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Abstract Neural-inspired branch predictors achieve very low branch misprediction
rates. However, previously proposed implementations have a variety of characteristics
that make them challenging to implement in future high-performance processors. In
particular, the path-based neural predictor (PBNP) and the piecewise-linear (PWL)
predictor require deep pipelining and additional area to support checkpointing for
misprediction recovery. The complexity of the PBNP predictor stems from the fact
that the path history length, which determines the number of tables and pipeline stages,
is equal to the history length, which is typically very long for high accuracy. We pro-
pose to decouple the path-history length from the outcome-history length through a
new technique called modulo-path history. By allowing a shorter path history, we can
implement the PBNP and PWL predictors with significantly fewer tables and pipeline
stages while still exploiting a traditional long branch outcome history.

Keywords Computer architecture · Branch prediction

1 Introduction

After decades of academic and industrial research efforts focused on the branch pre-
diction problem, pipeline flushes due to control flow mispredictions remain one of
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the primary bottlenecks in the performance of modern processors. A large amount of
recent branch prediction research has centered around techniques inspired and derived
from machine learning theory, with a particular emphasis on the perceptron algorithm
[1–7]. These neural-based algorithms have been very successful in pushing the enve-
lope of branch predictor accuracy.

Researchers have made a conscious effort to propose branch predictors that are
highly amenable to pipelined and ahead-pipelined [8] organizations to minimize the
impact of predictor latency on performance. There has been considerably less effort
on addressing power consumption and implementation complexity of the neural pre-
dictors, both of which are now first-class design considerations in high-performance
microprocessors. Reducing branch predictor power is not an easy problem because any
resultant reduction in the branch prediction accuracy can result in an overall increase in
the system power consumption due to a corresponding increase in wrong-path instruc-
tions [9].

The goal of this work is to demonstrate that the complexity of neural branch pre-
dictors can be substantially reduced without altering the fundamental behaviors and
characteristics of the prediction algorithm. In this article, we will not re-argue the
benefits of the conventional neural predictors as that has already been demonstrated
in numerous previous works [1–4,6,7].

In the rest of this article, we will first review the design of neural-based branch
predictors in Sect. 2. Section 3 details our new branch predictor organizations targeted
at reducing complexity and overall energy consumption. Section 4 presents our exper-
imental results demonstrating the impact of our proposal on processor performance
and energy. Section 5 describes how to extend the proposed ideas to the more recent
piecewise-linear neural predictor, and Sect. 6 concludes the article.

2 Neural Branch Predictors

In this section, we review neural-based branch predictors. We then qualitatively
describe the sources of complexity and power consumption that make conventional
neural predictors difficult to implement in high-performance processors.

2.1 Background

Traditional PHT-based (pattern history table) branch predictors such as GAs [10] and
gshare [11] do not scale gracefully with longer branch history lengths. For h bits of
branch history, a conventional PHT needs a table size exponential in h. The neural
predictors are interesting because they can exploit deep correlations from very long
history lengths with subexponential scaling.

The basic perceptron predictor [1] employs a vector of weights that learns
correlations between the branch direction and the results of previous branches.
Figure 1a shows how a table of weights is indexed by the program counter (PC)
to choose a single vector of weights that is then combined with the branch history reg-
ister in a dot-product operation (each • represents conditionally negating the weight
depending on the direction of the corresponding branch history bit). Conceptually, a
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Fig. 1 (a) The perceptron branch predictor and (b) the path-based neural predictor or PBNP

past branch that is strongly correlated with the outcome of the current branch will
have a corresponding weight with a large magnitude. The perceptron trains (incre-
ments/decrements) the weights to predict only according to those branches in the
history that have exhibited strong correlations to the branch under consideration. A
Wallace tree reduces the h + 1 weights down to only two weights in O(log3/2 n)

carry-save adder gate delays. A final carry-completing adder such as a look-ahead
carry adder computes the final sum. The sign of this resulting sum indicates the final
prediction. The main obstacle to implementing a perceptron branch predictor is the
long latency required to read the weights and then perform the large dot-product oper-
ation. To reduce the latency of the predictor, it may be necessary to implement the
adders with fast, leaky transistors that end up consuming more dynamic and static
power.

