
Spatial Locality Speculation to Reduce Energy
in Chip-Multiprocessor Networks-on-Chip

Hyungjun Kim, Boris Grot, Member, IEEE, Paul V. Gratz, Member, IEEE, and

Daniel A. Jiménez, Member, IEEE

Abstract—As processor chips become increasingly parallel, an efficient communication substrate is critical for meeting performance

and energy targets. In this work, we target the root cause of network energy consumption through techniques that reduce link and

router-level switching activity. We specifically focus on memory subsystem traffic, as it comprises the bulk of NoC load in a CMP. By

transmitting only the flits that contain words predicted useful using a novel spatial locality predictor, our scheme seeks to reduce

network activity. We aim to further lower NoC energy through microarchitectural mechanisms that inhibit datapath switching activity for

unused words in individual flits. Using simulation-based performance studies and detailed energy models based on synthesized router

designs and different link wire types, we show that 1) the prediction mechanism achieves very high accuracy, with an average rate of

false-unused prediction of just 2.5 percent; 2) the combined NoC energy savings enabled by the predictor and microarchitectural

support is 36 percent, on average, and up to 57 percent in the best case; and 3) there is no system performance penalty as a result of

this technique.

Index Terms—Power management, cache memory, spatial locality, interconnections

Ç

1 INTRODUCTION

WHILE process technology scaling continues providing
more transistors, the transistor performance and

power gains that accompany process scaling have largely
ceased [1]. Chip-multiprocessor (CMP) designs achieve
greater efficiency than traditional uniprocessors through
concurrent parallel execution of multiple programs or
threads. As the core count in chip-multiprocessor systems
increases, networks-on-chip (NoCs) present a scalable
alternative to traditional, bus-based designs for intercon-
nection between processor cores [2]. As in most current
VLSI designs, power efficiency has also become a first-order
constraint in NoC design. The energy consumed by the
NoC itself is 28 percent of the per-tile power in the Intel
Teraflop chip [3] and 36 percent of the total chip power in
MIT RAW chip [4]. In this paper, we present a novel
technique to reduce energy consumption for CMP core
interconnect leveraging spatial locality speculation to
identify unused cache block words. In particular, we
propose to predict which words in each cache block fetch

will be used and leverage that prediction to reduce dynamic
energy consumption in the NoC channels and routers
through diminished switching activity.

1.1 Motivation

Current CMPs employ cache hierarchies of multiple levels
prior to main memory [5], [6]. Caches organize data into
blocks containing multiple contiguous words in an effort to
capture spatial locality and reduce the likelihood of
subsequent misses. Unfortunately, applications often do
not fully utilize all the words fetched for a given cache
block, as recently noted by Pujara and Aggarwal [7].

Fig. 1 shows the percentage of words utilized in the
PARSEC multithreaded benchmark suite [8]. On average,
61 percent of cache block words in the PARSEC suite
benchmarks will never be referenced and represent energy
wasted in transference through the memory hierarchy.1 In
this work, we focus on the waste associated with traditional
approaches to spatial locality, in particular the wasted
energy and power caused by large cache blocks containing
unused data.

1.2 CMP Interconnect

Networks-on-chip purport to be a scalable interconnect to
meet the increasing bandwidth demands of future CMPs
[2]. NoCs must be carefully designed to meet many
constraints. Energy efficiency, in particular, is a challenge
in future NoCs as the energy consumed by the NoC itself
is a significant fraction of the total chip power [3], [4]. The
NoC packet datapath, consisting of the link, crossbar, and
FIFOs, consumes a significant portion of interconnect
power, 55 percent of network power in the Intel Teraflop
chip [3].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014 543

. H. Kim is with the Department of Electrical and Computer Engineering,
Texas A&M University, 801 Spring Loop Apt 1608, College Station, TX
77840. E-mail: hyungjun@tamu.edu.

. B. Grot is with the Institute of Computing and Multimedia Systems, EPFL
IC ISIM PARSA, INJ 238 (Bátiment INJ), Station 14, CH-1015,
Lausanne, Switzerland. E-mail: boris.grot@epfl.ch.

. P.V. Gratz is with the Department of Electrical and Computer
Engineering, Texas A&M University, 3259 TAMU, College Station, TX
77843-3259. E-mail: pgratz@gratz1.com, pgratzg@tamu.edu.

. D.A. Jiménez is with The University of Texas at San Antonio, San
Antonio, TX 78249, and at 14781 Memorial Drive #1529, Houston, TX
77079. E-mail: djimenez@acm.org, dj@cs.utsa.edu.

Manuscript received 31 Oct. 2011; revised 1 Apr. 2012; accepted 13 Sept.
2012.
Recommended for acceptance by R. Ginosar and K.S. Chatha.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-10-0783.
Digital Object Identifier no. 10.1109/TC.2012.238

1. Versus 64-byte lines, 32-byte lines reduces unused words to 45 percent,
however it increases AMAT 11 percent (see Section 5.3).

0018-9340/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

Existing NoCs implement channels with relatively large
link bit-widths (>¼128 bits) [9], [10], a trend expected to
continue as more wire density becomes available in future
process technologies. These high-bandwidth link wires
reduce the latency of cache block transmission by allowing
more words to be transferred in each cycle, minimizing
serialization latency for large packets. In some cases,
however, not all the words in a flit are useful to the
processor. In particular, unused cache block words
represent wasted power and energy. We propose to use
spatial locality speculation to leverage unused words of
the block transfers between the lower and upper cache
levels to save energy.

1.3 Proposed Technique

The goal of the proposed technique is to reduce dynamic
energy in CMP interconnect by leveraging spatial locality
speculation on the expected used words in fetched cache
blocks in CMP processor memory systems.

The paper makes the following contributions:

. A novel intracache-block spatial locality predictor,
to identify words unlikely to be used before the
block is evicted.

. A static packet encoding technique which leverages
spatial locality prediction to reduce the network
activity factor, and hence dynamic energy, in the
NoC routers and links. The static encoding requires
no modification to the NoC and minimal additions
to the processor caches to achieve significant energy
savings with negligible performance overhead.

. A complementary dynamic packet encoding techni-
que which facilitates additional energy savings in
NoC links and routers via light-weight microarchi-
tectural enhancements.

In a 16-core CMP implemented in a 45-nm process
technology, the proposed technique achieves an average of
�35 percent savings in total dynamic interconnect energy
at the cost of less than 1 percent increase in memory
system latency.

The rest of this paper is organized as follows. Section 2
discusses the related work and background in caches,
NoCs and power efficiency on-chip to provide the
intuition behind our power saving flit-encoding technique.
Section 3 discusses our proposed technique in detail,
including the proposed spatial locality predictor and the
proposed packet encoding schemes. Sections 4 and
5 present the experimental setup and the results. Finally,
we conclude in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Dynamic Power Consumption

When a bit is transmitted over interconnect wire or stored
in an SRAM cell, dynamic power is consumed as a result of
a capacitive load being charged up and also due to transient
currents during the momentary short from Vdd to Gnd
while transistors are switching. Dynamic power is not
consumed in the absence of switching activity. Equation (1)
shows the dynamic and short-circuit components of power
consumption in a CMOS circuit

P ¼ � � C � V 2 � f þ t � � � V � Ishort � f: ð1Þ

In the equation, P is the power consumed, C is the
switched capacitance, V is the supplied voltage, and F is
the clock frequency. � represents the activity factor, which
is the probability that the capacitive load C is charged in a
given cycle. C, V , and F are a function of technology and
design parameters. In systems that support dynamic
voltage-frequency scaling (DVFS), V and F might be
tunable at runtime; however, dynamic voltage and fre-
quency adjustments typically cannot be done at a fine
spatial or temporal granularity [11]. In this work, we target
the activity factor, �, as it enables dynamic energy
reduction at a very fine granularity.

2.2 NoC Power and Energy

Researchers have recently begun focusing on the energy
and power in NoCs, which have been shown to be
significant contributors to overall chip power and energy
consumption [3], [4], [12], [13].

