
Insertion Policy Selection Using Decision Tree Analysis

Samira Khan∗, Daniel A. Jiménez∗†

∗Department of Computer Science

University of Texas at San Antonio

†Barcelona Supercomputing Center

skhan@cs.utsa.edu, djimenez@acm.org

Abstract— The last-level cache (LLC) mitigates the im-
pact of long memory access latencies in today’s microarchi-
tectures. The insertion policy in the LLC has a significant
impact on cache efficiency. A fixed insertion policy can
allow useless blocks to remain in the cache longer than
necessary, resulting in inefficiency. We introduce insertion
policy selection using Decision Tree Analysis (DTA). The
technique requires minimal hardware modification over the
least-recently-used (LRU) replacement policy. This policy
uses the fact that the LLC filters temporal locality. Many
of the lines brought to the cache are never accessed again.
Even if they are reaccessed they do not experience bursts,
but rather they are reused when they are near to the
LRU position in the LRU stack. We use decision tree
analysis of multi-set-dueling to choose the optimal insertion
position in the LRU stack. Inserting in this position, zero
reuse lines minimize their dead time while the non-zero
reuse lines remain in the cache long enough to be reused
and avoid a miss. For a 1MB 16 way set-associative last
level cache in a single core processor, our policy uses only
2,069 additional bits over the LRU replacement policy. On
average it reduces misses by 5.16% and achieves 7.19%
IPC improvement over LRU.

I. INTRODUCTION

A cache insertion policy dictates where a new block
will be placed in a cache set. The insertion policy
commonly used with the least-recently-used (LRU) re-
placement policy is to insert the new block into the
top of the LRU stack, designated the most-recently-used
(MRU) position. However, this is not necessarily the best
place for all workloads. For example, if the block will
not be used again, it will have to make its way down
the LRU stack before it can be evicted. Thus, it makes
sense to adaptively choose an insertion policy based on
observed program behavior.

We introduce insertion policy selection using Decision
Tree Analysis (DTA). Our policy requires little change in
the least-recently-used (LRU) replacement policy hard-
ware. For a single core 1MB last-level cache (LLC), this
scheme requires only 2,069 additional bits over LRU
replacement. We use LRU eviction for choosing the
victim block. However, we insert incoming blocks at
a specific position in the LRU stack learned by decision
tree analysis from multi-set-dueling.

The LRU replacement policy inserts an incoming
block in the MRU position. Because of temporal locality
this block might be accessed again while it moves from
the MRU position towards the LRU position. However,
since the access stream is filtered by L1 and L2 caches,
the LLC might not see this temporal locality. This is
why LRU insertion has been proposed [1] for the last
level cache. In that work, the cache learns whether it
is best to insert into the LRU or MRU position. The
two candidate insertion policies each have a leader set

that always used that particular policy. The leader sets
engage in set-dueling where the cache keeps track of
which set is responsible for fewer misses. The rest of
the cache sets are follower sets that use whichever of
the policies has yielded the best performance.

However, that policy causes misses for blocks that
were evicted but otherwise would have been accessed in
some position nearer to the LRU position. Our insertion
policy selects the appropriate insertion position where
the workload can reduce dead time of zero reuse blocks,
i.e., blocks that are never used again. It also retains the
hits of non-zero reuse blocks by keeping a block long
enough so that it is not evicted before its second access.
We use decision tree analysis of multi-set-dueling to
determine the optimal insertion position dynamically.
Instead of having one leader set for each insertion
position, our multi-set-dueling uses an adaptive insertion
policy in the leader sets. Leader sets dynamically choose
the insertion position based on the decision taken in the
previous level of the decision tree. Thus, one leader set
can implement many insertion policies which makes the
number of policies that can be used in multi-set-dueling
scalable.

II. INSERTION POLICY SELECTION USING DECISION

TREE ANALYSIS

A. Motivation

The motivation behind this work is the filtered tem-
poral locality in the last level cache. Due to hits in the
L1 and L2 caches, the access stream in the LLC does
not have much temporal locality. A large portion of the
blocks brought to the cache are never accessed again.

