

Improving Multi-Core Performance Using Mixed-Cell Cache Architecture

Samira M. Khan

1,2
, Alaa R. Alameldeen

1
, Chris Wilkerson

1
, Jaydeep Kulkarni

1
, Daniel A. Jiménez

3

1
Intel Labs

2
Carnegie Mellon University

3
 Texas A&M University

Abstract

Many enterprise and mobile systems must operate

within strict power constraints. These systems

dynamically trade off performance and power to

maximize performance while keeping power within

specified limits. In multi-core systems, maximizing the

number of active cores within a strict power budget

requires minimizing the power per core. Lowering core

voltage dramatically reduces power, but compromises

cache reliability. Mixed-cell cache architectures, where

part of the cache is designed with larger, more robust

cells, enable caches to operate reliably at low voltage

while minimizing the added cost of larger cells. But

mixed-cell caches suffer from poor low-voltage

scalability since caches can only use robust cells at low

voltage, sacrificing up to 75% of cache capacity. Such

capacity reduction strains shared cache resources,

leading to significant performance losses.

In this paper, we propose a mixed-cell architecture

that improves multi-core performance by allowing the

use of both robust and non-robust cells. Our

mechanisms store modified data only in robust lines by

modifying the cache replacement policy and handling

writes to non-robust lines. For a multi-core processor,

our best mechanism improves performance by 17%,

and reduces dynamic power in the L1 data cache by

50% over prior mixed-cell proposals.

1. Introduction

Power continues to be an important design

constraint in modern microprocessors. In mobile

systems, thermal design power (TDP) plays a key role

in determining the form factor of the device. Likewise,

data centers are built with fixed power and cooling

capabilities. Improving performance within a given

power constraint (MIPS/watt) yields direct economic

benefits by increasing the compute capability supported

by a fixed investment in datacenter infrastructure.

Designers have responded to continuing demand

for performance within power constraints with

traditional improvements in core performance and

efficiency, but also by increasing the number of cores

on a die. Today, state of the art server processors may

contain tens of cores; and even mobile products,

including tablets and smart phones, have more than one

core. Increasing core counts, in the context of fixed

power budgets, is a key challenge for future systems.

 Today’s performance oriented systems meet

specific power targets by varying the voltage of active

cores as the number of active cores changes [9]. As

cores become inactive, the voltage of the remaining

cores rises to maximize performance. As the number of

active cores increases, the voltage of all cores will drop

to avoid exceeding power limits. Changing the voltage

in response to changes in core activity allows the power

budget of these systems to remain constant regardless

of the number of active cores. In fact, a given power

budget can support more cores as long as the power

consumed per core is reduced via microarchitectural

improvements or by reduced voltage.

Voltage reduction in a power-limited system

permits an increase in active cores, increasing

performance for workloads that benefit from additional

cores. However, reducing voltage leads to a dramatic

loss of reliability for memory circuits operating at low

voltages. To circumvent this problem, prior work has

explored using separate voltages for the core logic and

caches. This captures most of the power benefits by

reducing the core voltage, while ensuring reliable cache

operation at a higher voltage. However, separate

voltage domains greatly increase design complexity

[17]. Such complexity can be avoided by building

the cache with cells better suited for low voltage

operation. Improving a cell’s reliability at low voltage

involves upsizing existing transistors or adding new

ones, both of which increase power and area.

The high overhead of cell upsizing has led

architects to propose mixed (heterogeneous) cell cache

architectures, consisting of traditional cells and robust

cells [7], with the goal of minimizing the use of

expensive, robust memory cells, while continuing to

harvest their low voltage benefits. Mixed-cell cache

architectures achieve this by implementing a small

portion of the cache with robust cells, and the

remainder with non-robust cells. When operating at a

high voltage, both portions would be used to maximize

cache capacity and performance. When operating at

978-1-4673-5587-2/13/$31.00 ©2013 IEEE

low voltage, the failure-prone non-robust cells would be

turned off, reducing cache capacity by up to 75%.

This paper builds on previous work in mixed-cell

cache architectures, focusing on improving their

performance and efficiency benefits at near threshold

voltage (NTV), 590mV in our case. We observe that

the main value of reducing voltage in future multi-core

systems is to increase the number of active cores that fit

within a constrained power budget. For highly parallel

workloads, we show that the ability to utilize more

active cores makes the lowest voltage operating point

also the highest in performance. While prior work

argued that reducing cache size was acceptable at low

voltage, we show that reducing cache size (especially

for large L3 caches) leads to large performance losses

in low voltage multi-core systems.

We propose a mixed-cell cache architecture that

preserves both the performance benefits of large caches

and the ability to operate at low voltage. In a mixed-

cell cache, non-robust cache lines are more susceptible

to failures at low voltage, while robust lines are resilient

to such failures. To address this disparity, we treat

modified and unmodified data differently. We use

simple error-detection mechanisms (e.g., parity) on the

non-robust lines, and use them only for unmodified

(clean) lines. If an error is detected, the cache access is

handled like a cache miss. Modified (dirty) data, which

cannot be recovered from other caches or memory, are

stored only in robust ways. We modify the cache

replacement policy to ensure the allocation of modified

lines to robust ways. We propose and evaluate three

alternatives for dealing with writes to non-robust lines.