The second-generation path-based neural predictor (PBNP) largely solves the
latency problems of the original perceptron [2]. The central idea is that the ith previous
branch address (i.e., from the path history) can be used to look up the weight corre-
sponding to the ith oldest branch i cycles ahead of time. While this largely addresses
the latency issues of the perceptron predictor, the PBNP still suffers from significant
implementation complexity. As shown in Fig. 1b, the pipelining of the PBNP provides
a much faster effective predictor latency: the critical path is now the table lookup and
a single addition. The PBNP also requires a number of adders equal to the depth of
the branch history, further increasing the hardware cost.

The third-generation piecewise-linear (PWL) neural predictor is a generalization of
the previous two neural predictors. That is the original perceptron and the PBNP are
both special cases of the PWL predictor. The PWL predictor can learn more complex
decision functions by aggregating multiple linear decision surfaces in a piecewise
manner [3]. The PWL predictor effectively consists of k parallel PBNP pipelines each
of which handles one of the linear decision surfaces. However, the k pipelines further
increase the implementation overhead.
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2.2 Power and Complexity

In this article, we will first focus on the path-based neural predictor (PBNP). The
original perceptron predictor’s long lookup latency makes it difficult to implement
without making use of an overriding predictor organization [12] that just adds more
power and complexity. The PBNP arguments presented below hold for the piecewise
linear (PWL) predictor as well, except most overheads are further increased by a factor
of k.

During the lookup phase of the PBNP, each pipeline stage reads a weight corre-
sponding to the exact same PC. This is due to the fact that the current PC0 will be the
next branch’s PC1 and next–next branch’s PC2 and so on. This allows an implemen-
tation where the weights are read in a single access using a single large SRAM row
that contains all of the weights. During the update phase however, a single large access
would force the update process to use a pipelined implementation as well. While at
first glance this may seem desirable, this introduces considerable delay between update
and lookup. For example a 30-stage update pipeline implies that even after a branch
outcome has been determined, another 30 cycles must elapse before the PBNP has
been fully updated to reflect this new information. This update delay can create a
decrease in predictor accuracy. There are also some odd timing effects due to the fact
that some weights of a branch will be updated before others.

An alternative organization uses h tables in parallel, one for each pipeline stage/his-
tory-bit position [2], as shown in Fig. 2a. This organization allows for a much faster
update and better resulting accuracy and performance. The disadvantage of this orga-
nization is that there is now a considerable amount of area and power overhead to
implement the row decoders for the h separate SRAM arrays. Furthermore, to support
concurrent lookup and update of the predictor, each of these SRAM arrays needs to be
dual-ported (one read port/one write port) which further increases the area and power
overhead of the SRAM row decoders. To use the PBNP, the branch predictor designer
must choose between an increase in power and area or a decrease in prediction accu-
racy. Using a large number of small SRAM arrays makes it more difficult to derive
energy savings through SRAM banking and sub-banking techniques [13].

On a branch misprediction, the PBNP pipeline must be reset to the state that cor-
responded to the mispredicting branch being the most recent branch in the branch
and path history. To support this predictor state recovery, each branch must check-
point all of the partial sums in the PBNP pipeline. On a branch misprediction, the
PBNP restores all of the partial sums in the pipeline using this checkpointed state.
For b-bit weights and a history length of h, a PBNP checkpoint requires approxi-
mately bh bits of storage. The total number of bits is slightly greater because the
number of bits required to store a partial sum increases as the sum accumulates more
weights. The total storage for all checkpoints corresponds to the maximum number
of in-flight branches permitted in the processor. The checkpointing overhead repre-
sents additional area, power, and state that is often unaccounted for in neural predictor
studies. This overhead increases with the history/path-length of the predictor since
the PBNP must store one partial sum per predictor stage. The combination of these
issues makes the conventional PBNP difficult to implement for high-performance
microprocessors.
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Fig. 2 (a) Organization of the h tables of the PBNP, (b) logical organization of a PBNP using modulo
path-history for P = 3, and (c) the corresponding physical organization of the same. The shaded portion
represents the SRAM row decoder and related access logic

3 Decoupling the Path and Branch History Lengths

In the original PBNP, the path history length is always equal to the branch history
length. This is a result of using PCi to compute the index for the weight of xi . As
described in the previous section, the pipeline depth directly increases the number of
tables and the checkpointing overhead required. On the other hand, supporting a long
history length requires the PBNP to be deeply pipelined.

