
Rank Idle Time Prediction Driven Last-Level Cache
Writeback

Zhe Wang Samira M. Khan Daniel A. Jiménez
The University of Texas at San Antonio

{zhew, skhan, dj}@cs.utsa.edu

ABSTRACT
In modern DDRx memory systems, memory write requests
can cause significant performance loss by increasing the mem-
ory access latency for subsequent read requests targeting the
same device. In this paper, we propose a rank idle time
prediction driven last-level cache writeback technique. This
technique uses a rank idle time predictor to predict long
phases of idle rank cycles. The scheduled dirty cache blocks
generated from last-level cache are written back during the
predicted long idle rank period. This technique allows ser-
vicing write request at the point that minimize the delay it
caused to the following read requests. Write-induced inter-
ference can be significantly reduced by using our technique.
We evaluate our technique using cycle-accurate full-system

simulator and SPEC CPU2006 benchmarks. The results
shows the technique improves performance in an eight-core
system with memory-intensive workloads on average by 10.5%
and 10.1% over conventional writeback using two-rank and
four-rank DRAM configurations respectively.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles-Cache memo-
ries; D.3.4 [Software]: Processors-Memory management

General Terms
Design, Experimentation, Performance

Keywords
Writeback, Memory Management, LLC

1. INTRODUCTION
In modern DDRx memory systems, memory write requests

can delay the service of subsequent read requests targeting
the same rank, thus increasing the access latency of the read
requests. This write-induced interference [9] can cause signif-
icant system performance degradation. Intelligent schedul-
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ing and adjustment of read/write priority can reduce write-
induced interference. Intelligent scheduling allows write re-
quests to be serviced by DRAM efficiency, thus reducing
write-imposed penalties to subsequent reads. Write-induced
interference can be eliminated by always prioritizing reads
over writes. However, writes must have priority over reads at
some point due to a limited size of write buffer. Therefore,
it is better to prioritize writes at the point that minimize
the interference to subsequent reads.

In a conventional writeback policy, dirty cache blocks are
sent to the write buffer when they are evicted from the last-
level cache (LLC). The write buffer is drained following the
buffer management policy. Several proposals [16, 18, 13]
improve writeback efficiency using an intelligent scheduling
algorithm. However, the write buffer only has a small num-
ber of entries due to design complexity and power efficiency,
limiting the ability to schedule high locality write requests as
well as the possibility to flexible adjust read/write priority.

LLC writeback techniques have been proposed to expand
write resources using near least recently used (LRU) po-
sition of the LLC. Eager writeback [10] sends dirty cache
blocks in the LRU position to DRAM for service when the
rank is idle, thus re-distributing write requests. The virtual
write queue (VWQ) [20] technique issues scheduled write-
backs from near the LRU position in the LLC to improve
writeback efficiency. To reducing write-induced interference,
both eager writeback and VWQ techniques issue write re-
quests to memory when no read requests target the same
rank. Unfortunately, these techniques have no knowledge
about when the next read request will come. If a read re-
quest comes soon after a write request is issued, the write
will still impose large penalty on the read.

Multiple memory controllers and multiple ranks are used
to service memory requests in parallel. Due to workload
characteristics and load imbalance, some ranks often have
idle cycles while the application is running. In this paper,
we propose a prediction driven LLC writeback technique.
This technique uses a rank idle time predictor to predict
when a rank will have significant idle time. “Rank idle”
means that there will be no read request for this rank that
will be delayed by scheduling writeback events. The sched-
uled write requests can be written back during this idle rank
period. We incorporate the rank idle time predictor into
the parallelism-aware LLC scheduling technique and pro-
pose a prediction driven parallelism-aware LLC writeback
technique. The proposed technique applies to the DRAM
system that maps the rank and channel into the higher order
bits than the column in the physical address. Write-induced
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interference is significantly reduced by our technique.
This paper makes the following contributions:

• We propose a technique that makes use of the rank
idle cycles to isolate the service of memory read and
write requests as much as possible.

• We propose a low-overhead rank idle time predictor to
predict long periods of idle time in memory ranks. This
predictor is used to guide the LLC writeback policy.

• We incorporate the rank idle time predictor into the
parallelism-aware LLC scheduling technique. Sched-
uled write requests are written back to the memory
guided by the predictor to reduce the write-induced
interference.