Some key contributions of this paper are:

1. We propose an enhanced mixed-cell cache

architecture that ensures reliable NTV (590mV)

operation through careful management of modified

and unmodified data. When operating at NTV, our

technique improves performance by 17% and

reduces L1 data cache dynamic power by 50% over

previous proposals.

2. We achieve the performance improvement at NTV

while preserving the high-voltage performance

benefits of previous mixed-cell cache designs.

3. In contrast to prior work, we show that when

lowering voltage is used to improve performance

through increased core count, losing cache capacity

to reduce voltage is a poor tradeoff. The additional

capacity demand of multi-core workloads out-

weighs power reductions at low voltage.

In the remainder of this paper, we discuss the

impact of decreasing cache capacity and increasing

cache latency on low-voltage multi-core performance,

and summarize prior schemes for achieving reliability

at lower voltages (Section 2). We explain our proposed

techniques in detail in Section 3, and the circuit area

and latency overheads in Section 4. We introduce the

experimental methodology in Section 5, evaluate our

design in Section 6, and conclude in Section 7.

2. Background

2.1 Multi-Core Performance at Low Voltage

As systems become more power-constrained, the

challenge will be to maximize power-efficient

performance across a broad operating range. Each core

in a multi-core system, for example, may be operating

at very low voltages when running highly-parallel

workloads with sufficient work to utilize all cores.

Seconds later, after other cores go idle, a single core

may “turbo”, i.e., operate at a higher voltage and

frequency, and use all the shared cache and bandwidth

resources to improve single-thread performance. In

systems with higher core counts, the high voltage/high

frequency operating points will not be the operating

points where performance is most critical. Instead, the

highest performance operating point will be where the

maximum number of cores is active. In a power

constrained system, this operating point will be

characterized by all cores operating at the lowest

voltage to ensure the system meets power constraints.

To illustrate this, we model a hypothetical

processor based on Intel’s SandyBridge (SNB)

processor. When possible, we leverage published data

from SNB to set the parameters of our experiments

[8][20][26]. Intel’s ultra-low-voltage (ULV) SNB has

a TDP of 17W, divided between a GPU and two cores.

At 700mV, 1.4GHz is the typical operating frequency

for these cores. Each core in our hypothetical processor

includes 32KB L1 instruction and data caches and a

256KB Mid-Level (L2) Cache. All cores share a 4MB

Last-Level (L3) Cache. To evaluate the impact of

different Vmin mechanisms on different operating

points, we add two operating modes to our hypothetical

2-core system. Each operating mode is constrained to

the same power envelope as the 2-core SNB operating

at 700mV. Operating a single core at 850mV, for

example, requires the same power as 2 cores operating

at 700mV, likewise, 4 cores at 590mV. To project the

frequency of the cores at 590 and 850mV, we rely on

simulated logic delay vs. voltage data by Kulkarni and

Roy [16], and apply it to our hypothetical 2-core

processor with a 700mV, 1.4 GHz operating mode.

Based on this analysis we expect the 4 cores operating

at 590mV to be able to operate at 825 MHz, while a

single core operating at 850mV would run at 2.1 GHz.

In this paper we evaluate approaches to enable

operation at near-threshold voltage (590mV) and their

impact on performance at different operating modes.

Figure 1 shows the speedup obtained by running

multiple instances of the SPECCPU2006 benchmarks

[22] on 2-core and 4-core processors vs. a single-core

processor. We present more details on our evaluation

methodology in Section 5. The figure shows that most

benchmarks achieve significant performance

improvements at the same power envelope as a single-

core system, even though they run at a much lower

frequency and share cache and bandwidth resources.

Compared to a single-core system, a 4-core system has

37% better performance, and a 2-core system has 31%

better performance on average (using the geometric

mean). A few cache-sensitive applications (e.g., mcf)

lose performance for the 4-core system compared to

single-core due to sharing of the L3 and bandwidth

resources. Other benchmarks have worse 4-core

performance vs. 2-core for the same reason. However,

most benchmarks see significant performance

improvements (up to 139%). In 21 of the 29

benchmarks, we observe a speedup (with a geometric

mean 21.3%) for a 4-core system over a 2-core system.

This clearly illustrates the necessity of low-voltage

operation to scale multi-core performance, and the need

to preserve low-voltage cache capacity to avoid losing

the multi-core performance benefits.

2.2 Related Work

In a given technology, SRAM bit cells generally

employ minimum-geometry transistors which are

susceptible to systematic as well as random process

variations such as random dopant fluctuations (RDF)

and line edge roughness (LER). Process variations

produce VT (threshold voltage) mismatch between

neighboring transistors, resulting in asymmetric bit cell

characteristics, and making bit cells susceptible to

failure at low voltage. With bit cells susceptible to

failure, large memory structures in the core, such as

caches, become unreliable at low voltage. As a result,

the core must operate at a minimum voltage (Vmin) to

ensure reliable operation, and reducing core Vmin relies

on reducing the Vmin of its caches. Reducing cache

Vmin has become an area of active research. Previous

work that addresses the challenge of operating caches at

low voltage fits into two broad categories: circuit

solutions and architectural solutions.