3.1 Modulo-path History

We propose modulo path-history where we decouple the branch history length from
the path history length. We limit the path history to only the P < h most recent branch
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addresses. Instead of using PCi to compute the index for wi , we use PCi mod P .
In this fashion, we can reduce the degree of pipelining down to only P stages. Figure
2b shows the logical organization of a PBNP using modulo path-history (for P = 3).
In this example, we only use a path length of three, but Fig. 2b still appears to use O(h)

separate tables. Since every P th weight is indexed with the same branch address, we
can interleave the order of the weights in the tables such that only P tables are nec-
essary. Figure 2c shows the physical organization where each table provides weights
that correspond to h/P branch history outcomes, where each branch history outcome
is separated by P bit positions.

By reducing the PBNP implementation to only use P distinct tables, we address
several of the main sources of power and complexity as described in Sect. 2. Using only
P tables reduces the duplicated row-decoder overhead. The reduction in the number
of tables reduces the overall pipeline depth of the predictor which reduces the total bits
of state that must be checkpointed (i.e., there are only P partial sums). The number of
inter-stage latches and associated clocking overhead is also correspondingly reduced.

3.2 Folded Modulo-path History

Reducing the path-history length of a path-based neural predictor may reduce pre-
diction accuracy because the long path history may provide additional context for
detecting correlations. That is, a branch prediction may be highly correlated to the kth
address in the branch history, but reducing the path length to P < k by using modulo-
path history eliminates this source of correlation. To recapture the correlation in the
kth path address, we would need to increase the modulo-path history length to at least k
(so indexes are computed using PCi mod k rather than PCi mod P ). This unfortunately
increases the predictor pipeline depth and the associated power and complexity.

We propose to decouple the predictor pipeline depth from the path-history length
by using folded modulo-path history. Similar to the normal modulo-path history, our
PBNP uses only P tables, but now we employ a path-history length that is P · f

addresses long, where f is the folding factor. In a conventional PBNP we only use
one branch address to compute an index for each table. With folded modulo-path
history, we use f addresses hashed together. Folded modulo-path history can be con-
sidered the path-history analogue of the folded long branch outcome histories used
in other predictors such as 2bc-gskew [14]. Figure 3 shows an example PBNP with
P = 4 and f = 3 for a total path length of 12 while only using four tables.

To combine the f path addresses into a single index, we used a simple XOR and
shift-based hash function. For each of the path addresses PCi , i ∈ {0 . . . f − 1} used
to index a table, we hash the addresses by taking the exclusive-OR of PCi � i. This
is similar to the hash function used by Stark et al. for their path hashing [15].

Note that the folded-modulo-path history predictor needs a shift register to track
the path-history, and this shift register will need to be checkpointed for misprediction
recoveries. However, the size of this shift register is relatively small due to the reduced
number of predictor stages enabled by the modulo history and each entry only needs
to store enough bits to index into the perceptron table (e.g., a 128-entry SRAM only
requires seven bits from each branch address).
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Fig. 3 A neural predictor employing folded modulo-path history, where the path-length �=history-
length �=number of tables

Modulo path-history is a unique way to manage the path history information.
A PBNP can now choose between different lengths of branch and path history. Tarjan
and Skadron proposed a “hashed” perceptron indexing scheme that removed the rigid
relationship between history length and the number of tables [6]. Seznec’s GEHL
predictors use a similar hashing approach to map multiple bits of branch history to a
single correlation weight [16]. Our work provides a different way of separating history
length from table count, and also makes the contribution of separating the path length
from either of these parameters as well.

