3.1% to 3.12%. We may further refine the vector using
a hill-climbing approach. However, we will defer to future
research the problem of understanding exactly how or why
one vector might be better than another.

The figure shows the potential of an algorithm like GI-
PLR to improve LRU. However, in the following section we
show that an algorithm requiring far less state is able to
achieve similar performance and, with dynamic adaptivity,
yield performance equivalent to state-of-the-art replacement
policies.

3. GENETIC INSERTION AND PROMOTION
FOR PSEUDOLRU REPLACEMENT

This section describes the main contribution of our re-
search. We apply the technique introduced in Section 2 to
tree-based PseudoLRU replacement, and make it adaptive
using set-dueling.

3.1 Tree-based PseudoLRU Replacement
A cheaper alternative to the LRU replacement policy is

tree-based PseudoLRU [11]. The idea is to maintain a com-
plete binary tree whose leaf nodes are the blocks in a set.
The internal nodes each contain one bit; let us call this bit
the plru bit. To find a victim, we start at the root and go left
when we find a 0 plru bit or right when we find a 1 plru bit.
When we reach a leaf, we have found our victim: the PLRU
block. When a block is accessed, we promote the block by
setting the values of the plru bits on the path from the block
to the root such that they all lead away from this block. For
example, if the block is a left child then its parent’s plru bit
is set to 1, and if the parent is a right child then the grand-
parent’s plru bit is set to 0, and so on up to the root. We
say that such a newly promoted block is in the PMRU posi-
tion. Figures 5 and 6 give pseudocode for the algorithms to
find the PseudoLRU (PLRU) block and promote a block to
the pseudo MRU (PMRU) position, respectively. Although
the PLRU block is not always the LRU block, it is guaran-
teed not to be the MRU block and is very likely not to have
been used for quite a while because in order to become the
PLRU block there would have to have been several interven-
ing promotions to other blocks. In practice, PLRU provides
performance almost equivalent to full LRU.
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Figure 2: Transition Graph for LRU. A solid edge points to the new position for an accessed or inserted block. A dashed edge
shows where a block is shifted when another block is moved to its position.

120 1 2 3 4 5 6 7 8

eviction

9 10 11 14 1513

insertion

Figure 3: Transition Graph for Vector [ 0 0 1 0 3 0 1 2 1 0 5 1 0 0 1 11 13 ]
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Figure 4: Speedup for the Vector [ 0 0 1 0 3 0 1 2 1 0 5 1 0 0 1 11 13 ]

find plru ( r ) r is the root node of the binary tree
p = r
while ( p is not a leaf )

if ( p’s plru bit == 1 )
p = right child of p

else
p = left child of p

end if
end while
return the block associated with p

Figure 5: Algorithm to find Pseudo LRU block

promote ( p ) p is the leaf node associated with a block to be promoted
while ( p is not the root )

if ( p is a left child )
p’s plru bit = 1

else
p’s plru bit = 0

end if
p = parent of p

end while

Figure 6: Algorithm to promote a block to be PMRU

PseudoLRU is cheaper than LRU. Consider a k-way set
associative cache, and assume k is a power of 2. A complete

binary tree with k leaf nodes has
∑dlog2 ke−1

d=0 2d = k − 1
internal nodes. PseudoLRU requires storing one plru bit for
each of the internal nodes. The structure of the complete
binary tree is implicit in the indexing of this array of plru
bits, so the only storage needed to represent the tree is the
plru bits themselves. For a 16-way set associative cache, this
is 15 bits per set as opposed to 64 bits per set for full LRU, a
savings of 77%. In general, PseudoLRU reduces the number
of bits required by a factor of log2 k over LRU. PseudoLRU
is also less complex to implement: an insertion or promotion
can change only up to log2 k plru bits on the path from the
root to the leaf, as opposed to full LRU which can change
all k log2 k bits when a block is inserted or promoted from
LRU to MRU. Thus, PseudoLRU is used in practice.

3.2 PseudoLRU Recency Stack
Blocks in a PseudoLRU set can be thought of as occupying

a recency stack with each block holding a distinct position,
just as in LRU. Blocks will be ordered from PMRU position
0 to PLRU position of all-bits-1 (e.g. 15 for 16-way). We

find index ( p ) p is the leaf node associated with a block
x = 0
i = 0
q = p
while ( q is not the root )

if ( q is a right child )
if ( q’s parent’s plru bit is 1 ) set bit i of x to 1

else
if ( q’s parent’s plru bit is 0 ) set bit i of x to 1

end if
q = the parent of q
i = i + 1

end while
return x

Figure 7: Algorithm to find the position in the PseudoLRU
recency stack of a block p

