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Abstract

Modern microprocessors have many microarchitectural

features. Quantifying the performance impact of one fea-

ture such as dynamic branch prediction can be difficult.

On one hand, a timing simulator can predict the difference

in performance given two different implementations of the

technique, but simulators can be quite inaccurate. On the

other hand, real systems are very accurate representations

of themselves, but often cannot be modified to study the im-

pact of a new technique.

We demonstrate how to develop a performance model

for branch prediction using real systems. The technique

perturbs benchmark executables to yield a wide variety of

performance points without changing program semantics or

other important execution characteristics such as the num-

ber of retired instructions. By observing the behavior of the

benchmarks over a range of branch prediction accuracies,

we can estimate the impact of a new branch predictor by

simulating only the predictor and not the rest of the microar-

chitecture. We call this technique Program Interferometry
based on its similarity to astronomical optical interferome-

try.

Using measurements of the Intel Xeon E5440 Proces-

sor, we quantify the impact of branch prediction on a set

of benchmarks, developing regression models that estimate

the performance given by changes in the branch predictor.

We incorporate these models into a simulator allowing us

to estimate the impact of several branch predictors.

This first study in program interferometry points the way

to future work on estimating the impact of other microar-

chitectural structures. We demonstrate the potential for in-

terferometry to estimate the impact of L1 and L2 caches by

perturbing data layouts.

1 Introduction

Astronomers used the earliest telescopes to view the uni-
verse from a single point of view. Their observations were

dim and blurry, limited by the tiny amount of light that
their small telescopes could collect and the effects of atmo-
spheric turbulence. However, in recent years, astronomers
have used a technique called optical interferometry to com-
bine the observations of many telescopes from many dif-
ferent points of view to obtain images with a much higher
resolution [1].

Similarly, by sampling and observing many points in a
space of program performance, we can get a much better
understanding of program behavior. This paper presents a
technique called Program Interferometry, based on perturb-
ing placement of code and data. Many executable versions
of a program are produced by pseudo-randomly re-ordering
procedures and objects files. Similarly, the memory alloca-
tor places objects pseudo-randomly on the heap. A given
random placement of code and data can be repeated by us-
ing the same key for the pseudo-random number generator
so that runs are reproducible. Each code and data place-
ment is semantically equivalent, but because the instruction
addresses are different, different conflicts will arise among
microarchitectural structures such as the branch predictor
and instruction cache [23]. The situation is isomorphic to
one in which we keep the code and data placement con-
stant, but change the hash functions for microarchitectural
structures. Thus, we may measure the performance impact
of changing these structures.

1.1 Performance Variance

Figure 1 shows the percent difference from average
performance as measured by cycles-per-instruction (CPI)
caused by 100 random but plausible code reorderings for
the SPEC CPU 2006 benchmarks. The graph is a violin
plot, showing the probability density at each CPI value, i.e.,
the thickness at each CPI value is proportional to the num-
ber of CPIs observed in that neighborhood. Mytkowicz et

al. use violin plots to strikingly illustrate the impact of
performance variance on experimental methodology [23].
Clearly, some benchmarks are greatly affected by differ-
ences in instruction addresses while some are less sensitive.
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Figure 1. Violin plots for SPEC CPU 2006 percentage performance variation with code reordering.

1.2 Varying Branch Prediction Accuracy

Figure 2 demonstrates the potential of program interfer-
ometry. Each of the 100 points represents an executable
with a different code reordering of the SPEC CPU 2006
benchmarks 400.perlbench and 471.omnetpp run-
ning on ref inputs. Performance monitoring counters en-
able collecting the cycles-per-instruction (CPI) and branch
mispredictions per 1000 instructions (MPKI) of each run.
The plot shows actual measurements as well as a least-
squares regression line estimating the linear relationship be-
tween MPKI and CPI. They also show 95% confidence in-
tervals and 95% prediction intervals.

1.3 Varying Cache Misses

Since instructions account for relatively few cache
misses, we augment code reordering with data reorder-
ing in memory. The data reordering is done using a spe-
cially crafted memory allocator that randomizes the place-
ment of heap-allocated data. Heap randomization has been
proposed for memory safety [2], but here we use it to
elicit performance variance. Figure 3 shows that perfor-
mance varies linearly with L1 and L2 cache misses for the
SPEC CPU 2006 benchmark 454.calculix. The figure
also shows confidence and prediction intervals for a per-
formance model based on cache effects. The experiments
were done using heap randomization combined with code
reordering.

1.4 Focus on Branch Prediction

In this paper, we focus on measuring the impact of the
branch predictor on performance. Future work will focus
on the other microarchitectural structures affected by code
and data placement such as the instruction and data caches,
instruction decoders, L2 cache, etc.

As an example of the usefulness of program interferome-
try to branch predictor design, linear regression allows us to

make the following predictions for 400.perlbench with
95% probability: 1) A perfect branch predictor would yield
a CPI of 0.517± 0.029, an improvement of 26.0%± 4.2%.
2) Halving the average MPKI from 6.50 to 3.25 would im-
prove CPI by 13.0%±2.2% from 0.70 to 0.61±0.022. 3) A
10% improvement in CPI due to branch prediction improve-
ment would require a 38% reduction in mispredictions.