3.3 Generality of the Techniques

In this article, we focus on the path-based neural predictor. However, the proposed
history-folding techniques can potentially be applied to other predictor organizations.
Multi-table, ahead-pipelined predictors such as the Hashed-Perceptron [6], GEHL
[16], PPM [17] or TAGE [18] could all include folded history to incorporate addi-
tional information and context in their indexing functions.

4 Results

In this section, we present our experimental results to demonstrate the merits of our
proposed branch predictor organizations.

4.1 Experimental Methodology

For our initial design space exploration, we used the in-order branch predictor simula-
tor sim-bpred from the SimpleScalar toolset [19]. We simulated applications from the
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Table 1 The processor configuration used for our IPC simulations

Parameter Value Parameter Value

Machine 4-wide Integer units ALU:2, Mult:2

IFQ size 8 entry FP units Add:1, Mult:1, Div:1

Scheduler 24 entry Latencies Same as Pentium-M [24]

LSQ size 24 entry Memory ports 2

ROB size 64 entry ITLB/DTLB 64 entry each

IL1, DL1 16 KB/4-way Branch penalty 13 cycles

Unified L2 512 KB/8-way DRAM latency 200 cycles

SPEC2000cpu integer benchmark suite with reference inputs, MiBench [20] with the
large inputs and the MediaBench [21] multimedia benchmark suites with expanded
inputs. Some applications (e.g., the lame MP3 encoder) are not included because we
could not compile them in our Alpha environment due to unsupported libraries. We
used 100 million instruction simulation points chosen by SimPoint 2.0 [22]. Our appli-
cations were compiled on an Alpha 21264 with Compaq cc with full optimizations.
For our IPC simulations, we used the MASE simulator from SimpleScalar 4.0 [23].
We simulated a four-wide out-of-order processor; the details are listed in Table 1. The
processor parameters were chosen to model a machine with a level of aggressiveness
similar to an Intel Pentium-III/Pentium-M microarchitecture.

We used CACTI 3.2 [25] to estimate the energy consumption of 90 nm imple-
mentations of the branch predictors. Since CACTI does not simulate tables with
non-power-of-two numbers of entries, we simply rounded-up the sizes of our struc-
tures to the next largest power of two. While this introduces some slight overestima-
tion in power consumption, a realistic implementation of a neural branch predictor
would likely use SRAMs with a power-of-two number of entries. We used CACTI to
estimate the energy consumption of the predictor’s tables of weights as well as the
checkpoint tables. We also extrapolated the energy consumption of the predictors’
adders based on the logic model of CACTI’s row decoders. For our predictor die-area
estimates, we use the register bit equivalent (rbe) methodology proposed by Mulder
et al. [26].

We simulated a large number of PBNP configurations to find the best parameter
settings. For the modulo-path and folded-modulo-path versions, we maintained the
same branch history length and number of entries per table of weights (i.e., same
total number of perceptrons) while allowing the predictor pipeline depth and path
history length to vary. The final configurations are listed in Table 2. We could have
potentially improved the performance of the modulo-path versions by allowing the
history length and number of perceptrons to change. However, we decided to keep
these parameters the same as the baseline PBNP to directly quantify the impact of our
techniques.

123



Int J Parallel Prog (2008) 36:267–286 275

Table 2 Parameters for the baseline PBNP and versions using modulo path-history and folded-modulo-path
history

Size (KB) Common parameters Modulo-path +Folded path

History length Rows per SRAM (# Perceptrons) Path length Path length f = Path folding

1 24 40 8 11 2

2 24 81 8 11 2

4 31 128 6 15 2

8 32 248 7 11 2

4.2 Predictor Accuracy

The usage of modulo-path history potentially compromises the prediction accuracy
of the path-based neural predictor (PBNP) due to the reduction in the total amount
of unique path information. While the modulo-path versions of the PBNP make for
simpler and more practical implementations, a substantial reduction in accuracy and
overall performance would simply make both conventional and modulo-path versions
of the predictor undesirable.