2.2.1 Circuit Solutions. In general, circuit techniques

strive to reduce Vmin by improving the bit cell. One

approach is to reduce the voltage for the core logic, but

provide a separate higher voltage for caches. However,

providing separate voltages complicates the design. A

partitioned power supply increases power grid routing
complexity, reduces on-die decoupling capacitance,

increases susceptibility to voltage droops, and may

require level shifters that add latency to signals that

cross voltage domains [17]. Generating multiple

voltages also increases complexity and inefficiency.

Recent work has argued in favor of integrated

regulators. Depending on the regulator design and

target change in voltage, these incur power losses (~15-

20%) [14].
Most commercial processors use multiple voltages

generated off-chip by high-efficiency off-chip voltage

regulators (~95% efficiency). Intel’s Sandybridge

processor, for example, has 6 separate power supplies

for graphics, memory controller, analog, and IO. As

the number of cores increases, providing multiple

voltages for each core will become increasingly

impractical. A four-core system with separate voltages

for the core and its private L1/L2 caches would require

3 voltage domains per core (i.e., a total of 12 power

supplies), in addition to those needed for other system

components.

Another way to improve bit cell Vmin involves

upsizing its constituent devices. Threshold voltage

(VT) variation depends inversely on the transistor gate

area (σVT α 1/√W.L) [12], where W is the transistor

channel width and L is the transistor channel Length.

Consequently, upsizing devices can dramatically reduce

variations and improve Vmin. However, as illustrated

in Figure 2, the Vmin benefits of upsizing a typical 6T

bit cell diminish as device size increases.

Figure 2 compares the Vmin for four different

caches implemented in a 65nm technology
1
. Each

cache is implemented using one of four different 6T

1
 In this paper, we use failure probability data from a recently

published paper [16] rather than an earlier work [15]. The new data

shows higher operating voltages as it uses a newer process technology
(65 nm vs. 130 nm) where variations are significantly higher.

Figure 1. Speedup of 2-core and 4-core systems vs. single-core.

0

0.5

1

1.5

2

2.5

2-core

4-core
Sp

ee
du

pv
s. 1

-co
re

cells taken from [16]. Like earlier work [24], we set

Vmin at the point when the cache failure probability is

1/1000. The figure depicts the probability (y-axis) that

the cache will contain a single failing bit as a function

of voltage (x-axis). A 4MB cache constructed with a

minimum-sized six-transistor (6-T) cell, 4M-min,

exhibits very high failure rates (~30%) even at high

voltages (>900mV). The 4M-2X implementation of a

4MB cache doubles the device sizes in each memory

cell, increasing cell area by 33%. 4M-4X quadruples

the size of the devices, doubling the size of the cell.

4M-8X uses the most robust cell with devices that are

eight times as large and a 233% larger cell size than

4M-min. Increasing cell sizes initially yields dramatic

improvements vs. minimum-sized cells (note the

275mV improvement moving from 4M-min to 4M-2X).

But further size increases yield smaller benefits, 60mV

and 55mV for the 4M-4X and 4M-8X, respectively.

 Cell upsizing may come with additional power

overheads as well. Since leakage varies linearly as a

function of transistor dimensions, cell upsizing

increases static power. Larger cells also add switching

capacitance on the word lines (WL) and bit lines (BL)

increasing dynamic power. Figure 3 plots normalized

active and static energy (y-axis) vs. cell size (x-axis).

We calculate the energy for each cell at the lowest

operating voltage it can sustain. Upsizing from the

minimum cell to the 2X cell yields a substantial benefit

since the reduction in Vmin (275mV) more than

compensates for the additional power introduced by

larger devices. Further upsizing, however, increases

power since the costs of larger devices outweigh the

savings from voltage reductions (-60mV, -55mV).

2.2.2 Architectural Solutions.. Another approach to

reducing Vmin uses failure-prone cells with smaller

devices, but augments the memory array with the

capability to repair itself in the context of bit failures.

Prior work introduced a number of different repair

mechanisms which depend on memory tests to identify

bad bits [1][3][19][21][24]. Relying on memory tests

limits the applicability of these approaches when

memory tests are expensive or failures are erratic [2].

Other repair mechanisms rely on a variety of coding

techniques, such as Error-Correcting Codes (ECC), to

autonomously identify and repair defective bits [5][13].

Prior work on this topic has focused on reducing the

overhead of ECC; in some cases focusing on the cost of

storing the code bits [25], and in other cases focusing

on the cost of the coding logic [23].