1.5 Using Current Microarchitectures to
Improve Future Microarchitectures

This paper presents a technique that can estimate the per-
formance improvement of changing the branch predictor
in a current microarchitecture. This is a good way to ex-
plore new microarchitectural ideas in the absence of clear
information about what future microarchitectures will look
like. An alternative would be to use cycle-accurate simula-
tors with best-guess estimates of future microarchitectural
structures. However, it is not clear to researchers what fu-
ture microarchitectures will be like. The return of Intel from
the more complex Netburst to the simpler P6-inspired Intel
Core 2 is an example of this uncertainty. The trend in 2001
was toward deeper and deeper pipelines, so contemporane-
ous branch prediction papers simulating pipeline depths of
up to 40 were way off the mark. Also, simulators are no-
toriously inaccurate with respect to real systems because
many of the details of real systems are difficult or impos-
sible to model or even to know about [5]. Earnest efforts at
simulation are subject to bugs that can invalidate research
conclusions made with them [6]. Thus, demonstrating that
a new branch predictor (or other optimization) can improve
an existing microarchitecture is another way to have confi-
dence in that optimization’s contribution to unknown future
microarchitectures.

2 Related Work

In this section we discuss related work.



Appears in Proceedings of the 2011 International IEEE International Symposium on Workload Characterization (IISWC),pp. 172–183, Austin,
Texas, November 2011

1

6.0 6.5 7.0
Mispredictions per 1000 Instructions

0.68

0.70

0.72

C
y

cl
es

 p
er

 I
n

st
ru

ct
io

n
s

95% prediction intervals

95% confidence intervals

Least-squares regression line

Performance counter measurements

5 6 7
Mispredictions per 1000 Instructions

2.10

2.15

C
y

cl
es

 p
er

 I
n

st
ru

ct
io

n
s

95% prediction intervals

95% confidence intervals

Least-squares regression line

Performance counter measurements

Figure 2. Performance changes with branch prediction accuracy for 400.perlbench and 471.omnetpp.
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Figure 3. Using heap randomization along with code reordering to model cache effect on performance. Performance

changes with (a) L1 and (b) L2 cache misses for 454.calculix.

2.1 Eliciting Performance Variance

Mytkowicz et al. introduce the technique of object file
reordering for showing that different link orders of object
files, as well as other seemingly random and harmless de-
tails of an experimental setup, can yield significantly dif-
ferent performance [23]. That work indicts the architecture
and programming languages community for falling victim
to measurement bias, i.e., allowing oneself to believe that
some observed improvement in program behavior is due
to one’s own technique rather than a happy coincidence
of experimental factors. Our work was partly inspired by
Mytkowicz et al.. We choose to see the phenomenon they
exposed as an interesting opportunity to develop a tool to
examine microarchitectural behavior.

Rubin et al. propose a framework to explore the space
of data layouts using profile feedback to find layouts that
yield good performance [26]. They point out that the gen-
eral problem of optimal data layout is NP-hard and poorly
approximable. The space of data layouts is similar to the
space of code reorderings, and the impact of data layouts
on the data cache is similar to the impact of code placement
on the branch predictor and instruction cache.

2.2 Impact of Code Placement on Perfor-
mance

The impact of code placement on performance has not
gone unnoticed in the academic literature. Many code-
improving transformations have been proposed based on
code placement. Hatfield and Gerald [7], Ferrari [9],
McFarling [19], Pettis and Hanson [24], and Gloy and
Smith [10] present techniques to rearrange procedures to
improve locality using profiling. Mytkowicz et al. exploit
the kind of performance variance described in this paper
to optimize programs [16]. Calder and Grunwald present
branch alignment, an algorithm that seeks to minimize the
number of taken branches by reordering code such that the
hot path through a procedure is laid out in a straight line [3].
Young et al. present a near-optimal version of branch align-
ment [31]. Jiménez proposes a technique to use code place-
ment to explicitly avoid branch mispredictions due to con-
flicts in the predictor tables [13]. Knights et al. propose
exploiting fortuitous object code orderings to improve per-
formance [16].

From the microarchitecture side, a trace cache is a spe-
cialized instruction cache that exploits instruction locality
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by organizing instructions in the order they are executed,
rather than in their static program order[25]. With a trace
cache, branch prediction and instruction fetch can be made
somewhat immune to the effect of code placement when
there is a high hit rate in the trace cache. The Intel Netburst
microarchitecture in the Pentium 4 processor line featured
a micro-op trace cache [12].

Our technique is not an optimization, but a tool for peer-
ing inside the microarchitecture using code placement. If
thoughtful code placement optimizations like those men-
tioned above were widely adopted, our results would show
less variance in execution behavior and less confidence in
the regression lines. Nevertheless, most production code is
not optimized with code placement in mind; thus, our re-
sults are widely applicable to real systems.