Appears in Proceedings of the 28th IEEE International Conference on Computer Design (ICCD 2010), October 2010

1

Even if these blocks are reused they do not experience
bursts and are accessed when they are nearer to the LRU
position. Fig 1 shows the percentage of blocks brought
to the LLC that are never accessed again. Fig 2 shows
that only a small percentage of the hits occur when
the blocks are near the MRU position. Most of the hits
occur while the blocks move toward the end of the LRU
stack. Without using any storage-intensive algorithm
to accurately identify the zero reuse blocks, we can
eliminate these blocks just by inserting them in the LRU
position [1]. However, this will also evict blocks that are
reused when they travel down the LRU stack. There is
an optimal position in the LRU stack where inserting the
blocks, zero reuse blocks will be evicted earlier while
non-zero reuse blocks will remain in the cache avoiding
a miss. We propose to use decision tree analysis to
determine this optimal insertion position. This analysis is
based on multiple set dueling [2]. However, we propose
to use adaptive insertion policy for the leader sets. This
reduces the number of sets in each leader set group.
It also minimizes the negative effect of leader sets that
implement losing insertion policies.

400.perlbench

401.bzip2

429.m
cf

434.zeusm
p

435.grom
acs

436.cactusA
D

M

445.gobm
k

450.soplex

456.hm
m

er

464.h264ref

471.om
netpp

473.astar

482.sphinx3

483.xalancbm
k

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

0

20

40

60

80

100

%
 o

f
li

n
es

Fig. 1. Percentage of zero reuse blocks

400.perlbench

401.bzip2

429.m
cf

434.zeusm
p

435.grom
acs

436.cactusA
D

M

445.gobm
k

450.soplex

456.hm
m

er

464.h264ref

471.om
netpp

473.astar

482.sphinx3

483.xalancbm
k

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

0

20

40

60

80

100

H
it

s

pos 12-15

pos 8-11

pos 4-7

pos 0-3

Fig. 2. Hit Position, 0 is MRU and 15 is the LRU position

B. Decision Tree Analysis

Our scheme considers five different insertion positions
in the LRU stack. It divides the LRU stack into four

equal segments. The default placement is MRU. DIP [1]
considers LRU as an insertion position. We consider
the middle position of the LRU stack and other two
equidistant positions from the middle position. These
two positions are named near LRU position and near

MRU position. Figure 3 shows these five positions in the
LRU stack. It also shows how the appropriate insertion
position is selected using the decision tree. The insertion
position is chosen after a few rounds of competition as
illustrated in Figure 3.

C. Adaptive policy in Leader Sets for Multi Set Dueling

Multi-set-dueling was proposed for multi-threaded
workloads [3]. Each application has its own counter
and it decides to insert in either LRU position or MRU
position depending on that counter value. Multi-core
multi-policy set-dueling was subsequently proposed [2].
In each core there are leader sets for each of the
competing policies grouped into two. In the first round
two policies in one group duel with each other. The
winner policy of the first round are deployed in the
partial follower sets (φ sets). The second level winner is
then determined from the duel of these φ sets. Thus, the
policy selection becomes a tournament where at each
round half of the policies are eliminated. In the final
round there are only two policies left and the winner
policy is followed by all the other follower sets.

The problem with this approach is number of leader
sets goes up with the number of policies being con-
sidered for multi set dueling. When many policies are
dueling in a tournament manner, even if we can choose
the best performing policy for the rest of the follower
sets, all but one leader set continue using the wrong pol-
icy, potentially hurting performance significantly when
the number of leader set increases. Another problem
is the presence of partial follower sets. These sets are
redundant as there are leader sets already present in the
cache using that specific winner policy.

We have used the idea of multi set dueling in a single-
core context. However, the problems of this scheme
are solved by using leader set that can dynamically
select specific insertion policy. We also remove the
partial follower sets. Figure 4 shows the difference in
two schemes. The first group of leader set is defined
according to previous work [2]. First round is between
policy pa, pb and pc, pd and pe, p f and ph, pg. The
winner is deployed in partial follower sets φab, φcd , φe f
and φgh. These sets duel in pairs and the tournament goes
to semi-final and final round (not shown in the figure).

We show our leader set with adaptive policy in the
second group of the leader sets. Here we have only three
kinds of leader sets. The first two leader sets implement
policy pa and pb. The last set implements pα . Depending
on which set is winning, we can dynamically choose
among the policies pc, pd , pe, p f , ph and pg. In the
next section we describe how we use this idea in our
insertion position selection.