Fundamentally, each of these approaches trades off

the repair mechanism overhead for the ability to

compensate for defective bits. For memory designs

with very high failure rates, this tradeoff may be

unattractive. To illustrate this, Figure 4 depicts a 4 MB

cache implemented with a minimum sized cell (4M-

min) and an ECC code applied at a cache line

granularity. As the strength of the code increases, its

Vmin benefit diminishes. Doubling the strength of the

code from a 2-bit ECC (2ECC) to a code with the

ability to correct 4-bit errors (4ECC) reduces Vmin by

75mV. On the other hand, increasing the strength from

an 8-bit ECC (8ECC) to a 16-bit ECC (16ECC) reduces

Vmin by 50mV. To operate at 700mV with the 4M-

min, we would need to strengthen the ECC past the

point of diminishing returns to 16ECC.

For comparison, Figure 4 includes the upsized 4M-

4X from Figure 2, and 4M-2X-1ECC, a hybrid

implementation that uses both 2X upsized cells and 1-

bit ECC. In comparing 16ECC and 4M-4X we see that

both produce acceptable yield loss of 0.1% at 700mV.

Although the additional bits required for 16ECC

introduce 34% overhead vs. 100% overhead for 4M-

4X, the ECC checking logic (2-4million transistors) and

Figure 3. Active and static energy vs. cell size.

Figure 2. Vmin improvements with bit cell upsizing.

Figure 4. Improving Vmin with cell upsizing vs. ECC.

latency makes 16ECC less attractive. 4M-2X-1ECC,

with an overhead of about 40% for modest cell upsizing

and a small single-bit error correcting code (SECDED)

delivers the best overall tradeoff. Doubling the device

size in the minimum cell allows 4M-2X-1ECC to

capture most of the benefit available through cell

upsizing, after which ECC can be used at a low cost to

provide additional Vmin improvement.

To address the high overheads of operating at

NTV, Wilkerson et al. [24] improve Vmin by storing

error-correction patterns in cache resources, trading off

cache capacity for low voltage operation. Chishti et al.

[5] identify the limitations of testing-based

implementations, and propose to provide error

correction capability using Orthogonal Latin Square

Codes. Chakraborty et al. [4] also trade off cache

capacity for lower voltage. A multi-copy cache stores

two copies of each clean datum and three copies of each

dirty datum to allow detection and correction of

corrupted bits, respectively.

In [6], Dreslinski et al. propose to combine the low

voltage benefits of robust upsized cells and the cost

benefits of smaller cells by building caches with a

mixture of cell types. Cache lines consisting of robust

cells operate at low voltage, while a separate power

supply provides a higher voltage to less robust cells.

By moving recently accessed data to the low voltage

cache lines, Dreslinksi et al. service the majority of

requests using low voltage cache lines, and reduce

active power in the L1 cache.

Ghasemi et al. also propose an architecture that

mixes cell types (i.e., sizes) [7], where both robust and

non-robust cells are used to provide the full cache

capacity at high voltage. As the voltage decreases, the

cache portion with cells that are not robust for a given

voltage is disabled, reducing the cache capacity (and

static power) by 25%-75% depending on operating

voltage. This approach impacts performance negligibly

at low voltage when the number of operating cores is

fixed across the operating voltages. Nonetheless, it may

notably impact performance as more cores are activated

at lower voltage.

In [6], the reduced voltage does little to improve

leakage since most cells continue to operate at a less

efficient higher voltage. To address this, Ghesemi et al.

propose to power-gate the non-robust portions of the

cache, reducing cache capacity by 50-75% [7].

This paper argues that the reduced voltage is often

a vehicle to increase active cores in power-constrained

systems, so performance at low voltage is critical and

the loss of cache capacity is unacceptable. In the next

section, we propose a mechanism that combines a

circuit technique (cell upsizing) with architecture

techniques to improve low-voltage performance with

little overhead.

3. Mixed-Cell (MC) Cache Design

 The key idea behind our mixed-cell cache is to

protect modified lines by storing them in robust cells,

while using the remainder of the cache for clean lines.

We use simple error detection and correction

mechanisms to detect errors in clean lines. We allocate

write misses to robust lines, and read misses to clean

lines. On a subsequent write to a clean line, we

investigate three alternatives to ensure modified data is

not lost. In the remainder of this section, we describe

the details of our implementation.

3.1 Cache Architecture

Figure 5 shows all three levels of our cache

hierarchy with support for robust cells. Our baseline

cache hierarchy is typical of what’s found in modern

processors [11] with a 32KB 8-way L1 cache, 256KB

8-way L2 cache, and a 4MB 16-way L3 cache. For each

level in the cache hierarchy, we implement two ways

with robust cells, while the remaining ways use

standard (non-robust) cells. This adds an area overhead

of 25% (L1 and L2) and 12.5% (L3) for the cache data

array. We add a status bit associated with each tag

indicating whether the associated line is a robust way or

a non-robust way. We don’t necessarily need this extra

bit if the robust ways are fixed to two specific ways

(Way 0 and Way 1 in Figure 5). We also add an extra

LRU bit since we implement a different replacement

algorithm in the low-voltage mode.