• We present an evaluation of our techniques with an
eight-core processor using the MARSSx86 Simulator [15]
together with DRAMSim2 [17] for multi-rank DRAM
configurations. The experimental results show a sig-
nificant performance improvement over previous tech-
niques.

Evaluation with multi-programmed SPEC CPU2006 work-
loads shows that the technique improves the performance in
an eight-core system with memory-intensive workloads on
average by 10.5% and 10.1% over conventional writeback
using two-rank and four-rank DRAM configurations respec-
tively.

2. BACKGROUND AND MOTIVATION
DRAM systems [2] [3] have multiple channels that can be

accessed independently. Each channel is composed of one
or multiple memory ranks that share the same address and
data bus. A memory rank consists of a set of chips where
chips in the same rank can be accessed simultaneously. Each
chip is organized as multiple banks that can be operated in
parallel. In a DDRx memory module, each rank has a 64-bit
data bus. Chips within a rank work in unison to return 64
bits per cycle.
A memory bank has a number of two-dimensional data

arrays that arranges as rows and columns. When a memory
access request comes, an entire row of bits that contains
the required data is brought into the row buffer. Then a
column of this row buffer is selected according to the column
address. The row-hitting request is the request that goes to a
currently open row. Data can be accessed without activating
the row buffer again. Therefore, the row-hitting request can
be serviced much faster than the request that goes to a row
that not currently in the row buffer.

2.1 Address Mapping Scheme
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Figure 1: Address mapping scheme (a) cache line interleaving
(b) page interleaving

The memory address mapping scheme [11] maps physical
addresses to memory resources. Figure 1 shows an exam-
ple of two typical address mapping schemes: cache line in-
terleaving and page interleaving mapping schemes. In the
cache line interleaving mapping scheme, consecutive cache
lines are distributed to different rank/bank/channel combi-
nations to maximize the parallelism of memory access. This
mapping scheme will cause read requests to go to different
ranks frequently and produce fragmented short idle cycles
which might be too short to compensate for large write-
induced interference. The page interleaving mapping scheme
maps the lower order bits of the physical address into the
column address to maximize the number of row buffer hits.
The memory access patterns of most applications have spa-
tial locality, so the application tends to access a certain rank
for a while before switching to another rank. Therefore,
compared with the cache line interleaving mapping scheme,
the page interleaving mapping scheme tends to collect small
chunks of idle rank cycles into large runs.

Our technique prefers long, consecutive idle cycles in the
rank rather than short and fragmented idle cycles. There-
fore, our technique works with an address mapping scheme
that maps the rank ID bits and channel ID bits higher than
the column ID bits. We will introduce our technique in the
context of page interleaving mapping scheme. The page in-
terleaving mapping scheme is widely used in DDRx memory
systems [2, 7, 6].

2.2 Motivation
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Figure 2: Read latency using conventional writeback and
perfect writeback techniques in quard-core processor

We performed experiments to motivate the the use of idle
rank time for reducing the write-induced interference.

Figure 2 shows read latency normalized to conventional
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writeback on a quad-core processor for perfect writeback.
Perfect writeback assumes memory write access does not
cause any interference to read access, which is the optimal
case. Read latency is computed as the sum of the DRAM
busy cycles for each core divided by the number of LLC
misses.
We randomly choose eight mixes of SPEC CPU2006 bench-

marks for the experiment. The system used for evaluation
is a 4.8 GHZ quard-core processor with JEDEC [1] based
DDR3-1600 memory. The memory system has two channels,
one rank per channel, and uses the First Ready-First Come
First-Served (FR FCFS) [16] memory scheduling algorithm.

From Figure 2, we can see the read latency for perfect
writeback is 74.6% of conventional writeback. Thus, 25.4%
of the read latency suffered by conventional writeback is
caused by write-induced interference. Write-induced inter-
ference is more obvious in a multi-core system since the per-
formance of a given application is affected by its own write-
back accesses as well as the writeback accesses from other
applications.
Figure 3 shows the ratio of idle rank cycles to total execu-

tion time as a percentage for conventional writeback. Ranks
are idle 38.1% of the time on average. The motivation of
rank idle prediction is based on these large idle rank percent-
age and write-induced interference: if this idle time could be
used for write access, it could decrease write-induced inter-
ference significantly.