2.3 Estimating Performance

We use linear regression to estimate processor perfor-
mance. Other work has also used regression to estimate
program behavior for simulators as well as real systems.

2.3.1 Estimating Simulation Results with Regression

Lee and Brooks propose using regression modeling to esti-
mate processor performance and power under a given mi-
croarchitectural configuration after sampling a small por-
tion of the microarchitectural design space through simula-
tion. Performance and power are accurately predicted with
an error of about 4% on average. Joseph et al. propose non-
linear [15] regression techniques such as neural networks
for estimating CPI given a set of microarchitectural param-
eters. The technique predicts CPI with an error of 2.8% on
average. Both of these proposal are intended to reduce the
number of points in a processor design space that must be
simulated to find parameters that give good performance.

Our technique differs in that we are modeling the be-
havior of a real system rather than a simulation design
space. Simulators can be inaccurate with respect to real
systems [5, 6]. On the other hand, real hardware is a per-
fectly valid model of itself. Through careful measurement,
the performance impact of changing a single microarchi-
tectural feature such as branch prediction can be estimated
accurately using the hardware itself to model to rest of the
microarchitecture.

2.3.2 Estimating Behavior of Real Systems

Contreras and Martonosi use performance monitoring coun-
ters to develop a linear power model of the Intel XScale pro-
cessor [4]. This approach can enable a technique capable of
quickly estimating future power behavior and adapting to it
at run-time. Our technique is similar in that it uses perfor-
mance monitoring counters to develop a model of program
behavior. However, we focus on modeling the behavior of
one program at a time to get very precise information about
the change in performance in response to a small change in

the behavior of microarchitectural structures, i.e., our work
concentrates on a much finer level of granularity, and we
focus on performance instead of power.

3 Performance is Strongly Linear in Mispre-
dictions

Before attempting to apply linear regression to estimat-
ing performance from performance-related events, we must
demonstrate that there is a linear relationship. This sec-
tion explores the relationship between branch mispredic-
tions and CPI through cycle-accuracy simulation.

3.1 Potential Causes of Non-Linearity

Branch mispredictions and other performance-related
events are not necessarily independent from one another.
For example, some branch mispredictions might cause
prefetching into the cache, and others might cause cache
pollution. It is possible that, as branch prediction accuracy
changes, the nature of the prefetching or pollution changes
as well, causing the performance impact of branch mispre-
dictions to change non-linearly.

3.2 Demonstrating Linearity

Program interferometry can elicit only a small range of
branch prediction accuracies. We use simulation to extend
the range for the purpose of demonstrating linearity. We use
the MASE simulation infrastructure [17] to explore the rela-
tionship between MPKI and CPI. MASE is a cycle-accurate
simulator for the Alpha AXP instruction set that includes
several branch prediction models, including perfect branch
prediction. We configure MASE with parameters as simi-
lar as possible to those of Intel Xeon. We choose all of the
benchmarks from SPEC CPU 2000 and SPEC CPU 2006
that will compile and execute under MASE without errors.
MASE simulates 145 different branch predictor configura-
tions with varying accuracies, as well as a perfect branch
predictor. Each simulation runs for one billion instructions
from the single simpoint that best characterizes its typical
behavior [28]. We use linear regression with the results
from non-perfect branch predictors to estimate the perfor-
mance for the perfect predictor, and compute the percent
error to the performance given by perfect branch prediction.

Figure 4 shows the percent error between estimated and
actual perfect prediction for each benchmark, ordered from
lowest to highest error. The average percent difference
was 1.32%. The two worst benchmarks, 252.eon and
178.galgel, show some non-linear behavior and per-
cent differences of 6.0% and 7.5%, respectively. All other
benchmarks have percent errors below 3.0%, and 3/5 of
them have percent errors below 1%.

The figure also shows the percent error when estimat-
ing the performance of the most accurate predictor from the
academic literature: L-TAGE [27]. For most benchmarks,
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L-TAGE is highly accurate but often far from perfect. Thus,
its performance will be closer to that of the other predictors
than the performance of the perfect predictor. In this more
realistic case, the percent error is very low. The average
error is less than 0.3%, and the highest error is less than
1%. Thus, for estimating the performance of even the most
aggressive branch predictors, linear regression is highly ac-
curate.

Figure 5 illustrates the strong linear relationship between
MPKI and CPI under simulation. The two graphs show
the simulated MPKI and CPI pairs with regression lines,
with CPI normalized to the performance with perfect branch
prediction. The point (0,1) represents the MPKI and CPI
for perfect prediction. Figure 5(a) shows the results for
473.astar, 401.bzip2, and 458.sjeng. It is ap-
parent from the graph that there is a linear relationship be-
tween MPKI and CPI. Even for 458.sjeng, the bench-
mark with the fifth highest error, the percent error of 2.7%
at (0,1) is barely perceptible. Figure 5(b) shows the results
for 456.hmmer, 252.eon, and 178.galgel. These
are the three benchmarks with the worst percent errors. The
error is perceptible from the graph, but is still very small.
The error for perfect prediction is the worst case for linear
regression; in practice, as in the case of estimating the per-
formance of L-TAGE, we expect the error to be well below
1%.