One effective way to reduce NoC power consumption is
to reduce the amount of data sent over the network. To that
extent, recent work has focused on compression at the cache
and network levels [14], [15] as an effective power-
reduction technique. In general, however, compression
techniques have overheads in terms of latency for compres-
sion and decompression. The technique we present is
orthogonal to, and could potentially be used in conjunction
with, these loss-less compression techniques to further
reduce power. Our work seeks to reduce the amount of data
transmitted through identification and removal of useless
words; traditional compression could be used to more
densely pack the remaining data.

Researchers have also proposed a variety of techniques
to reduce interconnect energy consumption through re-
duced voltage swing [16]. Schinkel et al. propose a scheme
which uses a capacitative transmitter to lower the signal
swing to 125 mV without the use of an additional low-
voltage power supply [17]. In this work, we evaluate our
prediction and packet encoding techniques for links
composed of both full-signal swing as well as low-signal
swing wires.

NoC router microarchitectures for low power have also
been explored to reduce power in the transmission of data
which is much smaller than a flit. Das et al. propose a novel
crossbar and arbiter design that supports concurrent
transfers of multiple flits on a single link to improve
bandwidth utilization [18].

Finally, static power consumption due to leakage
currents is also a significant contributor to total system

544 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 1. Percentage of 64-byte block, cache words utilized per block in the
PARSEC multithreaded benchmarks.

power. However, researchers have shown that power-
gating techniques can be comprehensively applied at the
NoC level and are highly effective at reducing leakage
power at periods of low network activity [19].

2.3 Spatial Locality and Cache Block Utilization

Spatial and temporal locality have been studied extensively
since caches came into wide use in the early 1980’s [20].
Several works in the 1990’s and early 2000’s focused on
indirectly improving spatial locality through compile and
runtime program and data transformations which improve
the utilization of cache lines [21], [22], [23], [24]. While these
techniques are promising, they either require compiler
transformations or program changes and cannot be retro-
fitted onto existing code. Our proposed approach relies on
low-overhead hardware mechanisms and is completely
transparent to software.

Hardware techniques to minimize data transfer among
caches and main memory have also been explored in the
literature. Sectored caches were proposed to reduce the data
transmitted for large cache block sizes while keeping
overhead minimal [25]. With the sectored cache, only a
portion of the block (a sector) is fetched, significantly
reducing both the miss time and the bus traffic. The
proposed technique builds upon this idea by speculatively
fetching, not just the missing sector but sectors (words in this
case) which have predicted spatial locality with the miss.

Prefetching is a technique where cache lines expected to
be used in the future are fetched prior to their demand
request, to improve performance by reducing misses. This
may come at the cost of more power spent in the
interconnect between caches when inaccurate prefetches
lead to unused cache block fetches. Our technique is
complementary and can be used to compensate prefetch
energy overhead by gating unused words. prefetches.

Pujara and Aggarwal examined the utilization of cache
lines and showed that only 57 percent of words are actually
used by the processor and the usage pattern is quite
predictable [7]. They leverage this information to lower
power in the cache itself by reducing the number of words
read from the lower level cache and written to the upper
level cache. This mechanism is orthogonal and potentially
complementary to our technique, as we focus primarily on
achieving lower energy consumption in the interconnect.
Yoon et al. proposed an architecture that adaptively chooses
memory system granularity based on spatial locality and
error-tolerance tradeoffs [26]. While this work focuses on
contention for off-chip memory bandwidth, our work
targets on-chip interconnect energy consumption by obser-
ving spatial locality. Qureshi et al. suggested a method to
pack the used words in a part of the cache after evicting it
from the normal cache, thus increasing performance and
reducing misses [27]. Their work thus focuses on perfor-
mance rather than energy-efficiency and targets the effec-
tiveness of the second-level cache.

Spatial locality prediction is similar to dead block
prediction [28]. A dead block predictor predicts whether a
cache block will be used again before it is evicted. The
spatial locality predictor introduced in this paper can
be thought of as a similar device at a finer granularity. The
spatial locality predictor, however, takes into account

locality relative to the critical word offset, unlike dead block
predictors. Chen et al. predicted a spatial pattern using a
pattern history table which can be referenced by the pc
appended with the critical offset [29]. The number of entries
in the pattern history table as well as the number of indexes
increase the memory requirement of the technique. Unlike
these schemes, our predictor uses a different mechanism for
managing prediction thresholds in the face of mispredic-
tions. Kim et al. proposed spatial locality speculation to
reduce energy in the interconnect [30], we present here an
extended journal version of this earlier work.

3 DESCRIPTION

Our goal is to save dynamic energy in the memory system
interconnect by eliminating switching activity associated
with unused words in cache blocks transferred between the
different levels of the on-chip cache hierarchy. To this end,
we developed a simple, low complexity, spatial locality
predictor, which identifies the words expected to be used in
each cache block. A used word prediction is made on an L1
cache miss, before generating a request to the L2. This
prediction is used to generate the response packet eliding
the unused words with the proposed flit encoding schemes
described below.

Fig. 2 depicts the general, baseline architecture, repre-
senting a 16-node NoC-connected CMP. A tile consists of a
processor, a portion of the cache hierarchy and a Network
Interface Controller (NIC), and is bound to a router in the
interconnection network. Each processor tile contains
private L1 instruction and data caches. We assume that
the L2 is organized as a shared S-NUCA cache [31], each tile
containing one bank of the L2. The chip integrates two
memory controllers, accessed via the east port of node 7 and
west port of node 8. Caches have a 64-byte block size. The
NoC link width is 16 bytes, discounting flow-control
overheads. Thus, cache-block-bearing packets are five flits
long, with one header flit and four data flits. Each data flit
contains four 32-bit words, as shown in Fig. 5b.

3.1 Spatial Locality Prediction

3.1.1 Prediction Overview

Our predictor leverages the history of use patterns within
cache blocks brought by a certain instruction has been
accessed. The intuition behind our predictor is that a given
set of instructions may access multiple different memory
address regions in a similar manner. In fact, we have

KIM ET AL.: SPATIAL LOCALITY SPECULATION TO REDUCE ENERGY IN CHIP-MULTIPROCESSOR NETWORKS-ON-CHIP 545

Fig. 2. General CMP architecture.

observed that patterns of spatial locality are highly
correlated to the address of the instruction responsible for
filling the cache (the fill PC). The literature also shows that a
small number of instructions cause the most cache misses
[32]. Moreover, a given sequence of memory instructions
accesses the same fields of data structures throughout
memory [29]. Data structure instances are unfortunately not
aligned to the cache block; this misalignment can be
adjusted by using the offset of the word which causes the
cache miss (the critical word offset) while accessing the
prediction table as in [7].

3.1.2 Predictor Implementation

Our prediction table is composed of rows of four-bit
saturating counters where each counter corresponds to a
word in the cache block. The table is accessed such that the
fill PC picks the row of the table, and then n consecutive
counters starting from the critical word offset are chosen
where n is the number of words in a cache block. (Thus, there
are 2n� 1 counters per row to account for all possible n� 1
offsets.) These counters represent the history of word usage
in cache blocks brought by a certain memory instruction.

The value of the saturating counter relates to the
probability that the corresponding word is used. The lower
the counter is, the higher confidence the word will not be
used. Initially, all counters are set to their max value,
representing a prediction where all words are used. As
cache lines are evicted with unused words, counters
associated with those unused words are decremented while
counters associated with used words are incremented. If a
given word counter is equal to or greater than a fixed
threshold (configured at design time), then the word is
predicted to be used; otherwise, it is predicted not used. We
define used-vector as a bit vector which identifies the words
predicted used by the predictor in the cache block to be
filled. A used-vector of 0xFFFF represents a prediction that
all 16 words will be used while a used-vector of 0xFF00
signifies that only the first eight words will be used.