Figure 4 shows the average prediction accuracy of the different versions of PBNPs
across a range of predictor sizes for SPECint, MediaBench and MiBench, respectively.
Overall, the modulo-path modifications only slightly increase the misprediction rates
of the predictors, with a greater sensitivity at the smallest hardware budget. For future
high-performance processors, the predictor sizes are more likely to be toward 8 KB
or larger [27], making the sensitivity at the smaller sizes less of a problem. This is a
very positive result as it means that we can employ the simpler modulo-path versions
of the neural predictor without crippling performance.

It is important that the performance results apply reasonably uniformly across the
individual benchmarks of each application suite. Figure 5 shows the per-benchmark
branch misprediction rates for every application evaluated. The SPECint suite shows
some variability between benchmarks, but in most situations the simplified versions
of the predictor do not cause too many additional mispredictions. What is interesting
to observe is that there is a distinct tradeoff between overhead reduction and the vari-
ability or sensitivity of the misprediction rates. In particular, the folded-modulo-path
predictor provides a greater reduction in hardware (see Sect. 4.5), but the misprediction
rate increase varies more than the simple non-folded modulo-path history predictor.
The MiBench and MediaBench suites exhibit similar trends. It is also important to
observe that the sensitivity of performance to misprediction rates also varies, and so
we evaluate the IPC impact of our techniques in the following section.

4.3 Predictor Performance

Given that our modified versions of the PBNP do not affect prediction accuracy by
much, we expect that the overall performance will also be similar to that of the original

123



276 Int J Parallel Prog (2008) 36:267–286

SPECint

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1024 2048 4096 8192

Predictor Size (bytes)

M
is

pr
ed

ic
tio

n 
R

at
e

M
is

pr
ed

ic
tio

n 
R

at
e

M
is

pr
ed

ic
tio

n 
R

at
e

PBNP
ModPath
Folded MP

(a)

1024 2048 4096 8192

Predictor Size (bytes)

MediaBench

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%
(b)

1024 2048 4096 8192

Predictor Size (bytes)

MiBench

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%
(c)

PBNP
ModPath
Folded MP

PBNP
ModPath
Folded MP

Fig. 4 Arithmetic mean misprediction rates across the (a) SPECint, (b) MediaBench and (c) MiBench
applications for the original path-based neural predictor (PBNP) as well as versions using modulo- and
folded-modulo-path history

PBNP. Figure 6 shows the geometric mean IPC rates across the SPECint, Media-
Bench and MiBench applications, respectively, for different predictor sizes. Overall,
the IPC of our simplified PBNPs matches the performance of the original predictor
very closely. At an 8 KB budget on the SPECint applications, the IPC degradation
is only 0.8% for the ModPath predictor, and 1.3% for the Folded version. Across
the range, the difference in overall performance is within the noise of the simulator.
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Fig. 5 Per-benchmark misprediction rates for 1 KB and 4 KB predictors on the (a) SPECint, (b) Media-
Bench and (c) MiBench workloads for the original path-based neural predictor (PBNP) as well as versions
using modulo- and folded-modulo-path history
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Fig. 6 Geometric mean IPC rates for the (a) SPECint, (b) MediaBench and (c) MiBench applications for
the original path-based neural predictor (PBNP) as well as versions using modulo- and folded-modulo-path
history

For the MediaBench applications, we observe 1.5% and 0.5% IPC degradations for
the ModPath and Folded-ModPath 8 KB predictors, respectively. For MiBench, the
performance penalties are 0.1% and 0.0% for the same predictors.

The choice of target applications affects which predictor organization is most appro-
priate. For example, ModPath performs better for SPECint, while the Folded Mod-
Path is better for MediaBench. On the other hand, the MiBench applications are fairly
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insensitive to the choice of the neural predictor implementation, which means we can
reap energy and area benefits (described in the next section) without any performance
impact.

It is important to keep in perspective that even though the modulo-path history
versions of the PBNP cause a slight performance drop, this is relative to a proces-
sor that uses a conventional PBNP. Without our proposed modifications, a proces-
sor would not even be able to use the PBNP in the first place. Our contribution
is a new design for the PBNP that makes it much more practical while delivering
nearly the same benefit as the more complex version. The alternative is a processor
with much less performance due to a less sophisticated non-neural prediction algo-
rithm [1].