We conclude that in the great majority of cases, the rela-
tionship between MPKI and CPI is strongly linear, and that
it is appropriate to estimate this relationship for a real ma-
chine using linear regression. With this knowledge we can
rely on statistical tools to quantify the impact of noise and
reduced range from real systems.

4 Program Interferometry

In this section we describe the technique of program in-
terferometry. The basic idea is to execute code under many
different reorderings, causing a wide variance in perfor-
mance due to different accidental collisions in microarchi-
tectural structures. By measuring the resulting adverse mi-
croarchitectural events, we can build a performance model
for the program and microarchitecture.

4.1 Instruction Addresses in Microarchi-
tectural Structures

Program interferometry exploits the fact that several mi-
croarchitectural structures use a hash of instruction and data
addresses. For example:

1. A 128-set instruction cache with 64 byte blocks would
likely use bits 6 through 12 of the instruction address
as the set index.

2. A branch direction predictor might index a table of
counters using a combination of branch history and
branch address bits.

3. A branch target buffer (BTB) or indirect branch predic-
tor would use lower-order bits of the branch address to
index a table of branch targets.

Sometimes addresses will accidentally collide in some
microarchitectural structure. For example, conflict misses
in the instruction cache occur when the number of blocks
mapping to a particular set exceeds the associativity of the
cache. Although this phenomenon has been studied in aca-
demic research, most compilers do not optimize to protect
against these kinds of conflicts.

Compiler writers are aware of uses of instruction ad-
dresses and write compilers to exploit these uses. For in-
stance, a common heuristic is to align the target of a branch
on a boundary divisible by the number of bytes in a fetch
block to allow the fetch beginning at that target to read the
maximum number of instruction bytes in one cycle.

4.2 A Wide Range in Performance

These accidental conflicts result in adverse microarchi-
tectural events such as branch mispredictions, cache misses,
BTB misses, etc. A particular code and data placement will
result in a particular number of accidental collisions with a
particular impact on performance. A different layout will
result in a difference impact on performance. By exploring
a wide range of layouts, we can force a wide range of ad-
verse performance events to take place and explore a wide
range of performances.

4.3 Astronomical Analogy

This work draws inspiration from astronomical optical
interferometry, where multiple telescopes at different loca-
tions collect an image of an astronomical object. These im-
ages are combined into a much more complete picture than
any one of the telescopes by itself could produce. The col-
lection of telescopes acts as one large and more powerful
telescope. In our work, each combined executable is like a
single telescope focused on an astronomical object. Each
executable has its own set of accidental collisions in mi-
croarchitectural structures, which may be compared with
atmospheric turbulence present above that telescope. By
sampling many different semantically equivalent executa-
bles, each with its own accidental collisions, we get a much
better picture of the behavior of the program in terms of
the impact of instruction-address-sensitive microarchitec-
tural structures on performance.

4.4 Causing Collisions

To generate many random but plausible code layouts, we
extend the technique of Mytkowicz et al., i.e., object-file
reordering. We compile each benchmark once, lowering it
to assembly language files. Then we produce executables
with hundreds of different code reorderings. We then re-
order procedures within assembly files, assemble the files,
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Figure 5. Linear regression lines relating mispredictions to performance for (a) highly linear benchmarks and (b) less

linear benchmarks.

and then link with different randomly-generated order of
the object files. The linker lays code out in the order in
which it is encountered on the command line, so each ran-
dom procedure and object-file ordering results in a different
code layout. In the experiments illustrated in 1.3, we use a
custom memory allocator based on DieHard [2] that essen-
tially assigns random addresses to heap-allocated object to
elicit perturbations to due conflict misses in the data caches.
We execute each resulting executable five times, collecting
performance monitoring counter information such as num-
ber of instructions committed, number of branch mispredic-
tions, number of clock cycles, etc. We take the performance
monitoring counter statistics that gave the median perfor-
mance. Details of our infrastructure are given in Section 5

4.5 Making Predictions

Once the performance monitoring counter information
has been collected, we can begin using statistical tools to
build a performance model. We use least-squares linear re-
gression to estimate the relationship between various mi-
croarchitectural events and performance outcomes. For in-
stance, for the plots in the Introduction, we found a regres-
sion line of CPI = 0.02799 ∗ MPKI + 0.51667. That is, we
use the MPKI to predict the CPI. For a range of MPKI val-
ues, we also 95% computed confidence intervals and predic-
tion intervals. A 95% confidence interval has a 95% chance
of containing the true regression line, i.e., of all the data
collected, the line that best illustrates the linear relationship
between CPI and MPKI has a 95% chance of being in that
confidence interval [20]. The larger 95% prediction interval
has a 95% chance of containing all of the observations (i.e.
CPIs) that would be encountered in a given domain (i.e. set
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of MPKIs).