3. RELATED WORK
Many proposals [16, 18, 21, 12, 14] focus on improving

memory efficiency by scheduling or relocating memory ac-
cesses to yield as many row hits as possible or servicing
memory accesses in parallel. Some prior work [5, 22] also
propose using prediction to optimize memory performance.
Hur et al. [5] propose a scheduling algorithm that uses a
state machine to make the next scheduling decision based
on the past behavior. Xu et al. [22] use a two-level dynamic
predictor to predict which buffer management policy to use
for different memory accesses.
Much previous work [21, 12, 14] does not take into account

the write interference problem. Eager writeback [10] is the
first work that expands write resources by using the LLC to
reduce write-induced interference. Eager writeback writes
back dirty cache blocks in the least-recently-used (LRU) po-
sition of the LLC sets whenever the bus is idle instead of
waiting for the block to be evicted to reduce the memory
traffic. However, the scheduling window of eager write back

is still limited to the size of the write buffer. Thus, the
scheduling decision it makes is far from optimal.

Stuecheli et al. [20] propose a virtual write queue (VWQ)
technique. Their technique takes a fraction of the LRU posi-
tions in the LLC as the VWQ. Dirty cache blocks with high
locality in the VWQ are written back in a batch, there-
fore improving writeback efficiency. The drawback of this
technique is that it needs to search the dirty cache blocks
in VWQ that hit in the same row when mapping to the
DRAM. Although it uses the Cache Cleaner technique to
help searching, it still consumes significant LLC power and
search time. Our technique avoids this overhead.

To reduce write-induced interference, both eager write-
back and VWQ techniques issue write requests to DRAM
when the rank is idle. Unfortunately, the memory controller
does not have knowledge about how long the rank will re-
main idle. The write-induced penalty might be too high to
be hidden by the short rank idle period.

In this paper, we propose a rank idle time prediction
driven LLC writeback technique. In contrast to previous
work [20, 9] that does not exploit rank idle time, our tech-
nique allows the memory to service write requests during the
significant idle rank time. The technique can be used with
LLC writeback scheduling techniques to improve memory
efficiency.

4. RANK IDLE TIME PREDICTION DRIVEN
LAST-LEVEL CACHE WRITEBACK

We propose a prediction-driven LLC writeback technique.
Our technique fills DRAM idle rank cycles with scheduled
writeback requests. It predicts when there will be long
stretches of idle rank cycles and issues scheduled writeback
requests in those stretches of times such that significant in-
terference with subsequent read requests in the same rank
will not occur.

Figure 4 illustrates the structure of our technique. A two-
level predictor is used to predict long stretches of idle rank
cycles for a given rank. The two-level predictor is composed
of two predictors making predictions at different times to
predict whether there will be significant idle rank time for
a particular rank. Each rank has one two-level predictor.
Thus, the number of two-level rank idle predictors for a
DRAM system is equal to the number of ranks this system
has. A sequence of scheduled dirty cache blocks that are
generated from LLC in the direction of Cache Cleaner [20]
are written back during a predicted long idle period.
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4.1 Two-Level Rank Idle Time Predictor
The two-level rank idle time predictor is used to predict

long idle rank periods. The technique works well with appli-
cations that have long stretches of idle rank cycles, especially
for DRAM system with multiple ranks. For DRAM system
with multiple ranks, memory access can conflict in some
ranks and leave other ranks idle. From Figure 3, we already
see that in multi-rank system, each rank has significant idle
time.
The rank idle time predictor is a program counter (PC)

based predictor inspired by the PC-based sampler dead block
predictor (SDBP) [8]. The SDBP uses PC information to ac-
curately predict whether an LLC block is“dead,” i.e. whether
it will be accessed again before being evicted. The design of
the rank idle time predictor is based on the observation that
if there is a long idle rank period after an instruction related
to a LLC miss when there are no read requests in that rank,
there is a high probability that the same behavior will be
observed the next time this instruction causes a miss in the
LLC with no read requests in that rank.