The right level of error detection capability varies

for different cache levels. Since the L1 cache is byte-

accessible and extremely latency sensitive, we use a

parity bit for each byte in the L1 [27], similar to Intel’s

Atom and Core processors. We use simple SECDED

ECC for each line in the L2 and L3 caches. We provide

this protection for both robust and non-robust lines to

account for soft errors as well as voltage-dependent

failures. In general, detectable errors in clean data are

recoverable, but those in dirty data are not. To

minimize DUE (detectable unrecoverable errors), we

handle modified data differently from unmodified data.

If an error is detected in a clean line, it is treated

like a cache miss and is obtained from the next level in

the cache hierarchy. For modified data, however, we

must ensure a very low probability of failure, which we

achieve through the use of robust (upsized) cells. This

is particularly true in the L1, where parity is unable to

correct bit errors and the increased robustness of the

cell allows us to minimize the likelihood of bit errors.

To simplify our L1 cache implementation, we handle

all accesses to failing lines as cache misses. Since the

number of such lines is small, this has a very little

impact on performance. For the L2 and L3 caches,

SECDED ECC corrects most errors. Errors that are

detected but not corrected (e.g., lines with two errors)

are handled as cache misses and obtained from the next

cache level or from memory. L2 and L3 lines that incur

double-bit errors can be disabled to avoid undetectable

errors, i.e., silent data corruption (SDC), when soft

errors hit the same line.

Although a detailed analysis of the pros and cons

of disabling cache lines is outside the scope of this

paper, our analysis shows that the probability of failures

in robust cells is extremely low at the voltages we

consider. For example, we find that 99.9% of the L3

caches will suffer failures in less than 1% of all lines at

low voltage (Section 4). It's worth noting, however,

that despite the minimal loss of capacity in the average

set, specific sets may suffer significant capacity loss.

These sets may cause performance outliers when

running workloads that exercise them heavily. Due to

this performance variability some designs may prefer

alternative approaches to mitigate defects.

Our Mixed-Cell cache handles writes differently

from reads. The main condition we need to satisfy is to

store modified data only in robust ways. To achieve this

goal, we modify the cache replacement policy to handle

write misses differently from read misses (Section 3.2).

We also need to handle subsequent writes to non-robust

lines (Section 3.3).

3.2 Changes to Cache Replacement Policy

We assume the baseline caches implement a Least-

Recently Used (LRU) replacement policy. While the

proposed mechanism could be applied to other

replacement policies, we chose LRU to simplify our

description. In our mixed-cell cache architecture, we

allocate write misses only to robust ways, and read

misses to non-robust ways. On a read miss, we choose a

replacement victim, NR_LRU, only from non-robust

ways based on LRU bits. On a write miss, we choose a

victim, GLOBAL_LRU that is the LRU line among all

ways of the set (both robust and non-robust). If the

victim line is robust, we trigger a writeback for

modified data, and allocate the new line in its place. If

the chosen victim is in a non-robust way, we choose the

LRU line from the two robust ways (RB_LRU), trigger

a writeback for modified data to convert the RB_LRU

line to a clean line, move the RB_LRU line to use the

GLOBAL_LRU line’s storage, and allocate the new

line to the RB_LRU line.

3.3 Handling Writes to Non-Robust Lines

Our mixed-cell cache architecture needs to prevent

DUE and SDC for modified data. For lines allocated on

a write miss, the cache replacement algorithm

guarantees that modified data will only be stored in

robust cells. However, for lines that were allocated to

non-robust ways on a read miss, we explore different

alternatives to prevent failures:

1. Writeback. We handle the write to a non-robust line

like we would for a write-through cache. We store

modified data in the same non-robust line, but convert it

to a clean line by writing back the data immediately to

the next cache level. This writeback traffic causes

additional network congestion, as well as power and

latency overheads. A write to the L1 cache can trigger

Figure 5. Mixed-cell cache architecture. L1 cache uses byte parity. L2 and L3 use SECDED ECC.

Per-Byte
Parity

Extra Low
Voltage LRU bits

SECDED
ECC Bits

...

...

...

Cache line tag

Cache tag array ...

C
ac

he
 S

et
s

...

Cache line data

Cache data array ...

Way 15Way 1Way 0

(c) Heterogeneous Cell Design in the 16-way L3 Cache. Ways 0 and 1 Use Robust Cells.

Robust/Normal Bit

Two Robust Ways 14 Non-Robust Ways

...Way 0 Way 1 Way 4 Way 15Way 2 Way 3

...

16-Way Set Associative Cache

Extra Low
Voltage LRU bits

...

...

...

Cache line tag

Cache tag array ...

C
ac

he
 S

et
s ...

...

Way 0 Way 1 Way 7Way 7

...

Cache line data

Cache data array ...

Way 7Way 1Way 0

(b) Heterogeneous Cell Design in the 8-way L2 Cache. Ways 0 and 1 Use Robust Cells.

Robust/Normal Bit

Way 2

Two Robust Ways Six Non-Robust Ways8-Way Set Associative Cache

Extra Low
Voltage LRU bits

...

...

...

Cache line tag

Cache tag array ...

C
ac

he
 S

et
s ...

...

Way 0 Way 1 Way 7Way 7

...

Cache line data

Cache data array ...