Fig. 3 shows the steps to the prediction. In this example,
the number of words in a block is assumed to be 4 and the
threshold is 1, for simplicity. In the figure, a cache miss
occurs on an instruction accessing the second word in a
given block (criticalwordoffset ¼ 1). The lower order bits
of the fill PC select a row in the prediction table. Among
the counters in the row, the selection window of four
counters, which initially includes the four rightmost
counters, moves to the left by the number of the critical

word offset. Those selected counters are translated into a
predicted used-vector based on the threshold value. The
used-vector, 1100, indicates that the first and the second
words in this block will be used.

The L1 cache keeps track of the actual used-vector while
the block is live, as well as the lower order bits of the fill PC,
and the critical word offset. When the block is evicted from
the L1, the predictor is updated with the actual used-vector;
if a word was used, then the corresponding counter is
incremented; otherwise, it is decremented. While updating,
it finds the corresponding counters with the fill-PC and the
critical word offset as it does for prediction. In the event a
word is falsely predicted “unused,” the counters for the
entire row are reset to 0xF to reduce the likelihood of future
mispredictions. This form of resetting have been shown to
improve confidence over up/down counters for branch
predictors [33]; in initial development of the predictor, we
found a considerable improvement in accuracy using this
technique as well. Resetting the counters allows the
predictor to quickly react in the event of destructive
interference and/or new program phases.

3.1.3 Impact on Energy

We model a cache with 64B blocks and 4B words. Each row
of the predictor is composed of 31 four-bit saturating
counters where all counters are initialized to 0xF. The
predictor table has 256 rows of 31� 4 bits each, thus
requiring �4 KB of storage. We note, although the “word”
size here is 4B, this represents the prediction granularity, it
does not preclude use in a 64b (8B) word architecture.

In addition to the 4KB prediction table, our scheme
requires extended metadata in each cache tag. In L1, 16 bits
(one per word) are necessary to determine which words
have been accessed so that we can update the predictor.
8 bits for fill-PC and 4 bits for critical word offset are required
to access the prediction table as well. We also replace the
single valid bit with a vector of 16 bits in L1 and L2 caches.
Although, this metadata increases the power per access of
the L1 and L2 caches by 0.35 and 0.72 percent, respectively,
we also reduce the number of words read from the lower
level caches and written to the upper level cache by �30
percent and also the number of words written back into the
lower level cache by �40 percent. Altogether this results an
average �20 percent reduction in dynamic energy con-
sumption per cache access. The dynamic energy consumed
by the prediction tables is discussed in Section 4.

Although not the focus of this work, leakage energy
dissipation can be also optimized with the help of spatial
locality speculation. Chen et al. achieved 41 percent of
leakage energy reduction with their proposed spatial
locality predictor and a circuit level selective sub-blocking
technique [29]. We expect a better reduction could be
achieved with our technique (as our predictor accuracy is
higher), we plan to explore this in a future work on used
word prediction for cache power reduction.

3.1.4 Impact on Performance

When an L1 cache miss is discovered, the predictor supplies
a prediction to inform flit composition. The prediction will
take two cycles: one for the table access and one for
thresholding and shifting. The fastest approach would be to

546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 3. Prediction example for four words/block cache model.

speculatively assume that every cache access will result in a
miss and begin the prediction simultaneously with address
translation; thus, the latency can be completely hidden. A
more energy efficient approach is to begin the prediction as
soon as the tag mismatch is discovered and simultaneously
with victim selection in the L1 cache. While this approach
would add a cycle to the L1 miss time, no time would be
added to the more performance critical L1 hit time. The
latter approach was used in our experiments. If a word
predicted unused actually is used, it is treated as a miss and
all words initially predicted as unused are brought into the
upper level cache in order to correct this misprediction. This
performance impact of these extra misses is discussed in
Section 5.1.

On eviction of an L1 cache block, the used-vector and fill
PC collected for that block are used to update the predictor.
This process is less latency sensitive than prediction since
the predictor does not need to be updated immediately to
provide good accuracy.

3.2 Packet Composition

Once we have predicted the application’s expected spatial
locality to determine the unused words in a missing cache
block, we employ a flit encoding technique which leverages
unused words to reduce dynamic link and router energy in
the interconnect between the L1, directory, L2 cache banks
and memory controllers. We propose two complementary
means to leverage spatial locality prediction to reduce �, the
activity factor, in the NoC, thereby directly reducing
dynamic energy: 1) remove flits from NoC packets (flit-
drop); 2) keep unused interconnect wires at fixed polarity
during packet traversal (word-repeat). For example, if two
flits must be transmitted and all the words in the second flit
are predicted unused, our flit-drop scheme would discard
the unused flit to reduce the number of flits transmitted
over the wire. In contrast, our word-repeat scheme would
retransmit the first flit, keeping the wires at fixed polarity to
reduce gate switching. These encoding schemes are also
used for writeback packets to include dirty words only.

The packet compositioning may be implemented either
“statically,” whereby packet encoding occurs at packet
generation time, or “dynamically,” in which the unused
words in each flit are gated within the router FIFOs,
crossbars and links to avoid causing bit transitions regard-
less of the flits which proceed or follow it. We will first

discuss the “static” packet compositioning techniques
including flit-drop, static-word-repeat and their combination.
We then discuss the “dynamic” packet composition
techniques which allow greater reductions in activity factor,
at the cost of a small increase in logical complexity in the
routers and a slight increase in link bit-width.

3.2.1 Static Packet Composition

Fig. 4 depicts the format of cache request and reply packet
flits in our design. A packet is composed either of a head flit
and a number of body flits (when the packet contains a
cache block) or it consists of one atomic flit, as in the case of
a request packet or a coherence protocol message. The
head/atomic flit contains a used-vector. The head flit also
contains source and destination node identifiers, and the
physical memory address of the cache block. The remaining
bytes in the head/atomic flit are unused. We assume a flow-
control overhead of three bits, 1 bit for virtual channel id
(VC) and 2 bits for flit type (FT). As each of body/tail flit
contains data of four words (16 bytes), a flit is 16 bytes and
3 bits wide including flow control overheads.

Fig. 5a depicts an example of read request (L1 fill). In this
example, tile #1 requests a block at address 0x00001200
which resides in the S-NUCA L2 cache bank in tile #8. The
used-vector is 1111 1100 0000 1010, indicating the words
word0—word5, word12, and word14 are predicted used. The
corresponding response packet must contain at least those
words. Since the baseline architecture sends the whole
block as it is, the packet contains all of the words from
word0 to word15, as shown in Fig. 5b.

Flit-drop. In the flit-drop technique, flits which are
predicted to contain only unused words are dropped from
the packet and only those flits which contain one or more
used words are transmitted. The reduction in the number of
flits per packet reduces the number of bit transitions over
interconnect wires and, therefore, the energy consumed.
Latency due to packet serialization and NoC bandwidth

KIM ET AL.: SPATIAL LOCALITY SPECULATION TO REDUCE ENERGY IN CHIP-MULTIPROCESSOR NETWORKS-ON-CHIP 547

Fig. 4. Flit format for static and dynamic encoding. (Shaded portion not
present in static encoding.)

Fig. 5. Read request and corresponding response packets (VC is not
shown in this figure).

will also be reduced as well. Although a read request packet
may have an arbitrary used-vector, the response packet
must contain all flits which have any words predicted used
leading to some lost opportunity for packets which have
used and unused words intermingled throughout.

Fig. 5c depicts the response packet to the request shown
in Fig. 5a for the flit-drop scheme. The first body flit,
containing word0-word3, therefore must be in the packet as
all of these words are used. The second body flit, with
word4-word7, also contains all valid words, despite the
prediction word6 and word7 would not be used. These extra
words are overhead in the flit-drop scheme because they are
not predicted used but must be sent nevertheless. Although
these words waste dynamic power when the prediction is
correct, they may reduce the miss-prediction probability.

Static-word-repeat. The static-word-repeat scheme re-
duces the activity factor of flits containing unused words
by repeating the contents in previous flit in the place of
unused words. Flits with fewer used words consume less
power because there are fewer bit transitions between flits.
Words marked as “used” in the used-vector contain real,
valid data. Words marked as “unused” in the used-vector
contain repeats of the word in the same location in the
previous flit. For instance, if word4xþ1 is predicted unused,
the NIC places word4ðx�1Þþ1 in its place. As the bit-lines
repeat the same bits, there are no transitions on those wires
and no dynamic energy consumption. A buffer retaining
four words previously fetched by the NIC is placed
between the cache and the NIC and helps the NIC in
repeating words. An extra mux and logic gates are also
necessary in the NIC to encode repeated words.