would like to know the value of the position in the recency
stack of a given block. Let us order the nodes visited from

leaf (i.e. a block) to root starting with 0. If the ith node is

a right child, then the ith bit in the position is the plru bit
of that node’s parent; in the eviction process, a 1 bit leads
to this right child and a 0 bit leads away from it. If the

ith node is a left child, then the ith bit in the position is
the complement of the plru bit of that node’s parent; in the
eviction process, a 0 bit leads to this left child and a 1 bit
leads away from it. Figure 7 gives pseudocode for the algo-
rithm for determining the PLRU position of a given block2.
Intuitively, more 1 plru bits in the position puts a block in
increasing jeopardy of being evicted. For instance, if the
root plru bit is 1, then every block in the right-hand side of
the tree will have a 1 as the most-significant-bit of its posi-
tion, meaning that those blocks are in the bottom half of the
PseudoLRU recency stack. Figure 8 illustrates an example
PseudoLRU tree with internal nodes giving their plru bit
values and leaf nodes giving the corresponding blocks’ posi-
tions in the PseudoLRU recency stack.

3.3 Setting the PseudoLRU Position
Figure 9 gives the algorithm to set the PLRU position of a

2The inner loop of the algorithm setting bit i in the position
can be more efficiently implemented as “ set bit i of x to ( q
is a right child ) == ( q’s parent’s plru bit)” but we present
the “if” version for clarity.
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Figure 8: Example PseudoLRU Tree. Blocks are labeled
with their positions in the PseudoLRU recency stack derived
from internal node plru bit values.

set index ( p, x ) p is the leaf node associated with a block,
i = 0 x is the new position to assign to p
q = p
while ( q is not the root )

if q is a right child then
q’s parent’s plru bit = bit i of x

else
q’s parent’s plru bit = not (bit i of x)

endif
q = the parent of q
i = i + 1

end while
return x

Figure 9: Algorithm to set the position in the PseudoLRU
recency stack of a block p to x

given block. We use this algorithm to implement improved
insertion and promotion for PseudoLRU. The algorithm has
a straightforward implementation in digital logic with lit-
tle additional complexity over standard PseudoLRU 3. The
number of bits modified on an insertion or promotion is
bound from above by dlog2 ke where k is the associativity,
just as in standard PseudoLRU, and as opposed to kdlog2 ke
modified bits for standard LRU.

3.4 Improved Insertion and Promotion for Tree-
Based PseudoLRU

We apply the same technique to PseudoLRU as we did
before to LRU. We evolve an insertion and promotion vector
(IPV) giving the positions to insert incoming blocks and to
promote accessed blocks. The insertions and promotions
now change the positions in the PseudoLRU recency stack
by setting bits along the path from the block to the root
such that the new path represents the desired position as in
Figure 9. This technique will have the side effect of changing
other blocks’ positions in a more drastic way than LRU,
so we must evolve a new IPV that takes into account this
different nature of PseudoLRU insertion and promotion. We
call this new algorithm Genetic Insertion and Promotion for
PseudoLRU Replacement (GIPPR).

3.5 Dynamic Adaptivity for GIPPR
There is no single IPV that is the best choice for all work-

loads. For instance, as previous work has observed, some
workloads perform better with LRU insertion and some with
MRU insertion. Thus, it makes sense to dynamically adapt
the IPV to the currently running workload. One idea is to

3Again, the if statement in the inner loop can be replaced
with the more brief but less clear statement “q’s parent’s
plru bit = (q is a right child) == (bit i of x).”

run the genetic algorithm on-line to continually adapt the
IPV to the workload; although our preliminary experiments
in this area have shown promise, the overhead in terms of
area and power is prohibitive. Instead, we evolve several
IPVs off-line and dynamically select between them at run-
time using set-dueling.

Set-dueling was introduced by Qureshi et al. [26]. To
choose between two cache management policies A and B,
set-dueling allocates a small fraction of cache sets to im-
plement policy A and another equally sized portion of sets
to implement policy B. These sets are called “leader sets.”
An up/down counter is kept that counts up when policy A
causes a miss in a leader set and down when policy B causes
a miss in a leader set. The rest of the sets in the cache (the
“follower sets”) follow policy A when the counter is below 0,
or B when the counter is at least 0. This way, most of the
cache follows the “winning” policy. Since the behavior of a
few sampled sets often generalizes to the rest of the cache,
set-dueling usually finds the best policy. Other work has
generalized set-dueling to multiple policies, e.g. Khan et al.
introduced decision-tree analysis [15] to choose between a
number of possible placement positions.