Way 7Way 1Way 0

(a) Heterogeneous Cell Design in the 8-way L1 Data Cache. Shaded Ways 0 and 1 Use Robust Cells.

Robust/Normal Bit

Way 2

Two Robust Ways Six Non-Robust Ways8-Way Set Associative Cache

SECDED
ECC Bits

cascading writes all the way to memory if the L2 and

L3 caches allocated the same line to non-robust ways.

2. Swap. For many benchmarks, we observe that a

write to a cache line is usually followed by more writes

to the same cache line. To reduce writeback traffic, we

handle a write to a non-robust line by swapping with

the LRU way of robust lines in the set, RB_LRU. The

RB_LRU line triggers a writeback to convert to a clean

line. The RB_LRU line is then swapped with the

written line. The status and LRU bits are also swapped

between the two cache tags. This approach reduces

traffic as it is more likely to write to the most recently-

written line than it is to write to the LRU robust line.

We model this mechanism’s overhead by blocking

access to the cache for 3 cycles (L1) or 6 cycles (L2 and

L3 that have 32-byte accesses) to account for using the

cache read and write ports to perform the swap.

3. Duplication. To avoid writeback traffic and the

additional swap latency, we explore trading off capacity

to save this overhead. In this mechanism, we assign

each two consecutive non-robust lines as “partner lines”

similar to [27]. For example, in Figure 5’s L1 cache, the

line in way 2 is a partner line to that in way 3, the line

in way 4 is a partner line to that in way 5, and the line

in way 6 is a partner line to that of way 7. When a write

occurs to a non-robust line, we evict its partner line and

write the data to both lines, using two extra cycles. We

modify the replacement algorithm so that the partner

line is always invalid and is not a candidate for

replacement. This duplication causes losing some cache

capacity, but avoids writeback traffic and swap

overhead. When writing to a duplicate line, we perform

the write to both the original line and its partner. When

reading from a duplicate line, we check parity (L1) or

ECC (L2/L3), and trigger a read from the partner line if

an error is detected.

In Section 6, we compare the relative performance

for these three implementations. We next explore

mixed-cell alternative designs and their overheads.

4. Mixed-Cell Vmin Analysis

In mixing cell types, we hope to enable reliable

operating modes as low as 590mV while minimizing

overheads when operating at higher voltages. Using

this baseline, we construct three hypothetical designs

capable of operating at 590mV, creating the additional

power headroom to run four cores. Due to the dramatic

benefits the 2X cell produces relative to the minimum

cell, we use the 2X upsized cells in our baseline cache

designs. The dotted lines in Figure 6 show the Vmin of

the L1, L2 and L3, the three largest Vmin limiting

structures in a typical CPU. Each cache consists of 2X

upsized cells; the L2 and L3 are augmented with a

SECDED code. Due to high sensitivity to additional

latency in the L1 and high cost of per-byte ECC, the L1

implements byte parity which allows error detection but

cannot repair failing bits. As depicted in Figure 6, the

lack of ECC causes the Vmin of the L1 cache (700mV)

to exceed that of the L2 and L3 caches, each of which

can operate comfortably below 700mV. However,

none of the arrays can operate below 600mV.

As proposed in [7], we replace two ways in both

the L2 and L3 caches with 4X upsized cells. By

leveraging the 4X larger cells to store irreplaceable data

and the ability of the SECDED code to detect (but not

correct) 2 bit errors in non-critical data, we can improve

the Vmin of both caches by 60mV, meeting our 590mV

target. In the L1, we adopt a similar mechanism to [6],

replacing 2-ways in the L1 with upsized cells. Since

the 4X upsized cells fail to operate reliably at 590mV

without ECC protection, we use the larger 8X upsized

cells as our robust cells instead. Figure 6 shows the

impact of adding more robust cells on Vmin, improving

the L1 cache by 125mV and the L2 and L3 by 60mV

each, enough to permit 590mV operation.

In Figure 7, we compare three reduced Vmin

designs to a baseline that uses more robust cells.

Rather than plotting the Vmin of each cache separately,

Figure 7 shows the maximum Vmin of all caches for

each mechanism. We describe the compared

mechanisms in more detail in the next section.

ROBUST builds all caches using only robust cells.

MC_DISABLE applies the mixed-cell approach

proposed in [6] and [7] to all caches in the hierarchy.

Lines implemented with robust cells replace two ways

out of each 8-way set in the both the L1 and L2 caches,

and four out of sixteen ways in the L3. Since only

robust ways operate at low voltage, the Vmin of the

robust portion of the cache determines the overall cache

Vmin. The smaller cache capacity when operating at

Vmin accounts for the slight improvement the

MC_DISABLE shows when compared to ROBUST.

MC_SWP refers to our proposed mechanism in which

both the robust portions of the cache and the non-robust

portions of the cache combine to determine Vmin. In

general, our ability to detect errors in the non-robust

portions of the cache result in 10X reduction in failure

rate relative to the robust portions. As a result the

robust portions of the cache determine the Vmin for

both MC_DISABLE and MC_SWP, causing them to

exhibit similar failure rates at 590mV.