Fig. 5d depicts the response packet for the request in
Fig. 5a using the static-word-repeat scheme. In body1, word6,
and word7 are unused and, thus, replaced with word2 and
word3 which are at the same location in the previous flit. All
of the words in body2 are repeated by the words in body1,
thus it carries virtually nothing but flow-control overhead.
We also encode the unused header words, if possible.

3.2.2 Dynamic Packet Composition

The effectiveness of static packet compositioning schemes is
reduced in two commonly occurring scenarios: 1) when
single-flit, atomic packets are being transmitted, and
2) when flits from multiple packets are interleaved in the
channel. In both cases, repeated words in the flits cannot
be statically leveraged to eliminate switching activity in the
corresponding parts of the datapath. In response, we
propose dynamic packet composition to reduce NoC switching
activity by taking advantage of invalid words on a flit-by-
flit basis. The difference between dynamic and static
composition schemes resides primarily in how word-repeat
treats unused words. In static composition, the unused
portion of a flit is statically set at packet injection by the NIC
to minimize interflit switching activity, requiring no
changes to the router datapath. In dynamic composition,
portions of the router datapath are dynamically enabled
and disabled based on the validity of each word in the flit.
In effect, an invalid word causes the corresponding portion
of the datapath to hold its previous value, creating the
illusion of word repeat.

To facilitate dynamic composition, the “used-vector” is
distributed into each flit as shown in Fig. 4b. As a result the
link width must be widened by four bits to accommodate
the new “valid-word-vector,” where each bit indicates
whether the corresponding word in that flit is valid. As the
figure shows, the head flit’s “valid-word-vector” is always
set to 1100 because the portion which corresponds to
Word2 and Word3 of a body/tail flit are always unused.

Dynamic packet compositioning requires some modifi-
cations to a standard NoC router to enable datapath gating
in response to per-flit valid bits. Fig. 6 depicts the
microarchitecture of our dynamic packet compositioning
router. Assuming that a whole cycle is required for a flit to
traverse a link, latches are required on both sides of each
link. The additional logic required for link encoding is
shaded in the magnified output port. Plain D-flip-flops are
replaced with enable-D-flip-flops to force the repeat of the
previous flit’s word when the “valid-word-vector” bit for
that word is set to zero, indicating that word is not used.
Alternately, if the “valid-word-vector” bit for the given
word is one, the word is propagated onto the link in the
following cycle, as it would in the traditional NoC router. In
cases where the link traversal consumes less than a full
cycle, this structure could be replaced with a tristate buffer
to similar effect.

We further augment the router’s input FIFO buffers with
per-word write enables connected to the “valid-word-
vector” as shown in Fig. 6. In our design, the read and
write pointer control logic in the router’s input FIFOs
remain unmodified; however, the SRAM array storage used
to hold the flits is broken into four banks, each one word in
width. The “valid-word-vector” bits would gate the valid
write enables going to each of word-wide banks, disabling
writes associated with unused words in incoming flits, and
saving the energy associated with those word writes. The
combination of these techniques for dynamic packet
composition will reduce the power and energy consump-
tion of the NoC links and router datapath proportional to

548 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 6. Dynamic packet compositioning router. (Shaded portion not
present in baseline router.)

the reduction in activity factor due to the word-repeat and
flit-drop of unused words.

As flit-drop and word-repeat are complementary, we will
also examine their combination in the evaluation section.
One alternative technique, we explored packs together used
words into a minimal size packet. Experimentally, we
found this approach produces latency and power benefits
negligibly different from the combination of flit-drop and
word-repeat, while our technique requires less additional
hardware in packet composition, so these results are not
presented. These encoding schemes also are used for
writebacks by marking clean words as unused.

4 EVALUATION

4.1 Baseline Architecture and Physical
Implementation

Fig. 2 depicts the baseline architecture, representing a 16-
node NoC-connected CMP. A tile consists of a processor, a
portion of the cache hierarchy and a Network Interface
Controller, and is bound to a router in the interconnection
network. The baseline architecture employs a 4� 4 2D
mesh topology with X-Y routing and wormhole flow
control. Each router contains 2 VCs and each input buffer
is four flits deep. In our baseline configuration, we assume
the tiles are 36 mm2 with 6 mm-long links between nodes.
Our target technology is 45 nm.

Processor tiles. Each 36 mm2 tile contains an in-order
processor core similar to an Intel Atom Z510 (26 mm2) [34],
a 512 KB L2 cache slice (4 mm2), two 32 KB L1 caches
(0:65 mm2 each) and an interconnect router (0:0786 mm2).
The remaining area is devoted to a directory cache and an
NIC. Our system is composed of 16 tiles and results in
576 mm2, approximately the size of an IBM Power7 die [35].
We used CACTI 6.0 [36] to estimate cache parameters.

The L1 caches are two-way set-associative with a two
cycle access latency. The L2 banks are eight-way set-
associative with a 15-cycle access time. The 16 L2 banks
spread across the chip comprise an 8-MB S-NUCA L2 [31].
Cache lines in both L1 and L2 caches are 64B wide (16 four-
byte words), except where otherwise noted. Each node also
contains a slice of the directory cache, interleaved the same
as the L2. Its latency is 2 cycles. The number of entries in
each directory cache is equal to the number of sets in an L2
bank. We assume the latency of the main memory is
100 cycles. The MESI protocol is used by the directory to
maintain cache coherence. The predictor’s performance is

examined with the threshold value of 1 unless stated
otherwise. The NoC link width is assumed to be 128 bits
wide, discounting flow-control overheads.

NoC link wires. NoC links require repeaters to improve
delay in the presence of the growing wire RC delays due to
diminishing interconnect dimensions [1]. These repeaters
are major sources of channel power and area overhead.
Equally problematic is their disruptive effect on floor-
planning, as large swaths of space must be allocated for
each repeater stage. Our analysis shows that a single,
energy-optimized 6 mm link in 45 nm technology requires
13 repeater stages and dissipates over 42 mW of power for
128 bits of data at 1 Ghz.

In this work, we consider both full-swing repeated
interconnects (full-swing links) and an alternative design that
lowers the voltage swing to reduce link power consumption
(low-swing links). We adopt a scheme by Schinkel et al. [17]
which uses a capacitative transmitter to lower the signal
swing to 125 mV without the use of an additional low-
voltage power supply. The scheme requires differential
wires, doubling the NoC wire requirements. Our analysis
shows a 3:5� energy reduction with low-swing links.
However, low-swing links are not as static-word-repeat
friendly as much as full-swing links are. There is link
energy dissipation on low-swing links, even when a bit
repeats the bit ahead because of leakage currents and high
sense amp power consumption on the receiver side. Thus,
the repeated unused-words consume �18 percent of what
used-words do. The dynamic encoding technique fully
shuts down those portions of link by power gating all
components with the “valid-word-vector” bits.

Router implementation. We synthesized both the base-
line router and our dynamic encoding router on a TSMC
45 nm library to an operating frequency of 1 Ghz. Table 1
shows the area and power of the different router designs.
Note that the baseline router and the one used in static
encoding scheme are identical. The table shows the
average power consumed under PARSEC traffic, simulated
with the methodology described in Section 4.2. The
dynamic power for each benchmark is computed by
dividing the total dynamic energy consumption by the
execution time, then by the number of routers. Summariz-
ing the data, a router design supporting the proposed
dynamic composition technique requires �7 percent more
area, while reducing dynamic power by 46 percent under
the loads examined over the baseline at the cost of
4.3 percent more leakage power.