4.1.1 Making Prediction

PC xor Thread ID

Rank Idle Cycle
Counter

Prediction results

First−Level Predictor

Second−Level Predictor

Prediction results

two−bit counter

 two−bit counter

Figure 5: A two-level rank idle time predictor

Each rank has a two-level predictor. The structure is
shown in Figure 5. Two levels are used so that if the first
predictor mispredicts a long idle period, the second predictor
has another chance to predict this long idle period. The two
predictors have the same structure, make their predictions
at different times, and update at the same time. The predic-
tion state consists of a table of two-bit saturating counters,
much like a branch predictor. The predictor table is indexed
by the address (PC) of the instruction and the thread num-
ber. The PC is that of the last instruction before the rank
becomes idle. The predictor makes a prediction according
to the high bit of the selected counter: long idle time if the
bit is one, short idle time if the bit is zero. The rank idle cy-
cle counter is used to count the number of idle cycles. This
number is used to choose the predictor to make a prediction
and update the predictor.

4.1.2 Prediction Driven Writeback Mechanism
As soon as a rank becomes idle, the first-level predictor

makes a prediction about whether there will be read requests
coming to that rank in the next m cycles. A sequence of s
scheduled dirty cache blocks will be written back to DRAM
during the predicted m idle cycles. In the DRAM system
with eight-bank per rank, we choose s = 8 to maximize

k cycles

P1

n cycles

t1 t2

P2

t3

timeline

Figure 6: Prediction timeline

the bank-level parallelism when servicing the write requests.
The parameter m is related to s; we want to make sure m
can cover most of the service time of s scheduled dirty cache
blocks.

Figure 6 shows the time to make a prediction during the
idle rank cycles. Assuming the rank is idle from time t1, the
rank idle cycle counter starts to count the rank idle cycles
and the first predictor makes a prediction at time t1. If the
prediction result from the first level predictor P1 is false (i.e.,
no long idle time predicted) and there are no read requests
coming after n idle cycles, the second level predictor P2 is
used to make a prediction. If the prediction result is true,
s scheduled dirty cache blocks will be send to DRAM for
service.

If both of the prediction results are false, but the idle rank
time is longer than a threshold k, s scheduled dirty cache
blocks are written back. This optimization comes from the
observation that if there are rank idle cycles longer than k,
there is a high probability that the idle cycles are also longer
than k +m.

If either of the predictor results is true or the idle rank
period is longer than the threshold k, the system will mon-
itor the service of the write requests. If all of the previous
s write requests have been finished service. and there are
still no read requests coming in, another group of s sched-
uled dirty cache blocks will be sent to the DRAM system
for service.

4.1.3 Predictor Update
The predictor will be updated when a read request comes

and the rank is idle. If the idle rank cycles counted by
the rank idle cycle counter are larger than m, the two-bit
counter in the first-level predictor indexed by the the last
PC and thread ID encountered before the rank was idle will
be incremented; otherwise it will be decremented. If there
are more than m+n idle rank cycles, the corresponding two-
bit counter in the second-level predictor will be incremented,
otherwise it will be decremented.

Why does the rank idle time predictor work in multi-
core systems.

The memory access patterns of most applications have
spatial locality. Our technique is applied to the address
mapping scheme that maps the rank and channel bits higher
than the column bits, so the application tends to access a
certain rank for a while before switching to another rank.
In the modern DDRx memory systems, multiple controllers
and multiple ranks are used to service the memory requests
in parallel, thus in a lengthy stretch, only a small number
of applications access a certain rank. Therefore, the mem-
ory access pattern for a certain rank is repeatable and pre-
dictable. Additionally, the rank idle predictor only makes
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the prediction when the rank starts to become idle, i.e., when
all of the programs leave a rank idle. From our observation,
the memory read accesses tend to come in bursts. The same
program behavior that leads to one burst tends to lead to
other bursts, as well as those bursts ending.

4.2 LLC Writeback Policy
The LLC writeback policy searches for dirty cache blocks

near the LRU position in the LLC and sends a sequence of
scheduled dirty cache blocks to the write buffer. Scheduled
writebacks are used because scheduled write requests map
to memory resources in a way that can be serviced more
efficiently.
In our implementation, a cache block is considered “near

the LRU position” if it resides in the bottom eighth of the
LRU recency stack [20]. We incorporate the rank idle time
predictor into the LLC parallelism-aware writeback policy.
The LLC parallelism-aware writeback policy searches the

dirty cache blocks in the LLC that target to the same rank
but different banks. Compared with LLC writeback policy
of VWQ, which exhaustively searches the row-hitting cache
blocks in the related cache sets in the direction of Cache
Cleaner [20], our scheme does not need to search a large
amount of cache sets and perform tag matching, thus con-
suming less power and searching time.
The Cache Cleaner [20] uses a Search Set Vector (SSV)