2

LRU pos MRU posmiddle pos

near LRU pos near MRU pos

set dueling between
middle and MRU pos

set dueling betweenset dueling between
LRU and middle pos near MRU and MRU pos

MRU pos winnermiddle pos winner

LRU pos
winner

middle pos
winner

MRU posnear MRU pos
winner winner

insert pos

LRU

set dueling between
near LRU and middle pos

near LRU pos
winner

middle pos
winner

insert pos

near LRU

insert pos

middle

insert pos insert pos

near MRU MRU

= assoc/2

= middlepos+assoc/4 = middlepos−assoc/4

Fig. 3. Decision Tree Analysis

m
u

lti set d
u

elin
g

 sch
em

e
lead

er sets in
 cu

rren
t

lead
er sets in

 ad
ap

tiv
e

m
u

lti set d
u

elin
g

 sch
em

e

all sets in LLC

pb

φab

pd

φcd

pe

p f

φe f

pg

ph

φgh

+1

−1

−1

−1

−1

−1

pc

−1, if pa wins

+1, if pb wins

+1

+1

pa

pa

pb

pα

−1

+1

+1

+1

+1

−1

+1

pselab

pselcd

psele f

pselgh

psel1

psel2

psel2

psel1

Fig. 4. Reduction in Leader sets with adaptive policy

D. Insertion Policy Selection

According to previous work [2] we should have five
leader sets for five insertion positions and two partial
follower sets for 1st round winner. Instead we use
only three leader sets. The first round duel is between
the MRU position and middle position. Counter psel1
determines the winner in this round. If MRU position is
the winner, the last leader set inserts in the near MRU
position. The counter psel2 is responsible for the second
level winner. But if middle position was the winner in
the first round, last leader set inserts in the LRU position.

Thus, the second level duel takes place between middle
position and LRU position. If middle position is still the
winner, the last leader set starts inserting in near LRU
position. We use a one bit counter s to keep track of the
policy used in this set so that follower sets know which
policy to use. Figure 5 shows how follower sets decide
which policy is winning.

E. Storage Requirement

We have four kind of sets in our scheme; leader set
inserting at MRU position and middle position, adaptive
leader set and follower set. This requires extra 2 bits per

3

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

Insert in middle position

Insert in MRU position

Insert in near MRU position

Insert in LRU position

Insert in near LRU position

psel2 (10 bits)

psel1 (10 bits) s (1 bit)

Fig. 5. Selecting insertion policy

TABLE I

STORAGE FOR 1MB 16 WAY CACHE

Parameter Storage

set type 2 bits ∗ 1024 sets

two counters (psel) 20 bits

one counter (s) 1 bit

Total 2069 bits

set. Then we need two counters (psel1 and psel2) and
one extra bit for s to keep track of policies in adaptive
leader set. Table I shows the space requirement for a
1MB 16-way last level cache.

III. SIMULATION METHODOLOGY

We have simulated our scheme with CMP$im [4].
It simulates a simple multiple issue out-of-order core.
Table II shows the configuration of the simulated ma-
chine. We have used SPEC CPU 2006 benchmarks.
We have chosen 14 memory intensive benchmarks
that achieve more than 1% instructions-per-cycle (IPC)

TABLE II

CONFIGURATION

Parameter Configuration

Issue width 4

Reorder Buffer 128 entry

Branch Prediction perfect

L1 I-Cache 32KB, 4 way LRU,

64B blocks, 1 cycle hit latency

L1 D-Cache 32KB, 8 way LRU,

64B blocks, 1 cycle hit latency

L2 Cache 256 MB, 8 way LRU,

64B blocks, 10 cycle hit latency

L3 Cache 1 MB, 16 way,

64B blocks, 30 cycle hit latency

Main Memory 200 cycle

TABLE III

INSERTION POSITION SELECTED

Benchmark Position Benchmark Position

400.perlbench middle 450.soplex middle

401.bzip2 middle 456.hmmer nearLRU

429.mcf nearLRU 464.h264ref MRU

434.zeusmp MRU 471.omnetpp middle

435.gromacs middle 473.astar MRU

436.cactusADM middle 482.sphinx3 LRU

445.gobmk nearLRU 483.xalancbmk LRU

speedup when the LLC is increased from 1MB to 2MB.
We have fast forwarded the benchmarks for 40 billion
instructions and then run the simulation for 100 million
instructions.