Table 2 shows the dynamic energy consumed by a flit with
a given number of words encoded as used, traversing a router
and a link, with respect to the three flit composition schemes:
baseline(base), static(sta), and dynamic(dyn) encoding. In

KIM ET AL.: SPATIAL LOCALITY SPECULATION TO REDUCE ENERGY IN CHIP-MULTIPROCESSOR NETWORKS-ON-CHIP 549

TABLE 1
Area and Power

TABLE 2
Per-Flit Dynamic Energy (pJ)

n: number of used words

baseline, a flit always consumes energy as if it carries four
used words. In static encoding, as the number of used words
decreases, flits consume less energy on routers and full-swing
links. Static-encoding reduces NoC energy by minimizing the
number of transitions on the wires in the links and in the
routers’ crossbars. Dynamic-encoding further reduces router
energy by gating flit buffer accesses. The four-bit, valid-
word-vector in each flit controls the write enable signals of
each word buffer, disabling writes associated with unused
words. Similarly, it also gates low-swing links, shutting down
the transceiver pair on wires associated with the unused
words. CACTI 6.0 [36] was used to measure the energy
consumption due to accessing the predictor; which is 10.9 pJ
per access.

4.2 Simulation Methodology

We used the M5 full system simulator to generate CMP
cache block utilization traces for multithreaded applications
[37]. Details of the system configuration are presented in
Section 4.1. Our workload consists of the PARSEC shared-
memory multiprocessor benchmarks [8], cross compiled
using the methodology described by Gebhart et al. [38]. All
applications in the suite currently supported by M5 were
used. Traces were taken from the “region of interest.” Each
trace contains up to a billion memory operations; fewer if
the end of the application was reached. Cycle accurate
timing estimation was performed using the Netrace,
memory system dependence tracking methodology [39].

The total network energy consumption for each bench-
mark is measured by summing the energy of all L1 and L2
cache fill and spill and coherence packets as they traverse
routers and links in the network. In effect, Table 2 is
consulted whenever a flit with a certain number of used
words traverses a router and a link. Note that even for the
same flit, the used word number may vary according to the
encoding scheme in use. For example, for an atomic flit, n ¼
4 in static encoding while n ¼ 2 in dynamic. The predictor’s
energy is also added whenever the predictor is accessed.

4.3 Energy Consumption

Fig. 7 shows the breakdown of dynamic energy consump-
tion. For each benchmark, we conducted energy simula-
tions for three configurations, each represented by one
stacked bar for that benchmark: 1) baseline—baseline, 2) s-
combo—static-word-repeat and flit-drop combined, and
3) d-combo—dynamic-word-repeat and flit-drop combined.
We also show the average energy consumption with pure
flit-drop (flitdrop), static-word-repeat (s-wr), and dynamic-
word-repeat (d-wr). The bars are normalized against the
energy consumed by baseline. Each bar is subdivided into
up to four components. The first bar shows the “read”
energy, energy consumed by cache fills and the second bar,
“write,” by writebacks. The third bar, “coh,” shows the
energy due to the cache coherence packets and the fourth
bar, “pred” shows the energy consumed by predictors. The
figure shows data for both full-swing and low-swing links.

In the baseline configuration we see that, on average, read
communication consumes the most dynamic energy with
�59 percent of the total. Coherence traffic consumes the
second most with �28 percent of the total energy followed
by write communication with �13 percent of the total

energy. This breakdown follows the intuition that reads are
more frequent than writes. Thus, techniques which only
focus on writebacks will miss much potential gain. It is also
interesting to note that cache coherence traffic shows a very
significant contribution to overall cache interconnect en-
ergy. Similarly, work which does not consider atomic
packets may miss significant gain.

The figure also shows that among the flit encoding
schemes, d-combo shows the greatest improvement with �36
percent dynamic energy savings, on average, when full-
signal swing link is used. If low-signal swing links are used,
it becomes �34 percent. The pure dynamic-word-repeat is
the second best resulting in additional �1 percent energy
consumption. This implies that dropping flits only with
flow control bits does not significantly contribute to energy
reduction when dynamic-word-repeat is used. However,
combining flit-drop is still beneficial to reduce latency. The
combined static encoding (s-combo) provides an energy
savings of only �17 and �15 percent of baseline, under full-
swing and low-swing links, respectively. This indicates the
significant gains that dynamic encoding provides, primarily
in the cache coherence traffic which is predominately made
up of single flit packets. We find the predictor merely
contributes 1.5 percent of the total energy when full-signal
swing link is used, and 4.1 percent when low-signal swing
link is used.

Table 1 shows the average power with either type of
links. It reveals that despite the increased static power, the
dynamic encoding scheme still outperforms the baseline
and the static encoding as well, regardless of link type.

In the following sections, we will examine each of the
traffic types in detail to gain a deeper understanding of the
performance of our proposed technique. As full-swing link
and low-swing link show similar trends, only graphs for
full-swing links will be shown hereafter.

550 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 7. Dynamic energy breakdown.

4.3.1 Read Energy Discussion

Fig. 8 shows the breakdown of dynamic energy consump-
tion for reads. Each bar is subdivided into five compo-
nents and also normalized against baseline. The first bar
“l2” depicts the energy consumed by L2 cache fills and
spills. Although the prediction actually occurs on L1 cache
misses, the encoding schemes are also used for the
transactions between the L2 and memory controller, based
upon used-vector generated on the L1 cache miss the lead
to the L2 miss.

The second bar shows the “used” energy, energy
consumed by the words which will be referenced by the
program, hence “used” bars are nearly equal, with the
exception of a slight increase in energy due to router
overheads in the dynamic scheme. The third bar, “unused,”
shows the energy consumed to bring in words which will
not be referenced prior to eviction. This also includes the
energy consumed by words which result from false-positive
predictions, i.e., an incorrect prediction that the word will
be used. The fourth bar, “overhead,” shows the energy for
NoC packet overheads, including header information and
flow control bits. The fifth bar, “extra,” shows the energy
consumed by the packet overhead due extra cache line fills
to correct “false-negative” mispredictions. Our goal is to
remove, as much as possible, the dynamic datapath energy
consumed by unused words denoted by unused and, where
possible, the packet overheads in overhead, while minimiz-
ing redundant misses due to mispredictions in extra.
Unused words consume an average of 33 percent of total
dynamic datapath energy, and up to 53 percent of total
dynamic datapath energy in case of blackscholes (shown as
Black in the graphs.)

The d-combo scheme, on average, reduces total dynamic
datapath energy by �32 percent. Our prediction mechan-
ism combined with the encoding schemes approximately
halves the “unused” portion, on average. In case of Black,
where the predictor performs the best, the speculation
mechanism removes 90 percent of the “unused” portion
resulting in a 66 percent energy savings for cache fills
when combined dynamic encoding is used. The extra
transmission due to mispredictions, shown as “extra” in
the stack, contributes less than 1 percent of energy
consumption for cache fills.

4.3.2 Coherence Energy Discussion

In the simulated system coherence is maintained via the
MESI protocol. Coherence protocol messages and responses

represent a significant fraction of the network traffic. Those
protocol messages are composed primarily of single-flit
packets, and contribute �28 percent of total network energy
consumption. Fig. 9 shows the breakdown of dynamic
energy consumption for coherence packets. Although these
single-flit packets contain �50 percent unused data, as
discussed in Section 3.2.1, static encoding cannot be used to
reduce their energy dissipation. Dynamic encoding, how-
ever, reduces it by up to 45.5 percent.

4.3.3 Write Energy Discussion

Fig. 7 shows that writebacks consume an average of
13 percent of total dynamic energy. Upon dirty line
writeback, we find that, on average, 40 percent of the
words in the block are clean, and those words contribute
23 percent of the total energy consumed by writebacks.

Fig. 10 shows the dynamic energy breakdown caused by
writebacks. The first bar, “dirty,” shows the energy
consumed by the dirty words in cache lines. The second
bar “overhead” shows the energy consumed by NoC packet
overheads. The third bar, “clean,” includes the link energy
consumed by sending clean words in writeback packets.
Our goal is to remove the portion of the energy consump-
tion associated with transmitting “clean” words. On
average, the s-combo scheme reduces the energy consump-
tion due to writebacks by 29 percent. Further savings are
achieved by d-combo. It encodes not only body/tail flits but
also head flits of the writeback packets resulting in a
40 percent savings. When full-swing links are used, it is
possible to remove all of energy dissipation due to clean
words with the static flit-encoding scheme. However, when
static word repeat is used with low-swing links, although
clean words are encoded to repeat the words in the flit
ahead, those words cause energy dissipation due to leakage
currents and high sense amp power consumption on the
receiver side.