Linear regression only works if we may confidently as-
sume that there is a linear relationship. Under normal cir-
cumstances CPI and MPKI do indeed have a linear relation-
ship: for each benchmark, there is an average misprediction
penalty, and each extra misprediction increases the number
of cycles by this penalty. In Section 3 we verify this as-
sumption.

4.6 When Things Go Wrong

Some benchmarks do not give a wide range in perfor-
mance under code reordering, or the range in performance
cannot be explained by events related to the instruction ad-
dress. For each type of prediction we would like to make
for a given benchmark, we first determine whether there is
significant correlation between the dependent variable and
independent variables. We use Student’s t-test with the null
hypothesis “there is no correlation,” i.e., if we cannot re-
ject the null hypothesis, then we cannot say whether there
is any correlation between the events observed [20]. For
the 23 SPEC CPU 2006 benchmarks that compiled in our
infrastructure, estimating CPI with MPKI, the null hypoth-
esis was rejected at p = 0.05 or less for 20 benchmarks. In
other words, for the great majority of the benchmarks, we
determined that there was at least a 95% chance that pro-
gram interferometry found significant correlation between
CPI and MPKI. For the other benchmarks, there was not
enough range of MPKI to predict CPI.

5 Experimental Methodology

This section describes the experimental methodology
used for this paper.

5.1 Compiler

We use the Camino compiler infrastructure [11]. This
system is a post-processor for the Gnu Compiler Collection
(GCC) version 4.2.4. C, C++, and FORTRAN programs are
compiled into assembly language, the assembly language is
instrumented by Camino, and the result is assembled and
linked into an executable. Camino features a number of
profiling passes and optimizations, but for this study we im-
plement and use only the profiling and instrumentation pass
described below. All of the executables produced for this
study target the x86 64 instruction set.

5.2 Benchmarks

We use the SPEC CPU 2006 benchmarks for this study.
Of the 29 benchmarks, 23 compile and run without errors
with our compiler infrastructure. These benchmarks are
listed in the x-axes of several graphs in later sections.

5.3 Generating Random Code Reorder-
ings

Each benchmark is compiled once from
C/C++/FORTRAN into assembly. The Camino in-
frastructure is then used to reorder procedures within files
and then assemble the files into object code files. The
resulting object files are randomly reordered and linked to
make an executable. Camino accepts a seed to a pseudo-
random number generator to generates pseudo-random but
reproducible orderings of procedures and object files.

5.4 System

We perform our study using four Dell systems with iden-
tical configurations running the 64-bit version of Ubuntu
Linux 8.04 Server and a custom compiled kernel with per-
formance monitoring counter support. Each system con-
tains two quad-core Intel Xeon E5440 processors. The In-
tel processor 5400 Series are based on 45nm Enhanced In-
tel Core Microarchitecture. Each processor has 16GB of
SDRAM and 12MB second level cache. Each core in the In-
tel Xeon E5440 processor has 32KB instruction cache and
a 32KB data cache. The branch predictor of the Intel Xeon
E5440 is not documented, but through reverse-engineering
experiments we have determined that it is likely to con-
tain a hybrid of a GAs-style branch predictor and a bimodal
branch predictor [30, 29, 8].

5.5 Running with Performance Monitor-
ing Counters

We measure a number of performance monitoring coun-
ters using the perfex command found in the PAPI perfor-
mance monitoring package [22]. The Intel Xeon processor
allows up to two user-defined microarchitectural events to
be counted simultaneously. We are interested in more than
two events, so we make multiple runs of each benchmark to
collect all of the desired counters. We group the counters
into three sets of two. For each set we run each benchmark
five times and take the measurements given by the run with
the median number of cycles. Only the microarchitectural
events that occur while user code is running are counted,
thus the impact of system events is minimized. We collect
the following statistics: 1) Retired branches mispredicted,
2) Retired x86 instructions excluding exceptions and inter-
rupts, 3) L1 instruction cache misses, 4) L2 cache misses,
and 5) Elapsed clock cycles.

From these counters, we can derive other statistics such
as cycles-per-instruction (CPI), branch mispredictions per
1000 instructions (MPKI), various cache miss rates, etc.

Although each system is configured identically and each
core has the same microarchitecture, we use the Linux
taskset command to make sure that each benchmark al-
ways runs on the same core to eliminate the effect of pos-
sible slight differences among the cores. Each run is per-
formed on an otherwise quiescent system with as many sys-



Appears in Proceedings of the 2011 International IEEE International Symposium on Workload Characterization (IISWC),pp. 172–183, Austin,
Texas, November 2011

1

tem services stopped as possible without compromising the
ability to access remote files and log in remotely. Stack
address randomization, a security feature that resists stack-
smashing attacks, is disabled to minimize performance vari-
ance not due to code placement.

5.6 Simulation

We develop several branch predictor simulators. We im-
plement these as a tool in Pin [18]. We then run pin on the
same executables that we run natively. Our Pin tool instru-
ments each branch with a callback to code that simulates
a set of branch predictors. The tool counts the number of
branches executed and the number of branches mispredicted
for each predictor simulated.