We develop DGIPPR, a dynamic version of GIPPR. We
use set-dueling and decision-tree analysis to dynamically
choose between two (2-DGIPPR) or four (4-DGIPPR) evolved
IPVs. In the 2-vector case, we use set-dueling as described
by Qureshi et al. [25], i.e. a single counter counts up for
misses from leader sets for one IPV and down for leader
sets for the other IPV while the cache follows the “winning”
policy. In the 4-vector case, we use multi-set-dueling as de-
scribed by Loh [22], i.e. two counters keep track of misses
for leader sets from two pairs of IPVs, and those two coun-
ters duel using a meta-counter with the winning element of
the winning pair used for the rest of the cache. We find that
extending beyond four vectors yields diminishing returns, so
in this research we limit the number of evolved vectors to
four. We keep only one set of PseudoLRU bits per cache
set even while changing the IPVs, rather than keeping dif-
ferent PseudoLRU bits per IPV which would have a costlier
hardware overhead. In Section 4 we describe our methodol-
ogy for evolving the vectors. To eliminate the impact of
using the same training and testing data, we give work-
load neutral results showing the speedup of DGIPPR using
cross-validation where a workload is not part of the training
set used to evolve its own IPV. To show the potential of
DGIPPR, we also evaluate the technique in an environment
where all workloads use the same vectors; we find very little
difference between the two methodological scenarios.

3.6 Overhead of GIPPR/DGIPPR
GIPPR/DGIPPR consumes space equivalent to that of

PseudoLRU. For 16-way set associativity, GIPPR/DGIPPR
consumes 15 bits per set (i.e. less than 0.94 bits per block),
or 7KB for a 4MB cache. As with PseudoLRU, only the
bits along the path from leaf to root are touched during an
insertion, promotion, or eviction leading to few replacement-
related switching events per cache access. The dynamic ver-
sions use counters for set-dueling. 2-DGIPPR uses a single
11-bit counter while 4-DGIPPR uses three 11-bit counters.
That is, there are three 11-bit counters per last-level cache,
not per block or set; only 33 bits are added to the entire
microprocessor. Thus, these counters add negligible over-
head. For comparison, LRU in a 16-way cache uses 4 bits
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per block, or 32KB for a 4MB cache and must touch poten-
tially all 16 recency positions during an insertion and pro-
motion. DRRIP uses 2 bits per block, or 16KB and PDP
used 3 or 4 bits per block, i.e. 24KB or 32KB, plus a num-
ber of bits and transistors related to the implementation of
a microcontroller to compute protecting distances.

4. METHODOLOGY
In this section, we detail the experimental methodology.

We discuss the techniques used to generate the insertion and
promotion vectors (IPVs) as well as the simulation infras-
tructure.

4.1 Searching A Large Design Space
It is not immediately clear how to build a good IPV al-

gorithmically. One idea is to simulate the effect of different
IPVs over a set of workload traces, retaining the IPV that
maximizes performance. With 16-way associativity, there
are 1617 = 2.95 × 1020 IPVs of 17 entries (16 promotion
+ 1 insertion) with 16 possible values per entry. One sim-
ple approach is to randomly search the design space. We
allowed each value in the vector take a uniformly pseudo-
random integer value from 0 through 15. We evaluated each
combination using the fitness function described below, lead-
ing to Figure 1 showing the speedup of each of 15,000 IPVs
sorted in ascending order of speedup. However, this very
small sample of the design space took three days of simu-
lation time and left significant potential undiscovered. Ex-
haustively searching the space of IPVs is impractical, so we
turn to genetic algorithms to find good IPVs.

4.2 Using A Genetic Algorithm to Generate
IPVs

Genetic algorithms are a well-known general optimization
technique [9]. The basic idea is that a population of potential
candidates are mated and mutated with the best individuals
being propagated to the next generation. Each individual
is evaluated with respect to a fitness function. After many
generations, the algorithm tends to converge on a good so-
lution. In the case of IPVs, the population consists of many
randomly-generated IPVs. Individual IPVs are mated with
crossover, i.e., elements 0..k of one vector and k + 1..16 of
another vector are put into corresponding positions of a new
vector, where k is chosen randomly. For mutation, for each
new IPV, with a 5% probability, a randomly chosen element
of the vector is replaced with a random integer between 0
and 15. To generate a vector, we start with a population size
of 20,000 in the first generation and drop the size to 4,000
for subsequent generations. We generate many such vectors
through many runs in parallel. These vectors are used for
the single-vector results.