Circuit/Design Overheads. Our mixed-cell cache

design uses typical 6-T bit cells and upsized 6-T bit

cells. Mixing these two cell types within a sub-array

(bank) can reduce area efficiency and introduce

manufacturing complications. Matching the poly-pitch

of the different cell types and growing the cell in only

one dimension (Figure 8) mitigates design and

manufacturing complexity of a mixed-cell cache.

Mixing cell types at a sub-array level (such that each

sub-array consists of only one cell type and different

sub-arrays consist of different cells) avoids this

problem. In fact, many of today’s CPUs use different

cell types for tag and data arrays. Our mixed-cell cache

organizes cache ways as banks (sub-arrays). Some sub-

arrays can be implemented with robust cells, and the

remaining sub-arrays with smaller (non-robust) cells.

Figure 8: Upsized cell pitch-matched with nominal cell.

As mentioned earlier, larger cells come with area

and power overheads. Kulkarni et al. [15][16] analyzed

the impact of device upsizing on the bit cell area. When

each transistor is upsized by 4X, the cell area doubles,

resulting in 4X increase in bit cell leakage as well as

WL/BL capacitances. In this work, we model 6-T bit

cells upsized to improve Vmin. In addition to bit cell

upsizing, several read/write assist techniques have been

proposed to achieve low Vmin operation. Read-write

assist techniques control the magnitude and the duration

of different node biases (such as word-lines, bit lines,

bit cell VSS node, and bit cell VCC node) [12]. Assist

techniques can lower Vmin at the expense of the higher

switching capacitance (CDYN). A “robust cell” can be

achieved by the optimal combination of bit cell size

and/or assist techniques to enable lower Vmin.

5. Evaluation Methodology

5.1 Baseline Configuration

We use CMP$im [10], a Pin-based x86 simulator.

Our baseline processor is 4-wide out-of order with 128-

entry reorder buffer and a three-level cache hierarchy,

similar to the baseline of the Cache Replacement

Championship [11]. Each core has L1 split instruction

and data caches, a unified L2 cache, and all cores in our

2-core and 4-core processor share the L3 cache.

Cache Configuration. We use a 32KB, 4-way L1

instruction cache, a 32KB, 8-way 32KB L1 data cache,

a 256KB 8-way L2 cache (per core), and a 4MB, 16-

way shared L3 cache. The L3 cache is a non-

inclusive/non-exclusive cache. All caches use 64-byte

lines, and implement LRU as the default replacement

policy. The load-to-use latencies for the L1, L2, and L3

caches are 3, 10, and 25 cycles, respectively. We keep

the shared L3 size constant between our single-core, 2-

core, and 4-core configurations. This translates into

larger cache capacity per core for single-core

(4MB/core) and 2-core (2MB/core) configurations

compared to the 4-core system (1MB/core). We assume

on-die interconnects can transfer 32-bytes per cycle

between the L1 and L2, and between the L2 and L3

caches. This limits our on-die bandwidth to one 64-byte

line every two cycles between the L1 and L2, and

between each of the L2 caches and the L3 cache. This

increases network congestion and latency when

writeback traffic contends with cache misses for the

shared interconnect. We also model the extra latency

and cache port utilization due to swaps and

duplications. For each swap in MC_SWP, we assume

the L1 cache is inaccessible for three cycles, and the L2

and L3 are inaccessible for six cycles. We assume a

duplication in MC_DUP makes the cache inaccessible

for an extra cycle (L1) or two cycles (L2 and L3).

Memory Configuration. We model a 200-cycle

latency to memory at the high frequency (2.1GHz for a

single processor). The memory latency (in cycles)

decreases when we use lower frequencies for the 2-core

and 4-core systems. For the 2-core system running at

1.4GHz, memory latency decreases to 130 cycles as the

cycle time is longer. For the 4-core processor running at

825MHz, memory latency becomes 80 cycles. We

support a maximum of 32 outstanding misses to

memory. We implement four memory controllers per

chip, each with a 6GB/sec bandwidth to memory, for a

total of 24GB/sec memory bandwidth. This bandwidth

is shared between all cores in the system, so the

bandwidth per core is higher for our single-core

(24GB/sec/core) and 2-core (12 GB/sec/core) compared

to our 4-core system (6GB/sec/core).

Reliability. We assume our baseline system

implements per-byte parity for the L1 cache, and

Figure 6. Vmin at different cache levels in baseline and

mixed-cell caches.

Figure 7. Vmin for all caches in baseline, all robust, and

mixed-cell caches.

SECDED ECC for the L2 and L3 caches to guard

against soft errors. Since the on-die network uses 32-

byte transfers, we implement SECDED ECC on 32-

bytes in the L2 and L3 caches to protect against cache

and network failures. Our single-core baseline runs at

850 mV with a 2.1 GHz frequency. The 2-core system

runs at 700 mV with a 1.4 GHz frequency. The 4-core

system runs at 590 mV with an 825 MHz frequency.