5.7 Timing Concerns

Many of the SPEC CPU 2006 benchmarks run for over
30 minutes on the first ref input. For this study, we have
executed each of the 23 benchmarks at least 100 times on a
set of 4 computers. To facilitate this study, we instrument
the benchmarks such that under native execution they run
for up to approximately two minutes each. To do this, we
implement a two-pass profiling and instrumentation pass in
the Camino compiler. The first pass inserts instrumenta-
tion that collects information about each procedure. The
benchmark is allowed to run for two minutes. Then the col-
lected information is analyzed to find a procedure with a
low dynamic count that is also executed near the end of the
two-minute run. The second pass of the compiler instru-
ments only that procedure such that when it is executed the
same number of times as before, the program is ended. The
first instrumentation has low overhead, thus the resulting
executable runs for approximately two minutes. The sec-
ond instrumentation affects a low-frequency procedure and
takes two x86 instructions, thus it has negligible overhead.
All of the executables in this study are compiled from this
second instrumentation, or are from benchmarks that natu-
rally run for less than two minutes. Because we are counting
procedures and not elapsed time, each run of a benchmark
executes the same number of user instructions.

5.8 Statistics

We make use of some statistical techniques in this study.
We briefly review these techniques:

1. Correlation coefficients. Also known as Pearson’s r,
correlation coefficients range from -1.0 to 1.0 and mea-
sure the correlation between two random variables. A
higher magnitude for r means a higher degree of corre-
lation. A negative value of r means that two variables
are negatively correlated. For instance, we find that
the MPKI and CPI of 473.astar have a sample cor-
relation coefficient of 0.80 for 100 random orderings.
Thus, MPKI and CPI have a rather strong correlation

for this benchmark, but other factors also affect perfor-
mance.

2. Coefficient of determination. The sample coefficient
of determination, computed as r2 where r is the corre-
lation coefficient, gives the fraction of dependence of
a given observation on an underlying factor. For in-
stance, the coefficient of determination between MPKI
and CPI for 473.astar is 0.65. Thus, 65% of the vari-
ability in CPI observed in astar can be attributed to
branch mispredictions.

3. Linear regression. We develop performance estimators
using linear least-squares regression that finds a best-fit
equation of a line between two variables, e.g. between
MPKI and CPI. We also use multi-linear least-squares
regression to produce an estimator for performance in
terms of several observed variables.

4. Hypothesis testing. We use Student’s t-test for hy-
pothesis testing. We formulate a null hypothesis, e.g.
“there is no correlation between CPI and MPKI” then
use hypothesis testing to see if the null hypothesis can
be rejected. We consider a result significant if the null
hypothesis can be rejected with p = 0.05, i.e., the
probability that the null hypothesis is not true is 95%.
Student’s t-test gives a meaningful result in the pres-
ence of normally distributed data. The observed CPI
of most of the benchmarks roughly follow a normal
distribution, thus in most cases hypothesis testing can
give us additional confidence in our results.

5. Confidence intervals and prediction intervals. For the
linear regression lines, we plot 95% confidence inter-
vals and 95% prediction intervals. A 95% confidence
interval has a 95% chance of containing the true re-
gression line, i.e., of all the data collected, the line that
best illustrates the linear relationship between CPI and
MPKI has a 95% chance of being in that confidence
interval. The larger 95% prediction interval has a 95%
chance of containing all of the observations (i.e. CPIs)
that would be encountered in a given domain (i.e. set
of MPKIs).

6 Estimating Performance by Counting Mi-
croarchitectural Events

This section shows the potential of program interferom-
etry to predict performance. We develop and evaluate re-
gression models for a number of benchmarks using several
characteristics of program behavior such as branch predic-
tion and cache misses.

6.1 Assigning Blame

Code reordering can elicit a wide range of CPIs for our
benchmarks. Here, we determine how much blame to place
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on certain microarchitectural structures for the performance
variance. We focus on what we believe to be the microarchi-
tectural events most likely to be affected by code placement:
1) Branch mispredictions. Conditional branch predictors
use the address of an instruction to index one or more ta-
bles. Branches may conflict with one another in these tables
leading to aliasing [21] causing branch prediction accuracy
to suffer. 2) L1 instruction cache misses. The Intel Xeon
Core has a 32KB 8-way set associative instruction cache. If
nine or more frequently used blocks map to the same set,
there will be frequent cache misses. 3) L2 cache misses.

We also use multi-linear regression to develop a com-
bined model that takes into account all three of these events
in the hope that a combined model will be more accurate
than using one of the observations by itself.

Using r2, the coefficient of determination, we can deter-
mine what portion of performance is due to a particular mi-
croarchitectural event. Figure 6 shows the cumulative r2 for
each of the three events, as well as r2 for the combined re-
gression model. On average, 27% of the CPI difference be-
tween different code reorderings can be explained by branch
misprediction.Some benchmarks are more sensitive; for in-
stance, 84.2% of the CPI variance of 462.libquantum
is due to branch mispredictions.