We then use these vectors to seed another genetic algo-
rithm implemented in pgapack [19], an open-source MPI-
based approach to parallizing the genetic algorithm. We use
a population size of 256 and allow the algorithm to run on 96
processors. The runs take about one day each to converge.
We manually check for the appearance of convergence every
few hours rather than use an automated stopping condition.
For the workload neutral results, no vectors generated using
data from a particular benchmark are used for that bench-
mark to avoid artificially giving that benchmark an unfair
advantage. Using this methodology, we evolve IPVs for 2-
DGIPPR and 4-DGIPPR.

4.3 Fitness Function
The fitness function for our genetic algorithm is the aver-

age speedup obtained on a simplified cache model. For each
workload under consideration, we use a modified version of
Valgrind [23] to collect traces representing each last-level
cache access for each simpoint of 1.5 billion instructions.
We run these traces through a last-level cache simulator that
uses a replacement policy driven by the IPV under consider-
ation. We use the records from the first 500 million instruc-
tions to warm the cache, and the next billion instructions
to measure the number of misses. We estimate the result-
ing cycles-per-instruction (CPI) as a linear function of the
number of misses. We then compute the fitness function as
the speedup of this CPI over the CPI estimated when LRU
is used as the replacement policy.

This fitness function can be evaluated much more quickly
than performing a full simulation. On our machines, the
fitness function takes about 5 minutes to complete for all
92 simpoints of the 29 SPEC CPU 2006 benchmarks, as
opposed to hours with a performance simulator. However,
the fitness function cannot take into account the effects of
memory-level parallelism or other effects of out-of-order ex-
ecution.

4.4 Workload Neutral Vectors
If we use a given workload as part of the fitness func-

tion for developing an IPV, then the performance on that
workload might be artificially higher than we would expect
for an arbitrary workload encountered in practice. Thus, in
order to provide a fair evaluation of GIPPR/DGIPPR, we
develop workload neutral IPVs for each of the 29 SPEC CPU
2006 benchmarks. A common practice in machine learning
is to use cross-validation, where part of a set of data is held
back and not used for training but rather for validation.
Our workload neutral k (WNk) methodology uses the same
idea. In general, with n workloads, a WNk methodology
would hold out k workloads, using the other n − k work-
loads to generate IPVs, then use the IPVs to evaluate GIP-
PR/DGIPPR on the first k workloads. This methodology
allows us to eliminate any bias in the IPVs for a particular
workload that would unfairly cause our technique to yield
more performance than it would in practice.

There is a trade-off between the number of workloads held
out (k) and the quality of the IPVs generated. With k =
1 (i.e. WN1), we find the best quality IPVs taking into
account all workloads except for one, then use that IPV to
evaluate the performance on that one.

For completeness, we also report results with IPVs ob-
tained using all 29 workloads (i.e. workload inclusive or
WI). The resulting performance is slightly better than the
WN1 results.

4.5 Performance Simulation
We use a modified version of CMP$im, a memory-system

simulator that is accurate to within 4% of a detailed cycle-
accurate simulator [12]. The version we used was provided
with the JILP Cache Replacement Championship [2]. It
models an out-of-order 4-wide 8-stage pipeline with a 128-
entry instruction window. This infrastructure enables col-
lecting instructions-per-cycle figures as well as misses per
kilo-instruction and dead block predictor accuracy. We use
the following memory hierarchy parameters: L1 data cache:
32KB 8-way associative, L2 unified cache: 256KB 8-way L3:
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4MB, 16-way, DRAM latency: 200 cycles.

4.6 Workloads
We use the SPEC CPU 2006 benchmarks. Each bench-

mark is compiled for the 64-bit X86 instruction set. The
programs are compiled with the GCC 4.1.0 compilers for
C, C++, and FORTRAN. We use SimPoint [24] to iden-
tify up to 6 segments (i.e. simpoints) of one billion instruc-
tions each characteristic of the different program phases for
each workload. The results reported per benchmark are the
weighted average of the results for the individual simpoints.
The weights are generated by the SimPoint tool and rep-
resent the portion of all executed instructions for which a
given simpoint is responsible. Each program is run with the
first ref input provided by the runspec command.

4.7 Techniques Simulated
We report results for workload neutral and workload in-

clusive IPVs for GIPPR, 2-DGIPPR, and 4-DGIPPR. We
compare these results with LRU as well as DRRIP [13] and
Protecting Distance based Policy (PDP) [6]. We use versions
of DRRIP and PDP with C++ files graciously provided by
the respective authors that work in the CMP$im infrastruc-
ture. DRRIP is another space-efficient replacement policy
that uses set-dueling and improves significantly over LRU.
PDP computes protecting distances stored to cache lines to
determine how long a block should be protected from being
evicted. We configure PDP to use 4 bits per block and to
not bypass the cache. PDP requires an additional storage
overhead related to computing protecting distances as well
as an additional microcontroller used to run the algorithm
that computes protecting distances.