KIM ET AL.: SPATIAL LOCALITY SPECULATION TO REDUCE ENERGY IN CHIP-MULTIPROCESSOR NETWORKS-ON-CHIP 551

Fig. 8. Dynamic energy breakdown for reads.

Fig. 9. Dynamic energy breakdown for coherent packets.

Fig. 10. Dynamic energy breakdown for writes.

5 ANALYSIS

In this section, we analyze the performance impact of the

proposed energy reduction technique, explore predictor

training and compare against a 32-byte cache line baseline

design.

5.1 Performance

The performance impact of the proposed technique is

governed by two divergent effects. First, the scheme should

improve performance because flit-drop reduces the number

of flits injected into the network. Decreased flit count

improves performance through less serialization latency,

and reduced congestion due to lower load. Second,

offsetting the benefit from flit-drop, incorrectly predicting

a word unused can lead to more misses, increasing network

load and average memory access time (AMAT). To

quantify the impact of the proposed technique, Fig. 11

shows the reduction in flits injected into the network for

each benchmark, the reduction in individual packet

latency, and the AMAT for each benchmark, all normalized

against baseline. Each value number is normalized against

baseline. As the figure shows, although flit count and

individual packet latency decrease significantly, AMAT is

essentially flat across the benchmarks. In this section, we

examine the relationship between network performance

and system performance.

5.1.1 Network Performance

As shown in Fig. 11, the flit count is reduced by 12 percent,

on average. Optimally, the flit count reduction should be

directly proportional to the block utilization. From Figs. 1, 7,

and 11, we see that Blackscholes, which has the lowest block

utilization, and the greatest portion of read energy

consumption, has the greatest reduction flits across the

PARSEC benchmarks. Alternately, Bodytrack, which also

shows one of the lowest block utilizations, removes merely

1.8 percent the injected flits. This is because flit count

reduction is related not only to block utilization, but also

prediction accuracy, proportion of single flit packets, and

the used-unused pattern within the packet. In Bodytrack,

flit reduction is low because single-flit coherent packets

make up a larger portion of the injected packets, and the

predictor is less accurate than for Blackscholes.

Lowered flit count should be correlated with reduced
packet latency. Fig. 11 shows normalized packet latency. On
average, the network latency is reduced by �6 percent as
the number of flits has decreased. In Blackscholes, with
greatest reduction in flit count, the packet latency is
reduced by 9 percent, showing one of the best network
performance improvements across the PARSEC bench-
marks. Alternately, Bodytrack’s network performance is
improved by only 1 percent. Interestingly, flit count
reduction and network latency are not always strictly
proportional to each other; X264, counter-intuitively shows
a greater improvement in packet latency than its reduction
in flit count, warranting further analysis.

Flit-drop improves network performance not only by
reducing the serialization latency but also by avoiding
network congestion. Fig. 12 shows the breakdown of
average packet latency. Each bar consists of two compo-
nents; 1) zero load shows the packet latency due to static hop
count and serialization latencies, 2) congestion shows the
latencies due to the resource conflicts. Although each
component contributes 67 and 33 percent of the average
latency, respectively, the greater impact of reduced flit
count lies in congestion. This effect is illustrated by X264
which has the second greatest congestion latency, as a result
a relatively small reduction in flits translates into a greater
reduction in packet latency. The overall average packet
latency has been reduced by 5.7 percent.

5.1.2 Overall System Performance Discussion

As a proxy for overall system performance, we examine the
technique’s impact on average memory access time. Despite
an improvement in packet latency, Fig. 11 shows that
AMAT is unchanged on average, with some benchmarks
showing a slight improvement, while others showing a
slight degradation. To explore this counter-intuitive result,
we examine how AMAT relates to packet latency and L1
miss rate. AMAT in this work and it can be estimated by

AMAT ¼ LatencyðL1Þ þ ð1�HitRateðL1ÞÞ
� LatencyðL2þÞ:

ð2Þ

In this equation, LatencyðL1Þ is the constant L1 latency for
the system, and HitRateðL1Þ is the hit rate of L1 accesses
which varies by benchmark locality and is effected by false
unused-word predictions. LatencyðL2þÞ is the latency of
memory accesses served by L2 and beyond, which is also
known as L1 miss latency. It is a function of the constant L2
cache access time, L2 miss rate, network latency and the

552 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 11. Flit count, packet latency, and AMAT normalized against
baseline.

Fig. 12. Packet latency breakdown.

constant memory access time. Assuming LatencyðL2þÞ is
fixed, AMAT is a linear function of HitRateðL1Þ. Fig. 13
visualizes AMAT as fðrÞ where r is L1 hit rate.

In Fig. 13, let f1ðrÞ be the AMAT characteristic for a
benchmark, where T1 is the L1 latency and T2 is L1 latency
plus L1 miss latency. Say, with the baseline scheme, the L1
hit rate is r0 and AMAT becomes f1ðr0Þ. If our prediction
mechanism drops the L1 hit rate to r1 and that does not
change L1 miss latency, the AMAT becomes f1ðr1Þ. In such
a case, f1ðr1Þ � f1ðr0Þ represents the performance loss due
to mispredictions. However, thanks to our packet composi-
tion technique, L1 miss latency, in general, is lower than
that of baseline cases. Thus, its AMAT characteristic
function should be redrawn as f2ðrÞ and the AMAT at r1

is f2ðr1Þ. If f2ðr1Þ < f1ðr0Þ as in this example, the difference,
f1ðr0Þ � f2ðr1Þ denotes the performance benefit from our
prediction technique.

In this example, we can also see that as long as the
predictor drops the L1 hit rate no lower than r2,
performance improvement is expected. We define safe range
as the range of L1 hit rate where our prediction scheme
shows equal or better AMAT than the baseline design. In
this particular example, the safe range is ½r2; r0�. To
generalize, safe range, �r, is calculated as below:

�r ¼ �T

To ��T
ð1� roÞ; ð3Þ

where To and ro are the original L1 miss latency and L1 hit
rate, respectively, and �T the reduced amount of L1 miss
latency. The wider safe range we have the better chance that
we achieve the performance improvement.

Fig. 14a shows the average L1 miss latency for each
benchmark. The bars marked as base show the L1 miss
latency for the baseline design, while pred shows the latency
for the proposed scheme. In every case, a reduction in L1
miss latency is observed. This reduction is closely related to
the reduction in the interconnect network latency shown in
Fig. 12. Although the packet latency in the figure is
normalized, the L1 miss latency shows the similar trend
to that: the more reduction in the network latency we have,
the more reduction in L1 miss latency. According to (3), the
wider safe range, and, in turn, no performance degradation,
is expected for benchmarks with a lower base and a bigger
gap between base and pred. However, the safe range is still
up to L1 hit rate.

Fig. 14b shows the original L1 hit rate (“l1 hit base”) the
new L1 hit rate (“l1 hit pred”) and the changed average

memory access time (“norm lat”). On average, L1 hit rate is
decreased by 0.15 percent. Blackscholes (“Black”) has the
third greatest improvement in L1 miss latency, the lowest L1
miss latency and the second lowest L1 hit rate, it results in
the greatest overall performance improvement of
4.2 percent. By contrast, “X264,” while having the greatest
L1 miss latency improvement, also has one of the highest L1
miss latency, and the highest L1 hit rate, therefore achieves
the worst overall system performance. Although “Canneal”
shows the worst impact on L1 hit rate, due to its low original
L1 hit rate, the reduced L1 hit rate is still in its safe range,
thus, no performance penalty for mispredictions is shown.