The average bar for the combined model does not reach
exactly the same height as that of the sum of the three mea-
surements. This is because the three measurements are not
altogether independent of one another; for instance, in some
cases, a branch misprediction might cause an L1 cache
event, sometimes causing cache pollution and other times
causing prefetching. It must be emphasized that the corre-
lation we report between microarchitectural events and per-
formance is with respect to code ordering. Other changes to
the execution environment would show other correlations.

6.2 Establishing Statistical Significance

Clearly many benchmarks’ performance show correla-
tion with microarchitectural events. However, we must ask
whether the correlation is statistically significant. We use
Student’s t-test to determine statistical significance. For
each of the three measurements as well as the combined
model we attempt to reject the null hypothesis that there is
no correlation. The value p ≤ 0.05 for the t-test is tradi-
tionally accepted as proof of statistical significance. For the
combined model we use the F-test p ≤ 0.05 instead of the
t-test, as the t-test is appropriate for single-variable linear
regression models.

6.3 Number of Samples

For some benchmarks, the effect of code reordering on
performance is harder to detect than for others. To establish
statistical significance for as many benchmarks as possible,
we sample a number of code reorderings in multiples of 100
until the benchmark is able to reject the null hypothesis, or

until by inspection we determine that the benchmark is un-
likely to reject the null hypothesis with a much larger num-
ber of samples. Most benchmarks reject the null hypothesis
within the first 100 samples. Some take 200 samples, and a
few require 300 samples. We do not discard any data when
building or testing our regression models: we use the data
from each reordering.

6.4 Blame the Branch Predictor

Of the 23 benchmarks, 20 show significant correlation
between CPI and branch prediction. No other measurement
consistently shows statistically significant correlation with
CPI. The combined estimator does not increase the num-
ber of benchmarks showing significant correlation, and in-
deed two benchmarks that show significant linear correla-
tion with MPKI through the t-test fail to reject the null hy-
pothesis for the F-test with the combined model and mul-
tiple linear regression. Thus, in this paper we focus our
attention on branch prediction.

6.5 Other Measurements

The code reordering methodology for program interfer-
ometry clearly elicits a large impact on branch prediction.
As demonstrated in 1.3, a randomizing memory allocator
can manipulate program behavior to elicit variance in the
memory system. In future work we will study the impact
of other events dependent on code and data placement. For
instance, the number and type of x86 instructions in a fetch
block has a large impact on the efficiency of decoding, but
at this point it is not clear how to measure that impact.

6.6 A Linear Performance Model

We use least-squares linear regression to derive branch
prediction performance models for the Average Model and
each of the benchmarks that passed the hypothesis testing
phase. For each benchmark, we find the best fit of the ob-
served data to a regression line y = mx + b where y is
CPI and x is MPKI. The slope (m) gives the cost for perfor-
mance of one additional MPKI and the y-intercept (b) gives
the predicted average CPI for perfect branch prediction, i.e.
0 MPKI.

We also derive 95% confidence intervals and 95% pre-
diction intervals for the regression lines. Figure 2 in the
Introduction shows the regression line and intervals for
400.perlbench and 471.omnetpp. The confidence
interval has a 95% chance of containing the true regression
line for the data observed. The much wider prediction in-
terval has a 95% chance of containing future observations.
Thus, we can be 95% sure that the CPI of 471.omnetpp
with perfect branch prediction would be between 1.86 and
1.94. Table 1 shows the slopes and y-intercepts found by
linear regression for each benchmark. It also shows the high
and low prediction intervals for perfect prediction.
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Figure 6. Coefficient of determination showing how much of each type of event accounts for overall performance.
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Figure 7. MPKI of real and simulated branch predictors.

Benchmark Slope y-intercept Low High

400.perlbench 0.028 0.517 0.488 0.546

401.bzip2 0.017 0.596 0.485 0.708

403.gcc 0.028 1.839 1.796 1.882

416.gamess 0.041 0.548 0.519 0.577

429.mcf 0.019 4.675 4.531 4.819

434.zeusmp 0.373 0.863 0.813 0.913

435.gromacs 0.020 0.811 0.795 0.827

444.namd 0.033 0.620 0.551 0.689

445.gobmk 0.019 0.643 0.515 0.771

450.soplex 0.016 1.822 1.741 1.904

454.calculix 0.023 0.461 0.460 0.463

456.hmmer 0.041 0.203 0.032 0.375

459.GemsFDTD 0.516 1.229 1.189 1.269

462.libquantum 0.022 1.432 1.431 1.433

464.h264ref 0.032 0.466 0.451 0.481

465.tonto 0.027 0.632 0.617 0.647

471.omnetpp 0.036 1.901 1.860 1.941

473.astar 0.022 2.373 2.289 2.456

482.sphinx3 0.036 0.916 0.798 1.034

483.xalancbmk 0.029 1.914 1.881 1.947

Table 1. Least-squares regression model relating

branch prediction to performance. Shows high and

low prediction intervals for perfect prediction i.e. 0

MPKI.

7 Estimating Branch Prediction Perfor-
mance

This section presents results of simulation experiments
using program interferometry to predict the performance
impact of changes to the branch predictor. We use the
performance model derived with program interferometry to
predict the performance given by several predictors.