For measuring the number of misses, we also use an in-
house trace-based last-level cache simulator that computes
the optimal number of misses using Belady’s MIN algo-
rithm [3]. MIN chooses to evict the block referenced farthest
in the future. We do not implement MIN in the performance
simulator and indeed believe that it is not well-defined in a
system that allows out-of-order issue of loads and stores,
since the block referenced farthest in the future may depend
on the latencies of the accesses to previous blocks.

5. EXPERIMENTAL RESULTS
This section gives the results of our experiments with GIP-

PR/DGIPPR. We show some of the IPVs generated and
show the speedup and misses per one thousand instructions
(MPKI) for the various techniques. In the bar charts, the
benchmarks are sorted in ascending order of the statistic
being measured for DRRIP.

5.1 Cache Misses
Figure 10 shows the misses per 1000 instructions (MPKI)

normalized to the baseline LRU misses for 1, 2, and 4-
vector workload neutral versions of GIPPR/DGIPPR. Also
shown are misses given by the optimal replacement policy.
The single-vector WN1-GIPPR technique incurs a geometric
mean 95.2% of the misses of LRU. The two-vector WN1-2-
DGIPPR yields 96.5% of the misses of LRU. The four-vector
WN1-4-DGIPPR technique gives a 91.0% of the misses of
LRU. The optimal replacement policy, i.e. the result using
Belady’s MIN algorithm [3], yields only 67.5% of the misses
of LRU, showing that there is significant room for improve-
ment in future work on replacement policy.

This graph shows that the 4-vector version of DGIPPR
is probably the best configuration for actual implementa-
tion. As we can see, the benchmark 456.hmmer is case where
WN1-2-DGIPPR performs significantly worse than the other
techniques, but WN1-4-DGIPPR is close to optimal. Thus,
we recommend that PseudoLRU insertion and promotion be
deployed using at least four IPVs as in WN1-4-DGIPPR.

Figure 11 shows the normalized MPKI for WN1-4-DGIPPR
compared with DRRIP and PDP. The four-vector WN1-4-
DGIPPR technique gives a 91.0% of the misses of LRU. DR-
RIP gives a comparable 91.5% of the misses of LRU while
consuming more than twice the number of bits for replace-
ment information; DRRIP uses two bits per block, or 16KB
for a 4MB cache, while GIPPR/DGIPPR uses 15 bits per
set, or 7KB for a 4MB cache. PDP achieves a slightly bet-
ter 90.2% of the misses of LRU while consuming four times
the number of bits as well as area devoted to a specialized
microcontroller.

Misses are not increased over LRU for all the techniques
for most workloads. 447.dealII is a notable exception: its
misses are increased greatly over LRU for each of DRRIP,
PDP, and WN1-4-DGIPPR, with PDP faring better than
the others. If such workloads are commonplace in a targeted
environment, designers may consider implementing full LRU
and dueling between the more high-performance policies and
LRU.

For several of the SPEC CPU 2006 benchmarks the opti-
mal replacement policy performs no better than LRU. For
example, for 416.gamess and 453.povray, MIN, LRU, and
all of the other replacement policies deliver about the same
number of misses. However, for most workloads, the optimal
policy is significantly better than LRU whether or not the
other policies are affected.

5.2 Speedup

5.2.1 Workload Neutral versus Workload Inclusive
Figure 12 shows the difference between the workload neu-

tral and workload inclusive versions of GIPPR/DGIPPR.
Workload neutral results use IPVs for a given workload that
were trained using only other workloads to provide a fair
means of estimating the performance of the technique in
practice. Workload inclusive results use all of the workloads
for training all of the IPVs. The geometric mean differ-
ent between the two kinds of results is small. The single-
vector WN1-GIPPR technique achieves a geometric mean
3.47% speedup over LRU while the workload inclusive ver-
sion yields a slightly better 3.68% speedup. The two-vector
WN1-2-DGIPPR yields a 4.96% speedup over LRU while the
workload inclusive version has a 5.12% speedup. The work-
load neutral 4-vector technique (WN1-4-DGIPPR) yields a
speedup of 5.61% over LRU versus 5.66% for the workload
inclusive technique (WI-4-DGIPPR). The most significant
difference is in 436.cactusADM where the workload neutral
technique yields a 39% speedup but the workload inclusive
technique yields a 49% speedup. Some workloads such as
447.dealII and 483.xalancbmk experience very slight re-
ductions in performance using the workload inclusive tech-
nique. We believe this seemingly paradoxical situation arises
because the genetic algorithm cannot actually give the op-
timal vector for a given set of traces. Moreover, the fit-
ness function currently used cannot take into account the
effects of memory-level parallelism which can have a sig-