5.2 Predictor Tuning

As with many speculative techniques, our scheme incurs a
performance penalty when mis-speculation occurs. In this
case, the penalty manifests as increased L1D misses. As
Fig. 14b shows, L1D hit rates are barely impacted by our
technique. One possible interpretation of this data is that our
predictor is overly conservative, and that energy gain could
be achieved by more aggressively tuning our predictor, in
this section we explore predictor tuning to this end.

Our prediction model requires a threshold value to be
configured at design time. As described in Section 3.1.1, the
threshold determines whether a certain word will be used
or not according to its usage history counter. If the counter
value is less than the threshold, the word is predicted to be
unused. The smaller threshold value, the more biased
the predictor toward predicting a word will be used. Thus,
the threshold value tunes the tradeoff between energy
consumption and memory access time.

Fig. 15 shows the prediction outcomes with respect to
various threshold values (numbers along the bottom) for
each of the benchmarks examined. Each bar is broken into
components to show average number of words in a cache

KIM ET AL.: SPATIAL LOCALITY SPECULATION TO REDUCE ENERGY IN CHIP-MULTIPROCESSOR NETWORKS-ON-CHIP 553

Fig. 13. AMAT graph.

Fig. 14. Overall system performance.

line with the following characteristics. The bars marked
true_pos show the fraction of true positives: words predicted
used and actually used. The bars marked true_neg show the
portion of true negatives: words predicted unused and
actually not used. The words in this category are the source
of the energy reduction in our design. These two categories
form the portion of the words that the predictor correctly
speculates their spatial localities. The bars marked false_pos
show the fraction of false positives: words predicted used
but actually unused. The words in this category do not
cause any miss penalty but represent a lost opportunity for
energy reduction. Finally, the bars marked false_neg show
the portion of false negatives: words predicted unused but
actually used. These words result in additional memory
system packets, potentially increasing both energy and
latency. The threshold value “0” in this figure represents the
baseline configuration, where all words are assumed used.
In general, as the threshold value increases, the portions of
true_neg and false_neg increase while true_pos and false_pos
decrease. This implies that the higher threshold chosen, the
lower energy consumption (due to true_neg predictions) but
also the higher the latency(due to false_neg predictions). We
also note that even with the most aggressive threshold
setting, a significant number of false_pos predictions remain,
despite significant increases in false_neg predictions, imply-
ing that headroom for improvement via a more accurate
prediction mechanism exists.

Fig. 16 depicts the normalized energy consumption and
normalized average memory access time for threshold
values from 1 to 15. For this experiment, we use low-swing
links, a similar trend of energy consumption and AMAT
was found for full swing links. Fig. 16a shows a modest
downward trend in energy consumption as the threshold
value increases, with the greatest increase between thresh-
olds of 8 and 12. This is the expected outcome of growing
true_neg with higher threshold values in Fig. 15. In some
benchmarks, such as “Black,” “Fluid,” and “X264,” there is
slight increase at the highest threshold value. The main
reason for this increase is the energy required to service
increased L1D misses, which overcome the benefit of
transmitting fewer words in the initial request.

Fig. 16b shows the normalized AMAT with varying
threshold. In general, the latency shows a modest upward

trend as the threshold grows. The higher the threshold, the
more words are speculated as unused by the predictor,
leading to increased L1 miss rates and degrading the overall
memory system latency. Though this trend becomes
dramatic for a threshold of 15, increasing AMAT by up to
23 percent for one application; we find that thresholds of
less than 4 have a minimal negative impact on AMAT.

Given our goal was to decrease energy with a minimal
impact on performance, we use the Energy�Delay2 metric
as a figure of merit for our design. Experimentally we
determined that Energy�Delay2 is approximately equal
across the thresholds between 1 and 8, however, it
considerably increases beyond the threshold 12. This result
validates our choice a threshold value of 1 in our
experiments. We find the performance impact with this
bias is negligible. On average, with this threshold, the
additional latency of each operation is �0.6 percent. These
results show that further energy savings could be achieved
through improved predictor accuracy, which we leave to
future work.

554 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 15. Breakdown of predictions outcomes.

Fig. 16. Normalized energy and AMAT for different threshold values.

5.3 Case Study: Comparison with Smaller Lines

Naı̈vely, one might conclude that the low cache block
utilization shown in Fig. 1 could be an indication that cache
line size is in-fact too long, and that utilization could be
improved by implementing a smaller cache line size. To
explore this concern, we examine our technique versus a 32-
byte cache lines baseline.

Fig. 17 shows results for three different configurations:
1) the baseline design with 64-byte cache lines (64 base), 2) a
baseline design with 32-byte lines (32 base) keeping the cache
size and associativity the same as 64 base, and 3) 64-byte lines
with our prediction and dynamic packet composition
technique (64 pred). Fig. 17a shows the arithmetic average
of block utilization for each configuration across the
PARSEC benchmarks. Fig. 17b shows the geometric mean
of AMAT and Fig. 17c depicts the geometric mean of total
energy consumption. These figures show, 32-byte lines have
better utilization than the 64-byte baseline. Compared with
64 base, however, only a marginal energy reduction is
achieved at the cost of considerable performance loss. The
smaller cache block size results in the increased L1 misses,
and thereby, increased latency of memory accessing opera-
tions. 64 pred, shows even greater block utilization than 32
base while maintaining the performance of 64 pred and
consuming much less energy than the rest. Hence, the
proposed technique is a better design choice than shrinking
cache lines to reduce power.

6 CONCLUSIONS

In this paper, we introduce a simple, yet powerful
mechanism using spatial locality speculation to identify
unused cache block words. We also propose a set of static
and dynamic methods of packet composition, leveraging
spatial locality speculation to reduce energy consumption in
CMP interconnect. These techniques combine to reduce the
dynamic energy of the NoC datapath through a reduction
in the number of bit transitions, reducing � the activity
factor of the network.

Our results show that with only simple static packet
encoding, requiring no change to typical NoC routers and
very little overhead in the cache hierarchy, we achieve an
average of 17 percent reduction in the dynamic energy of
the network if full-signal swing links are used. Our
dynamic compositioning technique, requiring a small
amount of logic overhead in the routers, enables deeper
energy savings of 36 and 34 percent, for full-swing and low-
swing links, respectively.

REFERENCES

[1] Int’l Technology Roadmap for Semiconductors (ITRS) Working
Group, “Int’l Technology Roadmap for Semiconductors (ITRS),”
http://www.itrs.net/Links/2009ITRS/Home2009.htm, 2009.

[2] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” Proc. 38th Int’l Design Automation
Conf. (DAC), 2001.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-
GHz Mesh Interconnect for a Teraflops Processor,” IEEE Micro,
vol. 27, no. 5, pp. 51-61, Sept./Oct. 2007.

[4] M. Taylor, M.B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal,
“Scalar Operand Networks: On-Chip Interconnect for ILP in
Partitioned Architectures,” Proc. IEEE Int’l Symp. High Performance
Computer Architecture (HPCA), 2002.

[5] D. Molka, D. Hackenberg, R. Schone, and M.S. Muller, “Memory
Performance and Cache Coherency Effects on an Intel Nehalem
Multiprocessor System,” Proc. 18th Int’l Conf. Parallel Architectures
and Compilation Techniques (PACT), 2009.

[6] Advanced Micro Devices (AMD) Inc., “AMD Opteron Processors
for Servers: AMD64-Based Server Solutions for x86 Computing,”
http://www.amd.com/us-en/Processors/ProductInformation/
0,,30_118_8796,00.h tml, 2012.

[7] P. Pujara and A. Aggarwal, “Cache Noise Prediction,” IEEE Trans.
Computers, vol. 57, no. 10, pp. 1372-1386, Oct. 2008.

[8] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” Proc. 17th Int’l Conf. Parallel Architectures and Compilation
Techniques, 2008.

[9] P. Gratz, C. Kim, R. McDonald, S.W. Keckler, and D. Burger,
“Implementation and Evaluation of On-Chip Network Architec-
tures,” Proc. IEEE Int’l Conf. Computer Design (ICCD), 2006.