Figure 7 illustrates the IPC impact of the proposed techniques on a per-application
basis. On the SPECint suite, the crafty and twolf benchmarks exhibited the largest rela-
tive increases in misprediction rates. In the case of crafty, the increase in misprediction
rate leads to a corresponding performance reduction. However, this performance deg-
radation is only prominent in the folded-modulo-path history version of the predictor.
For the non-folded path history predictor, the performance decrease is quite small.
In the other case of a large misprediction rate increase for twolf, it turns out that the
application is not overly sensitive to the increase in branch mispredictions. This may
be due to other mitigating factors such as a larger number of stall cycles due to non-
branch-related events such as cache misses. For the other MiBench and MediaBench
suites, the sensitivity of the IPC performance to the misprediction rate is even less
than SPECint, and so the overall IPC performance of our simplified PBNP predictors
remains robust across the different applications. As discussed earlier, these results
are very encouraging as it enables the implementation of a sophisticated prediction
algorithm that delivers performance that is very close to the ideal PBNP technique.
In the following sections, we explore the implementation benefits in terms of energy
consumption and estimated area overhead.

4.4 Energy Impact

We anticipate that the modulo-path PBNPs will consume less energy per access for two
reasons. The first is that the folded organization reduces the total number of SRAM
arrays which reduces the per-table overhead such as the row decoders. However,
packing the same number of bits into a smaller number of tables tends to increase the
wordline lengths, which could increase power. The second reason for an energy reduc-
tion is in the decrease of the checkpointing overhead. By reducing the total number of
SRAM tables, we reduce the length of the predictor pipeline, thereby requiring less
state to be checkpointed for each branch. Figure 8 shows the overall energy consump-
tion per predictor access, which includes the predictor portion (SRAMs and adders)
as well as the checkpointing overhead. The adders’ energy consumption does not vary
because we maintain the same history length between the conventional PBNP and the
modulo-path versions. The results clearly show a substantial reduction in the predictor
energy consumption, ranging from 30% and 42% for 1 KB modulo-path and folded-
modulo-path versions, respectively, to 29% and 37% for the 8 KB configurations.
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Fig. 7 Per-benchmark IPC rates for 1 KB and 4 KB predictors on the (a) SPECint, (b) MediaBench and (c)
MiBench workloads for the original path-based neural predictor (PBNP) as well as versions using modulo-
and folded-modulo-path history
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computing the predictor output, and one checkpoint access

4.5 Area

To estimate the die area of each predictor configuration, we use the process inde-
pendent register bit equivalent (rbe) metric proposed by Mulder et al. [26]. The rbe
methodology provides for a way to estimate the area overhead of the decoder/driver
logic, sense amps, and other related circuitry. Figure 9 shows the estimated areas
of the predictor configurations in rbe’s. The majority of the area reduction comes
from a reduction in the total number of SRAM tables which reduces the overhead of
duplicated decode logic (the total number of predictor bits remains constant). This
estimate may be slightly generous in that additional wordline repeaters/drivers may
need to be inserted to avoid a substantial increase in the overall predictor access time.
Any additional drivers would add to the area overhead; however, the drivers should
still take up less area than a full decoder tree. The checkpoint overhead1 (includes
bitcells, decoders, sense amps) also contributes a small but non-negligible amount
of area. Depending on the overall hardware budget for the PBNP, the modulo-path
history can reduce area requirements by 18–37% without any substantial impact on
performance.

Note that in our earlier discussions and comparisons, we kept the overall hardware
budget the same between the original and optimized PBNP configurations. However,
the hardware budget as measured by bits of storage is only a proxy for the actual die
area required for the predictor. In a practical setting, our 8 KB optimized predictors
would require substantially less area to implement (up to 37%). Instead of reducing
the die footprint of the predictor, we could instead reclaim the area to add more per-
ceptron entries to the tables of weights. This would help to relieve capacity conflicts
in the predictor structures, but could still maintain the same hardware cost in die area
as the original PBNP even though it contains a larger total number of bits of state.