291



400.perlbench

482.sphinx3

401.bzip2
429.m

cf
436.cactusA

D
M

456.hm
m

er

473.astar
462.libquantum

450.soplex
435.grom

acs

483.xalancbm
k

470.lbm
481.w

rf
445.gobm

k

433.m
ilc

444.nam
d

410.bw
aves

458.sjeng
465.tonto
416.gam

ess

453.povray

454.calculix

471.om
netpp

437.leslie3d

434.zeusm
p

403.gcc
459.G

em
sFD

T
D

464.h264ref

447.dealII
G

eom
etric M

ean

Benchmark

1

2

3
N

o
rm

a
li

ze
d

 M
is

se
s 

p
er

 1
0
0
0
 I

n
st

ru
ct

io
n

s

1

2

3

WN1-GIPPR

WN1-2-DGIPPR

WN1-4-DGIPPR

Optimal replacement

Figure 10: Misses per 1000 Instructions Normalized to LRU Misses

400.perlbench

482.sphinx3

401.bzip2
429.m

cf
436.cactusA

D
M

456.hm
m

er

473.astar
462.libquantum

450.soplex
435.grom

acs

483.xalancbm
k

470.lbm
481.w

rf
445.gobm

k

433.m
ilc

444.nam
d

410.bw
aves

458.sjeng
465.tonto
416.gam

ess

453.povray

454.calculix

471.om
netpp

437.leslie3d

434.zeusm
p

403.gcc
459.G

em
sFD

T
D

464.h264ref

447.dealII
G

eom
etric M

ean

Benchmark

1

2

3

N
o
rm

a
li

ze
d

 M
is

se
s 

p
er

 1
0

0
0

 I
n

st
ru

ct
io

n
s

1

2

3

DRRIP

PDP

WN1-4-DGIPPR

Optimal replacement

Figure 11: Misses per 1000 Instructions Normalized to LRU Misses

nificant impact on the best replacement decision for some
workloads [26].

5.2.2 DGIPPR versus Other Techniques
We compare the 4-vector workload neutral technique (WN1-

4-DGIPPR) with other techniques. Figure 13 illustrates the
speedup of the various techniques over the baseline LRU pol-
icy. The workload neutral versions of 4-DGIPPR is used to
provide a fair comparison to DRRIP. The four-vector WN1-
4-DGIPPR technique gives a 5.61% speedup over LRU. DR-
RIP gives a comparable 5.41% speedup over LRU. PDP
achieves a similar 5.69% speedup over LRU. We cannot re-
port the results of optimal replacement because the MIN
algorithm is not well-defined in a system that allows out-of-
order issue of loads and stores.

Our technique delivers more consistent speedup over LRU

than the other two. For 447.dealII, WN1-4-DGIPPR achieves
only 97.3% of the performance of LRU. For all other work-
loads, the performance is more than 99% of LRU. DRRIP
achieves less than 99% of the performance of LRU on three
workloads: 459.GemsFDTD, 447.dealII, and 471.omnetpp.
PDP yields less than 96% of the performance of LRU for
459.GemsFDTD and 471.omnetpp.

We consider a memory-intensive subset of SPEC defined
as workloads where the speedup of DRRIP over LRU ex-
ceeds 1%. These are the workloads on the x-axis of Figure 13
from 433.milc through 429.mcf. For this subset, WN1-4-
DGIPPR achieves a speedup of 15.6%, compared with the
same 15.6% for DRRIP and a slightly higher 16.4% for PDP.
In other words, our technique achieves the same performance
as DRRIP with half the storage overhead, and 95% of the
same performance as PDP with a small fraction of the com-
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plexity.

5.3 Vectors Learned
The workload inclusive IPV learned for GIPPR is [ 0 0

2 8 4 1 4 1 8 0 14 8 12 13 14 9 5 ]. Space prohibits us
from showing all of the workload neutral vectors learned by
the genetic algorithms, but as an example the best single
workload neutral vector for 400.perlbench is [ 12 8 14 1 4
4 2 1 8 12 6 4 0 0 10 12 11 ]

The set of two vectors for WI-2-DGIPPR is:

[ 8 0 2 8 12 4 6 3 0 8 10 8 4 12 14 3 15 ]
[ 0 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 0 ]

The set of four vectors for WI-4-DGIPPR is:

[ 14 5 6 1 10 6 8 8 15 8 8 14 12 4 12 9 8 ]
[ 4 12 2 8 10 0 6 8 0 8 8 0 2 4 14 11 15 ]
[ 0 0 2 1 4 4 6 5 8 8 10 1 12 8 2 1 3 ]
[ 11 12 10 0 5 0 10 4 9 8 10 0 4 4 12 0 0 ]

5.3.1 About Intuition
We are happy to provide all of the vectors used for this

study to any interested party. At a first glance they do not
seem to yield a deep understanding of why the GIPPR tech-
nique works as well as it does; they are jumbles of numbers.