to help searching dirty cache blocks in the LLC that could
be serviced more efficiently when mapping to the DRAM re-
sources. In the parallelism-aware scheduling scheme, when
the predictor predicts a long idle period, a group of dirty
cache blocks composed of the writeback requests to this idle
rank but different banks are sent out to the DRAM sys-
tem. Most modern DDRx systems use an eight-bank per
rank memory configuration. Therefore, when more than
one group of scheduled write requests are issued during the
idle rank period, the rank resource access latency can be
overlapped by bus burst cycles, reducing the average write
request service time.
If the number of write requests in the write buffer is larger

than a threshold, and there are no predicted long idle peri-
ods, the write requests will be sent to the DRAM for service
whenever the rank is idle or the write buffer is full.

4.3 Storage Overhead
For each rank, we use a two-level rank idle predictor. Both

levels are the same size. Each predictor has 8K entries and
each entry has a two-bit counter. Thus, the total storage for
the two-level rank idle predictor is 4K bytes. For an eight-
core, 16M and 16-way LLC, the storage for SSV table is 2K
bytes. Therefore, the total storage for the memory system
with two memory controllers, two-rank per channel and four-
rank per channel are 18K bytes, 34K bytes, respectively.
Both of them are less than 0.3% of the capacity of the 16M
LLC.

5. METHODOLOGY
This section outlines the experimental methodology used

in this study.

5.1 System
We use the MARSSx86 [15], a cycle-accurate simulator

for X86-64 architecture. The experiment models an out-of-
order eight-core processor with 16M shared LLC. The sys-

tem configuration is shown in Table 1. The DRAMsim2 [17]
is incorporated into MARSSx86 to simulate a detailed cycle-
accurate DRAM system. We configure DRAMsim2 to model
a DDR3-1600 11-11-11 DRAM system with two channels.
Both two-rank per channel and four-rank per channel con-
figurations are evaluated in our experiment.

5.2 Benchmarks
We use the SPEC CPU2006 [4] benchmarks for this study.

Of the 29 SPEC CPU2006 benchmarks, 24 could be com-
piled and run without errors on MARSSx86. Table 2 shows
six mixes of these 24 SPEC CPU2006 benchmarks randomly
chosen eight at a time. We use these mixes for eight-core
simulation. Each benchmark runs simultaneously with the
others. For each mix, we made a checkpoint by running the
one of the memory intensive benchmarks to a typical phase
identified by SimPoint [19]. Then we run the experiment for
2 billion instructions total for all eight cores starting from
the checkpoint. Each benchmark is run with the first ref
input provided by the runspec command.

5.3 Techniques
We evaluate six techniques for this study. Table 3 gives

these techniques and a legend for their name. For traditional
writeback, we simulated the following write buffer manage-
ment policies: 1) writes in the write buffer are sent to the
DRAM for service when the corresponding rank is idle or the
occupancy of the write buffer reaches a threshold, 2) writes
in the write buffer are sent to the DRAM only when the write
buffer is full, 3) writes in the write buffer are sent to DRAM
when the corresponding bank is idle or the occupancy of the
write buffer reaches a threshold. Our evaluation shows the
policy 1) yields the best performance. To ensure fairness
we choose to use the policy 1) for conventional writeback
evaluation.

The memory scheduling technique we use for evaluation
is FR FCFS [16]. The other memory read scheduling tech-
niques could also work with our write scheduling optimiza-
tion, we choose FR FCFS for simplicity.

6. RESULTS
In this section, we give the results of our experiments stud-

ies.