1 We assume that at most one out of four instructions will be a branch, and therefore for a ROB of 64
entries, we use 16 checkpoints.

123



282 Int J Parallel Prog (2008) 36:267–286

0

20000

40000

60000

80000

100000

120000

140000

1024 2048 4096 8192

Predictor Size (bytes)

R
eg

is
te

r 
B

it 
E

qu
iv

al
en

t (
rb

e)

path
checkpoint
adder

sense
decoder
bits

PBNP

ModPath

FModPath

Fig. 9 Area requirements of the different versions of PBNP in register bit equivalents (rbe)

5 Generalization to Other Branch Predictors

The piecewise linear (PWL) neural predictor is a more sophisticated generalization
of the previously proposed neural branch predictors [3]. While the PWL achieves sig-
nificantly higher prediction accuracies than the previous neural predictors, the check-
pointing overhead also increases substantially. In this section, we review the structure
of the PWL predictor, explain the application of modulo-path and folded-modulo-path
history to the PWL.

5.1 Piecewise Linear Neural Prediction

The piecewise linear neural predictor uses a more complex algorithm than previous
neural predictors. In particular, its ability to compose multiple linear decision sur-
faces in a piecewise manner allows the predictor to learn a much larger and richer
set of decision functions. Despite the increase in algorithmic sophistication, the PWL
predictor’s hardware structure can effectively be decomposed into k copies of the
original PBNP pipeline. Figure 10 illustrates the hardware organization of the PWL
predictor.

Each of the PBNP pipelines learns a single linear decision surface. At the end of
the pipeline, the least significant bits from the current branch’s PC select one of the k

predictions. The update process only affects the weights belonging to the one PBNP
pipeline selected.

For rapid recovery of the PWL pipeline, the partial sums from each of the k

PBNP pipelines must be checkpointed. This directly increases the amount of state
per branch predictor checkpoint by a factor of k, and can increase the correspond-
ing area, latency and power consumption of the checkpoint support by even more
than k (for example, unbuffered wire delay increases quadratically with wire length).
In such a situation, techniques to reduce checkpoint overhead become even more
critical.
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5.2 Modulo-path PWL Predictors

The organization of the PWL predictor as k parallel PBNP pipelines greatly assists in
the application of the modulo-path history technique to this more sophisticated predic-
tor. Specifically, a modulo-path PWL predictor is composed of k parallel modulo-path
PBNP pipelines as illustrated in Fig. 11. In a similar fashion, a folded-modulo-path
PWL predictor can be constructed from k instances of folded-modulo-path PBNP
pipelines. Compared to the PBNP versions, the PWL predictors have k times more
checkpoint overhead. However, when compared to the original PWL predictor, the
modulo-path versions of PWL require substantially less overhead.

6 Conclusions

Despite the high accuracy of the neural-based branch predictors, none have yet been
implemented in any commercial processors. We believe that the primary obstacles
to the adoption of neural predictors is in the complexity of the previously proposed
schemes. Our two new proposed schemes, modulo-path history and folded modulo-
path history, provide different tradeoffs between the reduction in the predictor imple-
mentation overhead and how close the resultant IPC performance matches that of
an ideal path-based neural predictor. Based on the experimental results, we conclude
that the (non-folded) modulo-path history predictor provides the best design point.
This version of the predictor provides better prediction rates and performance than
the folded version, more robust performance on a per-application bases (i.e., the vari-
ance in performance degradation across the entire workload is lower), and also results
in lower energy consumption. We conclude that the slight additional area benefit of
the folded version does not justify the increase in misprediction rates, decrease in
performance and increase in power.

The modulo-path history predictors proposed in this article provide substantial
reductions in the hardware complexity as measured by the number of tables, the pre-
dictor pipeline depth, and the checkpointing overhead, while simultaneously reducing
predictor energy consumption and die-area requirements. The reduction in power and
area can potentially be used to reduce the cost of the processor, or they could also be
traded to implement larger predictors than was previously possible with a conventional
neural predictor organization. We believe that research aimed at providing practical
implementations of sophisticated predictors is critical to successfully transferring this
technology to industrial implementations.
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