The vectors can be viewed as a highly compressed repre-
sentation of clusters of program behaviors leading to good
replacement decisions, and as such their detailed analysis is
beyond the scope of this paper.

Much previous work places a high value on the intuition
behind a given technique, and provide the results of studies
performed to determine whether the intuition is valid. We
applaud this sort of work, but also wonder whether other
avenues that are counter-intuitive or non-intuitive may be
of equal or perhaps greater value. After all, let us recall
that the LRU policy itself is quite intuitive: a block that
was referenced least recently should be least likely to be ref-
erenced again soon. However, LRU is so bad at keeping the
right data in the LLC that there is not much to recommend
it over random replacement. We believe that going beyond
human intuition and letting the machine take over the de-
sign of cache management and perhaps other areas has great
potential to improve processor design.

5.3.2 Interpreting the Vectors
Notwithstanding our viewpoint on intuition, let us at-

tempt a preliminary interpretation of these insertion/place-
ment vectors. We can observe some patterns in the vec-
tors. For instance, the WI-2-DGIPPR IPVs clearly duel be-
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tween PLRU and PMRU insertion, just as DIP [25] would
do. However, the first vector for WI-2-DGIPPR seems to
prefer a very pessimistic promotion policy, moving most ref-
erenced blocks closer to the PLRU position. On the other
hand, the second vector is very close to PLRU by itself,
with the exception of a block beginning at position 8 where
referenced blocks in positions 8 through 12 go back to po-
sition 8. The WI-4-DGIPPR IPVs switch between PLRU,
PMRU, close to PMRU, and “middle” insertion. The pro-
motion strategies are quite varied as well.

6. RELATED WORK
Cache replacement has a long history in the literature.

The optimal replacement policy in terms of minimizing cache
misses is Belady’s MIN [3]. The MIN algorithm replaces the
block that will be used farthest in the future. This algorithm
is impractical to implement due to its dependence on per-
fect knowledge of the future. Thus, many algorithms have
been proposed based on intuitions that attempt to approxi-
mate MIN. The classic random, first-in-first-out (FIFO), and
least-recently-used (LRU) replacement policies have been
known for over 45 years [5]. There has been voluminous sub-
sequent work on improving cache replacement algorithms; a
complete survey could fill several MICRO papers worth of
pages. Thus, we focus on the most relevant recently in-
troduced policies for last-level cache replacement. LRU is
described in more detail in Section 2.1.2.

6.1 Insertion Policy
Recent work has focused on LRU-like policies that mod-

ify the handling of the recency stack through insertion and
promotion.

Qureshi et al. propose Dynamic Insertion Policy (DIP) [25].
That begins with the observation that some workloads per-
form better when incoming blocks are inserted in the LRU
position. In some workloads, many incoming blocks are not
used again. If a block is not referenced again before an-
other victim is needed, it can be quickly eliminated from
the cache by being chosen as the LRU victim. Since this
strategy works poorly for other workloads that have less
streaming behavior, the policy uses set-dueling (described
in Section 2.3) to choose between LRU placement and the
traditional MRU placement. DIP focuses only on insertion
policy; promotion is the same as in traditional LRU. DIP re-
lies on the costly LRU replacement policy which consumes
an extra 4 bits per block in a 16-way set associative cache;
by contrast, DGIPPR uses less than one bit per block as it
is based on tree PseudoLRU.

Jaleel et al. propose re-reference interval prediction (RRIP) [13].
The paper introduces several techniques, but the main con-
tribution of the work is Dynamic RRIP (DRRIP). Each
block has associated with it a 2-bit re-reference prediction
value (RRPV). An RRPV is roughly analogous to a coarse-
grained position in an LRU recency stack, although more
than one block can have the same RRPV. When a block is
accessed, its RRPV is updated to 0. On a miss, a victim
with an RRPV of 3 is chosen. If there is no such block,
all blocks’ RRPVs are incremented until an RRPV of 3 is
found. DRRIP uses set-dueling to choose between two tech-
niques: SRRIP and BRRIP. SRRIP inserts blocks with an
initial RRPV of 2. BRRIP usually inserts with an RRPV of
3, but with low probability will insert with an RRPV of 1.
To our knowledge, DRRIP is the most efficient replacement

policy in the literature that uses no additional information
other than the stream of block addresses accessing cache
sets. DRRIP requires 2 extra bits per cache block, making
it the most efficient of the published high-performance cache
replacement schemes.