6.1 Performance Analysis
The baseline technique in our evaluation is PI-CWB. Fig-

ure 7 shows the IPC speedups normalized to baseline in a
simulated eight-core processor with a two-rank DRAM sys-
tem; that is, each channel has two ranks. For each bench-
mark, we show the speedup of the first run in the random
combination. Benchmarks showing in Figure 7 are those the
performance of perfect writeback could be improved more
than 10% over the baseline. Perfect writeback means all
write-induced interference is eliminated. If perfect write-
back gives a significant improvement over the baseline for a
particular benchmark, that means the performance of this
benchmark has a potential to be improved when using write-
back optimization. In this experiment, for 16 of 24 bench-
marks, the performance of perfect writeback could be im-
proved more than 10% over the baseline. Thus, most of the
benchmarks can benefit from writeback optimization in a
multi-core system.
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Execution core 4.8GHZ, eight-core CMP, out of order, 256 entry buffer, 48 entry load queue
44 entry store queue, 4 width issue/decode, 15 stages, 256 physical registers

Caches L1 I-cache: 64KB/2 way, private, 64 bytes block size, LRU, 2-cycle
L1 D-cache: 64KB/2 way, private, 64 bytes block size, LRU, 2-cycle
L2 Cache: 16MB/16 way, shared, 64 bytes block size, LRU, 14-cycle

Main Memory 2 memory controllers, 2/4 ranks per channel, 32-entry write buffer per channel
8 banks per rank, 8K bytes row buffer per-bank, DDR3-1600 11-11-11

Table 1: System configuration

Name Benchmarks
mix1 hmmer sphinx3 libquantum GemsFDTD gobmk perlbench lbm astar
mix2 perlbench gobmk namd lbm gamess GemsFDTD xalancbmk cactusADM
mix3 omnetpp hmmer cactusADM xalancbmk GemsFDTD gcc soplex astar
mix4 gromacs astar h264ref lbm omnetpp gcc libquantum calculix
mix5 gobmk tonto zeusmp milc bzip2 mcf hmmer astar
mix6 omnetpp libquantum hmmer sphinx3 bwaves milc xalancbmk calculix

Table 2: Multi-core workload mixes

Name Technique

CI-CWB Conventional writeback with cache line interleaving mapping scheme
PI-CWB Conventional writeback with page interleaving mapping scheme
PA-WB Parallelism-aware writeback
Eager-WB Eager writeback [10]
VWQ Virtual Write Queue [20]
RITPD-WB Rank Idle Time Prediction Driven LLC Writeback in Section 4

Table 3: Legend for various writeback techniques.
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Figure 7: Performance evaluated on eight-core two-rank system

In Figure 7, conventional writeback with page interleav-
ing mapping scheme yields much better performance than
conventional writeback with cache line interleaving map-
ping scheme. Therefore, we implement page interleaving
mapping scheme in all the other techniques. From Fig-
ure 7, we can see RITPD-WB technique outperforms all the
other techniques tested across all the benchmarks. Bench-
mark libquantum has a performance improvement as large as
30.0% when using the RITPD-WB technique due to its high
memory access spatial locality. That is, the memory read
requests access a particular rank consecutively for a long
stretch. So if write requests access the busy rank that ser-
vices the read requests, there will be significant interference
with the read requests. Therefore, libquantum benefits sig-
nificantly by using the prediction driven technique to service
memory write requests when the rank is idle.

In Figure 7, eager writeback improves performance by
a geometric mean speedup of 4.3%. The performance im-
provement for the VWQ is 7.3%. Notice that the VWQ
technique we implemented is in an optimal assumption that
all the row-hitting write requests can be transfered back-
to-back [20]; that is all the row-hitting dirty cache blocks
in the near LRU position in LLC can be searched and pro-
vided during transferring the previous data from write buffer
to DRAM. However, it is possible that the optimal assump-
tion is not always satisfied in real systems, because search-
ing a large number of cache blocks for tag matching is time
consuming. The row-hitting ratio for write requests will
be decreased when the optimal assumption is not satisfied,
thus the system performance will be degraded compared
with the optimal VWQ. Additionally, searching a large num-
ber of cache blocks for tag matching consumes significant
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LLC power. PA-WB yields an average speedup of 2.4%.
The RITPD-WB technique yields better performance over
all other techniques. It improves performance by at least
10% of eight benchmarks and delivers an geometric mean
speedup of 10.5%.
Figure 8 shows the average IPC improvement for two-rank

and four-rank memory system configurations. For the four-
rank configuration, eager writeback yields 3.5% speedup.
The VWQ and PA-WB techniques improve performance by
8.9% and 2.7% respectively, The RITPD-WB technique also
delivers the best performance among all the tested tech-
niques. It yields a 10.1% speedup.
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Figure 8: Average performance evaluated on two-rank and
four-rank systems

6.2 Prediction Analysis

6.2.1 Predictor Accuracy
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Figure 9: False positive rates for two-level predictor evaluated
on eight-core two-rank system