IV. RESULT

In this section we show the results of our scheme.
Table III shows the insertion position selected by our
decision tree analysis for each of the benchmark. Fig

M
RU

nearM
RU

m
iddle

nearLRU

LRU

0

5

10

15

20

25

30

35

40

%
 o

f
B

en
ch

m
a

rk
s

Fig. 6. Percentage of benchmarks at each insertion position

6 shows the percentage of benchmarks choosing each
insertion position. Among 29 SPEC CPU2006 bench-
marks, DTA chooses MRU insertion position in 5
benchmarks, middle position in 10 benchmarks, near
LRU position in 3 benchmarks and LRU position in 11
benchmarks.

Fig 7 shows the percentage reduction in misses-
per-1000-instructions (MPKI) of our scheme and DIP
over LRU replacement policy. On average our policy
reduces MPKI by 5.16% over LRU. On average DIP
reduces MPKI by 1.8%. Harmonic mean IPC for DTA
is 0.850399 which is 7.19% IPC improvement over LRU
and 4.12% IPC improvement over DIP. Fig 8 shows
the speedup of the memory intensive benchmarks. The
geometric mean speedup of our scheme over LRU is
3.57% where DIP achieves only 1.3% speedup over
LRU. DTA performs poorly in 450.soplex, 471.omentpp
and 473.astar. The reason is the workloads do not show
uniform access across the sets. 16 dedicated sets are

4

400.perlbench

401.bzip2

429.m
cf

434.zeusm
p

435.grom
acs

436.cactusA
D

M

445.gobm
k

450.soplex

456.hm
m

er

464.h264ref

471.om
netpp

473.astar

482.sphinx3

483.xalancbm
k

A
m

ean

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

-3

0

3

6

9

12

15

%
 R

ed
u

ct
io

n
 i

n
 M

P
K

I

DIP

DTA

20.3 24.7

Fig. 7. MPKI reduction compared to LRU

400.perlbench

401.bzip2

429.m
cf

434.zeusm
p

435.grom
acs

436.cactusA
D

M

445.gobm
k

450.soplex

456.hm
m

er

464.h264ref

471.om
netpp

473.astar

482.sphinx3

483.xalancbm
k

G
m

ean

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 L
R

U DIP

DTA

1.12 1.09 1.17 1.24

Fig. 8. Speedup over LRU

not enough for these benchmarks. For example if we
increase the number of dedicated sets from 16 to 32,
DTA chooses the MRU position for 450.soplex and its
performance becomes similar to baseline.

It should be noted that our scheme can detect phase
changes in the workloads. It has two static leader sets
that always use the same specific insertion positions.
Only the adaptive leader set chooses the insertion posi-
tion dynamically. The static sets detect the phase change
and adaptive set chooses the insertion position accord-
ingly. Our benchmarks ran only 100 million instructions
and do not experience any phase change.

Fig 9 shows speedup of our scheme over LRU for
all SPEC CPU 2006 benchmarks. It achieves 1.7% IPC
improvement over the baseline. We can see that DTA
does not significantly slow down any of the non memory
intensive benchmarks.

V. COMPARISON WITH A DEAD BLOCK PREDICTOR

REPLACEMENT

In this section we compare our result with Counting
Based Dead Block Replacement (CDBR) [5]. A dead
block predictor can accurately identify zero reuse lines
and replace them instead of the LRU block. However,

such a predictor requires a significant hardware budget.
The counting based predictor needs to keep track of
program counter (PC), access count, past access count
and the confidence of the prediction for each cache
line [5]. It also uses a 256× 256 entry predictor table
where each entry stores the number of access and the
confidence. For a 1MB cache it uses 74KB extra storage
where our scheme needs only 2,069 bits. That is, our
technique requires far less than 1% of the storage of a
dead block predictor.

Figure 10 shows the speedup of DTA over counting
based dead block replacement. On average we achieve
1.45% speedup over CDBR. The reason our scheme
performs better on average is, although the dead block
predictor learns zero reuse lines, these lines do not come
back to the cache frequently. So even if the dead block
predictor cannot identify those lines, by contrast, our
scheme inserts them in near LRU position and gets rid
of them quickly.