[10] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R.
McDonald, S.W. Keckler, and D. Burger, “Implementation and
Evaluation of a Dynamically Routed Processor Operand Net-
work,” Proc. ACM/IEEE First Int’l Symp. Networks-on-Chip (NOCS),
2007.

[11] L. Shang, L.-S. Peh, and N. Jha, “Dynamic Voltage Scaling with
Links for Power Optimization of Interconnection Networks,” Proc.
High-Performance Computer Architecture, 2003.

[12] A.B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A Fast
and Accurate NoC Power and Area Model for Early-Stage Design
Space Exploration,” Proc. Design, Automation and Test in Europe
Conf. and Exhibition (DATE), 2009.

[13] A. Banerjee, R. Mullins, and S. Moore, “A Power and Energy
Exploration of Network-on-Chip Architectures,” Proc. First Int’l
Symp. Networks-on-Chip, 2007.

[14] R. Das, A. Mishra, C. Nicopoulos, D. Park, V. Narayanan, R. Iyer,
M. Yousif, and C. Das, “Performance and Power Optimization
through Data Compression in Network-on-Chip Architectures,”
Proc. IEEE 14th Int’l Symp. High Performance Computer Architecture,
2008.

[15] Y. Jin, K.H. Yum, and E.J. Kim, “Adaptive Data Compression for
High-Performance Low-Power On-Chip Networks,” Proc. IEEE/
ACM 41st Ann. Int’l Symp. Microarchitecture (MICRO), 2008.

[16] H. Zhang, V. George, and J. Rabaey, “Low-Swing On-Chip
Signaling Techniques: Effectiveness and Robustness,” IEEE Trans.
Very Large Scale Integration Systems, vol. 8, no. 3, pp. 264-272, June
2000.

[17] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B.
Nauta, “Low-Power, High-Speed Transceivers for Network-on-
Chip Communication,” IEEE Trans. Very Large Scale Integration
Systems, vol. 17, no. 1, pp. 12-21, Jan. 2009.

[18] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das,
“Design and Evaluation of a Hierarchical on-Chip Interconnect for
Next-Generation CMPS,” Proc. IEEE 15th Int’l Symp. High
Performance Computer Architecture, 2009.

[19] K. Hale, B. Grot, and S. Keckler, “Segment Gating for Static Energy
Reduction in Networks-on-Chip,” Proc. Second Int’l Workshop
Network on Chip Architectures, 2009.

[20] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 2003.

[21] S. Carr, K.S. McKinley, and C.-W. Tseng, “Compiler Optimiza-
tions for Improving Data Locality,” ACM SIGPLAN Notices,
vol. 29, no. 11, pp. 252-262, 1994.

[22] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-Conscious
Data Placement,” Proc. Eighth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 1998.

KIM ET AL.: SPATIAL LOCALITY SPECULATION TO REDUCE ENERGY IN CHIP-MULTIPROCESSOR NETWORKS-ON-CHIP 555

Fig. 17. Comparison to a smaller cache line.

[23] T.M. Chilimbi, B. Davidson, and J.R. Larus, “Cache-Conscious
Structure Definition,” ACM SIGPLAN Notices, vol. 34, no. 5,
pp. 13-24, 1999.

[24] T. Chilimbi, M. Hill, and J. Larus, “Making Pointer-Based Data
Structures Cache Conscious,” Computer, vol. 33, no. 12, pp. 67-74,
Dec. 2000.

[25] J.S. Liptay, “Structural Aspects of the System/360 Model 85, II:
The Cache,” IBM Systems J., vol. 7, no. 1, pp. 15-21, 1968.

[26] D.H. Yoon, M.K. Jeong, and M. Erez, “Adaptive Granularity
Memory Systems: A Tradeoff between Storage Efficiency and
Throughput,” Proc. 38th Ann. Int’l Symp. Computer Architecture,
2011.

[27] M.K. Qureshi, M.A. Suleman, and Y.N. Patt, “Line Distillation:
Increasing Cache Capacity by Filtering Unused Words in Cache
Lines,” Proc. Int’l Symp. High-Performance Computer Architecture,
2007.

[28] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-Block Prediction & Dead-
Block Correlating Prefetchers,” SIGARCH Computer Architecture
News, vol. 29, no. 2, pp. 144-154, 2001.

[29] C.F. Chen, S. hyun Yang, and B. Falsafi, “Accurate and
Complexity-Effective Spatial Pattern Prediction,” Proc. 10th Int’l
Symp. High Performance Computer Architecture (HPCA-10), 2004.

[30] H. Kim, P. Ghoshal, B. Grot, P.V. Gratz, and D.A. Jimènez,
“Reducing Network-on-Chip Energy Consumption through Spa-
tial Locality Speculation,” Proc. ACM/IEEE Fifth Int’l Symp.
Networks-on-Chip (NOCS), 2011.

[31] C. Kim, D. Burger, and S.W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,”
ACM SIGPLAN Notices, vol. 37, pp. 211-222, 2002.

[32] S.G. Abraham, R.A. Sugumar, D. Windheiser, B.R. Rau, and R.
Gupta, “Predictability of Load/Store Instruction Latencies,” Proc.
26th Ann. Int’l Symp. Microarchitecture, 1993.

[33] E. Jacobsen, E. Rotenberg, and J.E. Smith, “Assigning Confidence
to Conditional Branch Predictions,” Proc. 29th Ann. Int’l Symp.
Microarchitecture, 1996.

[34] Intel, “Intel Atom Processor Z510,” http://ark.intel.com/
Product.aspx?id=35469&processor=Z510&spec-codes=SLB2C,
2012.

[35] Jon Stokes, “IBM’s 8-Core POWER7: Twice the Muscle, Half the
Transistors,” http://arstechnica.com/hardware/news/2009/09/
ibms-8-core-power7-twice-the-mu scle-half-the-transistors.ars,
2012.

[36] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Opti-
mizing Nuca Organizations and Wiring Alternatives for Large
Caches with Cacti 6.0,” Proc. IEEE/ACM 40th Ann. Int’l Symp.
Microarchitecture, 2007.

[37] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and
S.K. Reinhardt, “The M5 Simulator: Modeling Networked
Systems,” IEEE Micro, vol. 26, no. 4, pp. 52-60, July/Aug. 2006.

[38] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S.W. Keckler,
“Running PARSEC 2.1 on M5,” technical report, Dept. of
Computer Science, The Univ. of Texas at Austin, 2009.

[39] J. Hestness and S.W. Keckler, “Netrace: Dependency-Tracking
Traces for Efficient Network-on-Chip Experimentation,” technical
report, Dept. of Computer Science, The Univ. of Texas at Austin,
2011.

Hyungjun Kim received the BS degree from
Yonsei University in 2002, and the MS degree in
electrical engineering from the University of
Southern California in 2008. He is working
toward the PhD degree in the Department of
Electrical and Computer Engineering at Texas
A&M University. He is currently working with
professor Paul V. Gratz. His research interests
include low-power memory systems and on-chip
interconnection networks.

Boris Grot received the PhD degree in compu-
ter science from The University of Texas at
Austin. He is a postdoctoral researcher at EPFL,
Switzerland. His research interests include
processor architectures, memory systems, and
interconnection networks for high-throughput,
energy-aware computing. He is a member of
the IEEE and the ACM.

Paul V. Gratz received the BS and MS degrees
in electrical engineering from the University of
Florida in 1994 and 1997, respectively, and the
PhD degree in electrical and computer en-
gineering from The University of Texas at
Austin in 2008. He is an assistant professor
in the Department of Electrical and Computer
Engineering at Texas A&M University. His
research interests include high-performance
computer architecture, processor memory sys-

tems, and on-chip interconnection networks. He is a member of the
IEEE and the ACM.

Daniel A. Jiménez received the PhD degree in
computer sciences from The University of Texas
at Austin. He is a professor and chair of the
Department of Computer Science at The Uni-
versity of Texas at San Antonio. His research
interests include microarchitecture and low-level
compiler optimizations. He is a member of the
IEEE and a senior member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

556 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