6.2 Promotion Policy
Kron et al. extend the idea of DIP in DoubleDip [18].

DIP is combined with an adaptive promotion policy that
promotes blocks an increment up the recency stack propor-
tional to the strength of set-dueling confidence counters. Xie
and Loh further extend this line of thought with promo-
tion/insertion pseudo-partitioning (PIPP) targeted at very
large capacity highly associative caches such as those con-
structed with die-stacked DRAM [30].

6.3 Other Replacement Work
Kaxiras et al. propose directly predicting the re-use dis-

tance of a given block and using that prediction to guide
cache replacement [14]. This work uses a sampling method-
ology based on the PC of memory access instructions, inspir-
ing sampling-based dead block prediction [16]. Dead block
prediction [4, 20, 16] also uses the address of memory ac-
cess instructions to predict whether a block will be used
again before it is evicted. Dead block prediction can be
used to drive replacement policy by evicting predicted dead
blocks [17, 16], but the implementation is costly in terms of
state and/or the requirement that the address of memory
instructions be passed to the LLC.

Wu et al. propose a signature-based hit predictor (SHiP)
as a significant improvement to DRRIP. The idea is to use
the address of the memory access instruction to give a pre-
diction of the re-reference behavior of the data accessed by
that instruction. Based on this prediction, a more intelligent
insertion decision can be made resulting in significantly im-
proved performance. The resulting cache management pol-
icy uses 5 extra bits per cache block. This work also depends
on the address of memory access instructions being available
to the last-level cache, which would require an extra com-
munication channel from the cores to the LLC.

Duong et al. propose using dynamic reuse distances in-
stead of recency stack positions for cache replacement [6].
Their proposal results in the Protecting Distanced based
Policy (PDP) that keeps a cache line from being evicted un-
til after a certain number of accesses to the set. The policy
makes use of bypass, i.e., if an analysis shows that a par-
ticular cache line is unlikely to be reused, it bypasses the
last-level cache. This work surpasses DRRIP’s performance
but uses significantly more state than DRRIP. When used
with bypass, PDP is unsuitable for use with an inclusive
cache because bypass necessarily violates inclusion; however,
PDP can be used without bypass in which case it still pro-
vides an improvement over DRRIP. This work requires 3 or
4 bits (depending on the configuration) of extra state per
block. The technique also requires the incorporation of a
specialized microcontroller consuming 10K NAND gates to
compute protecting distances.

6.4 Genetic Algorithms in Architecture
Emer and Gloy use genetic algorithms to design accurate

branch predictors [8]. They develop a language of capable of
describing branch predictors, then use a genetic algorithm
to search through the space of sentences in that language
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to find a branch predictor with very good accuracy. Gomez
et al. use neuroevolution, i.e. genetic algorithms to evolve
neural networks, to control resource allocation on a chip-
multiprocessor [10]. Ebrahimi et al. use a genetic algorithm
to optimize parameters for a prefetching algorithm [7].

7. CONCLUSION AND FUTURE WORK
We have presented GIPPR and DGIPPR, last-level cache

replacement policies based on changing insertion and promo-
tion for PseudoLRU. We have demonstrated that DGIPPR
is competitive in terms of performance with DRRIP and
PDP while consuming far less overhead. We seek to extend
the work in a number of ways:

1. The low overhead of GIPPR/DGIPPR may allow it to
be combined with other policies through set-dueling
with an acceptable overhead. For instance, we are in-
vestigating combining DGIPPR with a predictor that
decides whether a block should bypass the cache.

2. We are currently working on ways to take MLP into
account in the fitness function.

3. We use a genetic algorithm to develop the vectors, but
we are investigating ways to find these vectors more
systematically.

4. We have demonstrated the technique on single-threads
workloads, but we are actively researching extending
it to multi-core.

5. Although we have focused on PseudoLRU insertion
and promotion, the full LRU version of the technique
also deserves further study, and it may be adapted to
other LRU-like algorithms such as RRIP.

6. We would like to explore the performance of our tech-
nique at high levels of associativity; a high-performance
replacement policy should complement techniques such
as zCache [27] that provide high effective associativity
with low overhead.

7. Finally, we are investigating generalizations of inser-
tion and promotion policies beyond IPVs.

For years the disparity between processor and memory
speeds, i.e. the “memory wall,” has stymied progress in im-
proving the performance of microprocessors. Our hope is
that techniques such as DGIPPR will tear down this wall.
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