VI. RELATED WORK

Dynamic Insertion Policy (DIP) was proposed in by
Qureshi et al. [1]. This work also proposed set-dueling.
An adaptive insertion policy has also been proposed

5

400.perlbench

401.bzip2

403.gcc

410.bw
aves

416.gam
ess

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D

M

437.leslie3d

444.nam
d

445.gobm
k

447.dealII

450.soplex

453.povray

454.calculix

456.hm
m

er

458.sjeng

459.G
em

sFD
TD

462.libquantum

464.h264ref

465.tonto

470.lbm

471.om
netpp

473.astar

482.sphinx3

481.w
rf

483.xalancbm
k

gm
ean

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

sp
ee

d
u

p
 o

v
er

 L
R

U

1.12 1.24

Fig. 9. Speedup over LRU replacement policy

400.perlbench

401.bzip2

429.m
cf

434.zeusm
p

435.grom
acs

436.cactusA
D

M

445.gobm
k

450.soplex

456.hm
m

er

464.h264ref

471.om
netpp

473.astar

482.sphinx3

483.xalancbm
k

G
m

ean

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

sp
ee

d
u

p
 o

v
er

 C
D

B
R DTA

Fig. 10. Speedup of over Counting Based Dead Replacement

for multi-threaded workloads [3]. Depending on the
characteristic of the workloads, one thread may insert at
the LRU position while some other thread may insert in
the MRU position of the shared cache. Multi-set-dueling
and different insertion positions for multithreaded work-
loads has been proposed by [6], [2]. Other replacement
policies include dead block predictors [5], [7], [8].
Some works use reuse count for improving replacement
policy [9], [10]. Mainak [11] proposes to manage cache
set as a fill stack as opposed to the traditional access
recency stack.

VII. CONCLUSION

The selection of insertion policy with decision tree
analysis of multi-set dueling is a simple efficient tech-
nique that can be implemented in hardware with minimal
change and minimal additional hardware cost. Neverthe-
less, this technique captures the distinct behavior of last
level cache. Our scalable multi-set dueling ensures that
we can use only a few leader sets but still can choose
the best policy from a pool of options.

VIII. ACKNOWLEDGEMENTS

Daniel A. Jiménez and Samira M. Khan are supported
by grants from NSF: CCF-0931874 and CRI-0751138.

REFERENCES

[1] M. K.Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr, , and J. Emer,
“Adaptive insertion policies for high-performance caching,” in In

the International Symposium on Computer Architecture (ISCA),
June 2007.

[2] G. H. Loh, “Extending the effectiveness of 3d-stacked dram
caches with an adaptive multi-queue policy,” in International

Symposium on Microarchitecture (MICRO), December 2009.
[3] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. S.

Jr., and J. Emer, “Adaptive insertion policies for managing
shared caches,” in In the International Conference on Parallel

Architectures and Compiler Techniques (PACT), October 2008.
[4] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A pin-

based on-the-fly multi-core cache simulator,” in Fourth Annual

Workshop on Modeling, Benchmarking and Simulation (MoBS),
Beijing, China, June 2008, pp. 28–36.

[5] M. Kharbutli and Y. Solihin, “Counter-based cache replacement
algorithms,” in International Conference on Computer Design,
San Jose, USA, October 2005, pp. 61–68.

[6] Y. Xie and G. H. Loh, “Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches,” in International Sym-

posium on Computer Architecture (ISCA), June 2009.
[7] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts:

A new approach for eliminating dead blocks and increasing
cache efficiency,” in MICRO 41: Proceedings of the 41st an-

nual IEEE/ACM International Symposium on Microarchitecture,
November 2008.

[8] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction and
dead-block correlating prefetchers,” in ISCA ’01: Proceedings of

the 28th annual international symposium on Computer architec-

ture, June 2001.
[9] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replace-

ment based on reuse-distance prediction,” in International Con-

ference on Computer Design, 2007, pp. 245–250.
[10] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-

managed cache design,” in Proceedings of the 27th annual

international symposium on Computer architecture, 2000, pp.
107–116.

[11] M. Chaudhuri, “Pseudo-lifo: the foundation of a new family
of replacement policies for last-level caches,” in Proceedings

of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, New York, NY, USA, 2009, pp. 401–412.

6