7.1 Branch Prediction Simulation

The Pin tool instruments each branch with a callback to
code that simulates a set of branch predictors. The tool
counts the number of branches executed and the number of
branches mispredicted for each predictor simulated.

7.2 Impact of Mispredictions on Perfor-
mance

We explore only those benchmarks that were demon-
strated in the previous section to be suitable for program in-
terferometry. Figure 7 shows the average MPKI for various
branch predictors simulated with Pin as well as the average
MPKI from the real Intel Xeon branch predictor. These data
are averaged over 100 different pseudo-randomly generated
code reorderings. For each benchmark, these are the same
first 100 reorderings used for the performance monitoring
counter measurements. Pin runs only once for each reorder-
ing; since we control the initial conditions of the simulator
and Pin is not affected by system-level events, there is no
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variance in the simulation result. We simulate GAs branch
predictors [30] ranging in size from 2KB to 16KB to ex-
plore the effect of decreasing or increasing the hardware
budget for the branch predictor. The average MPKI over all
benchmarks and code reorderings for the real branch pre-
dictor is 6.306, compared with 5.729 for a simulated 8KB
GAs predictor. A 16KB simulated GAs branch predictor
yields 5.542 MPKI.

Figure 8 shows the predicted CPI for the various branch
predictors as well as a perfect (0 MPKI) predictor using the
performance model derived in the previous section. Each
point in the graph shows a marker superimposed on error
bars giving the 95% prediction interval for the benchmark’s
regression model. For the real branch predictor, the error
bars indicate the tighter confidence interval since the data
are observations and not predictions. Most of the bench-
marks have reasonable prediction intervals even for the per-
fect predictor.

7.2.1 Perfect Branch Prediction

The real branch predictor yields an average CPI of 1.387 ±
0.012. The estimated CPI for perfect prediction is 1.223 ±
0.061. Thus, the performance improvement going from the
current predictor to perfect prediction would be between 7%
and 16%, with an average of 11.8%.

7.2.2 Academic Predictor

The L-TAGE branch predictor is currently the most accurate
branch predictor in the academic literature [27]. We simu-
late this predictor using Pin and estimate the CPI yielded
using our regression models. On average, L-TAGE yields
3.995 MPKI, compared with 6.306 MPKI for the real In-
tel predictor, an improvement of 37%. Our regression
model estimates that this predictor would yield an aver-
age 1.320 ± 0.03 CPI, an improvement of between 2.4% to
6.8%, with an average of 4.8%. Several different sized GAs
predictors are also shown. GAs predictors are simple global
predictors uses in current microprocessors. The accuracy of
GAs improves as its size grows.

7.2.3 Practical Concerns

We do not suggest that Intel should or should not replace
their predictor with some other predictor. There are other
concerns such as access latency to the prediction table that
would guide such a decision. Our tool allows exploring
the performance impact of hypothetical predictors before
the decision is taken to spend design effort to accommodate
them in a microarchitecture. For instance, it is possible that
Intel could spare an extra 24KB for the L-TAGE branch pre-
dictor, but that the access latency and design complexity for
such a structure might exceed the time allowed for branch
prediction resulting in an unacceptable pipeline bubble. The
design effort to include latency mitigating techniques [14]
might not be worth the improvement in performance or de-
lay in time to market. Nevertheless, our tool allows a quick

way of evaluating many potential branch predictors for a
given microarchitecture.

8 Conclusion

We have presented program interferometry, a technique
for developing a performance model for programs running
on a given microarchitecture based on the effect of code
and data placement on certain microarchitectural structures.
We have shown that program interferometry in many cases
can give tight bounds on performance estimates for differ-
ent branch prediction accuracies, allowing accurate evalu-
ation of new branch predictors for existing microarchitec-
tures without implementing a cycle-accurate simulator. In
future work we will extend this technique to other struc-
tures.
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[13] Daniel A. Jiménez. Code placement for improving dynamic branch
prediction accuracy. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Langu age Design and Implementation
(PLDI), pages 107–116, June 2005.



Appears in Proceedings of the 2011 International IEEE International Symposium on Workload Characterization (IISWC),pp. 172–183, Austin,
Texas, November 2011

1

400.perlbench

401.bzip2
403.gcc
416.gam

ess
429.m

cf
434.zeusm

p
435.grom

acs
444.nam

d
445.gobm

k
450.soplex
454.calculix
456.hm

m
er

459.G
em

sFD
T
D

462.libquantum

464.h264ref
465.tonto
471.om

netpp
473.astar
482.sphinx3
483.xalancbm

k

A
rithm

etic M
ean

Benchmark

0

1

2

3

4

5
C

P
I

Simulated 4K Bimodal

Simulated 2KB GAs

Real Intel Xeon

 Simulated 4KB GAs

Simulated 8KB GAs

Simulated 16KB GAs

L-TAGE

Perfect Predictor

Figure 8. Predicted CPI of real and simulated branch predictors.
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