Mispredictions comes in two varieties: false positives and
false negatives. False positives are more harmful because
they wrongly allow the short rank idle periods to service the
LLC writebacks. Those short idle periods can not cover the
majority of the service time of writebacks, thus still caus-
ing significant write-induced interference. The false positive
rate is calculated by the number of mispredicted positive
predictions divided by the total number of predictions. Fig-
ure 9 shows the false positive rates of the two-level predictor
for a two-rank system. False positive rates for the first-level

and second-level predictors are 8.5% and 14.7% on average,
respectively. These low false positive rates allow our pre-
dictor to effectively predict the large rank idle period while
minimizing the damage caused by mispredictions.

6.2.2 Choosing Parameter
The threshold m is the minimum number of idle cycles the

predictor predicts it will occur. We want m to cover most
of the service time of the s (s=8 in our experiment) sched-
uled writebacks. In the DDR 1600 11-11-11 memory system,
servicing a write request requires ≈ 29ns, and the write-to-
precharge latency is ≈ 14ns. The write-to-read delay is
≈ 8ns. So if the idle rank cycles ≥ 29+14+8 = 51ns, most
of the write-induced interference to the subsequent read will
be eliminated. With a 4.8GHZ clock frequency, 51ns is 245
cycles, so we set m = 300 cycles for two-rank configuration.
With the number of ranks in the same channel increasing,
when a particular rank is idle, the data bus might be busy
with transferring the data requested by other ranks. It might
take a while for the bus to transfer the write request data
for that idle rank. We set m = 400 cycles in the four-rank
configuration.

The first predictor makes a prediction immediately after
the rank becomes idle. The second predictor will make a
prediction after the rank has been idle for n cycles. Pa-
rameter k is the threshold that if the number of idle cycles
more than k, the scheduled writebacks will also be send to
DRAM. In our experiment, we found n = 200 cycles and
k = 600 cycles yield the best result.

6.2.3 Eliminated Write Interference
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Figure 10: The percentage of write access, read access and
completely eliminated write interference

Figure 10 shows the percentage of read accesses, write
accesses and the completely eliminated write interference
using the rank idle time predictor. Eliminated write inter-
ference means write accesses that could be serviced during
the predicted rank idle time. Write accesses account for
31.1% memory accesses on average. By using the prediction
driven technique, 41.8% write accesses can be serviced dur-
ing the predicted rank idle time. Our technique significantly
reduces the write-induced interference.

6.3 Read Latency Analysis
Figure 11 shows the read latency normalized to eager

writeback for the two-rank configuration. The RITPD-WB
technique reduces the write-induced interference to read ac-
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Figure 11: Read latency evaluation on eight-core two-rank system

cesses, thus reducing the average read latency. From Fig-
ure 11, we can see the RITPD-WB technique reduces the
read latency significantly across all the workloads. The
VWQ technique even increases the read latency for mix2; in
order to schedule more memory row-hitting write requests,
the dirty cache blocks that reside in the bottom fourth [20]
of the LRU recency stack are considered eligible for early
writebacks in the VWQ technique. Although they use the
cleaned bit technique to eliminate the extra writebacks, this
technique can not eliminate the extra writebacks caused by
early writing back the dirty cache blocks for the first time.
Compared with RITPD-WB technique, the VWQ technique
has a larger rewrite ratio for mix2. These extra writebacks
interfere with the read accesses, thus hurting the perfor-
mance and increase the average read latency for mix2.
In our experiments, RITPD-WB reduces the read latency

on average by 12.7% with two-rank configuration and 14.8%
with four-rank configuration.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose a rank idle time prediction

driven LLC writeback technique. This technique uses a
rank idle time predictor to predict when there will be a long
stretch of idle cycles in a memory rank. We incorporate
the rank idle time predictor into the parallelism-aware LLC
writeback technique. The scheduled write requests that pre-
serve bank-level parallelism to the DRAM system are writ-
ten back during long rank idle cycles. The technique makes
use of the rank idle cycles to isolate the service of read re-
quests and write requests as much as possible, thus signifi-
cantly reducing write-induced interference. Our evaluation
shows a significant performance improvement over previous
work. In future work, we plan to investigate the use of the
rank idle predictor for other optimizations to improve the
memory efficiency.
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