5.2 Benchmarks

We simulate benchmarks from the SPECCPU2006

suite [22]. We use SimPoint [18] to identify a single

characteristic interval (i.e., simpoint) of each

benchmark. Each benchmark is run with the first

reference input. We first run 50 million instructions to

warm up the internal structures and then run the

simulation for 100 million instructions. For multi-core

simulations, each benchmark runs simultaneously with

the others, restarting after 100 million instructions, until

all of the benchmarks have executed at least 100

million instructions after the warmup. We use

instructions-per-cycle (IPC) to measure single-core

performance. For multi-core workloads, we use the

weighted speedup normalized to the baseline. That is,

we compute IPCi for each application i sharing the L3

cache, then compute IsolatedIPCi for application i

running in isolation with the same L3 cache size. We

compute the weighted IPC of a workload as sum of its

components’ (IPCi/IsolatedIPCi).

For most of our results in Section 6, we use a

cache-sensitive subset of SPECCPU2006 benchmarks.

We selected eighteen benchmarks that see more than a

3% slowdown when either the L1 or L3 cache is

reduced to a quarter of its original size. The 4-core

workload mixes are randomly chosen from these

eighteen benchmarks. We have ten homogeneous

workloads (running four copies of the same

application), and ten heterogeneous workloads (running

a mix of four different benchmarks). Table 1 lists the

benchmarks included in each of 4-core workloads.
Table 1. Four-Core Workloads.

Num. Mix Num. Mix

1 4X 400.perlbench 2 4X 403.gcc

3 4X 416.gamess 4 4X 444.namd

5 4X 445.gobmk 6 4X 450.soplex

7 4X 453.povray 8 4X 471.omnetpp

9 4X 482.sphinx3 10 4X 483.xalancbmk

11 bzip2, gcc, soplex,

xalancbmk

12 perlbench, omnetpp,

sphinx3, xalancbmk

13 bzip2, astar,
sphinx3, xalancbmk

14 gcc, mcf, soplex,
sphinx3

15 gcc, astar, sphinx3,

xalancbmk

16 perlbench, bzip2,

soplex, xalancbmk

17 perlbench, gcc, mcf,
namd

18 perlbench, mcf,
gobmk, astar

19 perlbench, gobmk,

soplex, sphinx3

20 perlbench, gobmk,

omnetpp, xalancbmk

5.3 Simulated Configurations

We compared the following configurations:

Baseline (BASE). Our baseline configuration is

explained in detail in Section 5.1. To compare the same

area as our heterogeneous-cell designs, we increase the

cache capacity in the L1 and L2 caches by 25%, and the

L3 cache by 12.5%. We use a 40KB, 10-way L1 data

cache, a 320KB, 10-way L2 cache, and an 18-way, 4.5

MB L3 cache. This configuration could not operate at

low voltage, but we include its results for reference.

ROBUST. This configuration uses robust cells for the

whole cache with no changes to the cache replacement

policy. We use a 20KB, 5-way L1 data cache, a 160KB,

5-way L2 cache, and a 9-way, 2.25 MB L3 cache.

Write-through (WT). This configuration uses standard

cells as the baseline, and protects modified data by

propagating it down the cache hierarchy. A processor

store instruction to the L1 data cache triggers a write to

the L2, and a write to the L2 triggers a write to the L3

cache. This configuration has significant slowdowns

due to contention for on-die and memory bandwidth.

MC_DISABLE. This configuration uses a mix of

robust and non-robust cells like the proposal by

Ghasemi, et. al. [7]. At low voltage, only the robust

cells are used, resulting in an 8KB, 2-way L1 data

cache, a 64KB 2-way L2 cache, and a 1MB 4-way L3

cache (larger area than our proposals which use only

two robust L3 ways).

MC_WB. This configuration implements the mixed-

cell writeback mechanism (Section 3.3). We allocate

write misses to robust ways and read misses to non-

robust ways. Subsequent writes to non-robust ways

trigger writebacks to the next cache level or to memory.

MC_SWP. MC_SWP implements the mixed-cell swap

mechanism (Section 3.3). On a write to a non-robust

line, the line is swapped with a robust line, triggering a

writeback from the robust line.

MC_DUP. This configuration implements the mixed-

cell duplication mechanism (Section 3.3). On a write to

a non-robust line, the partner non-robust line is evicted

and the write goes to both the original line and its

partner line. This mechanism reduces cache size when a

large percentage of writes goes to non-robust lines.

6. Results
In this section, we present the experimental results

for our proposal. Section 6.1 evaluates low-voltage

multi-core performance and compares it to single-core

performance. Section 6.2 analyzes the power and

energy-efficiency of our proposals vs. prior techniques.

6.1 Performance

We evaluate the performance of single-core and

multi-core systems using the same power budget

(Section 2.1). A single-core runs at a higher voltage and

frequency, and uses the whole L3 cache, on-die and

memory bandwidth. For the same power budget, 2- and

4-core configurations run at lower voltages and

frequencies, and share the L3 and bandwidth resources.
Single-Core Performance for Mixed-Cell Designs.
Figure 9 shows the speedup of different alternatives

described in Section 5.3 compared to the ROBUST

mechanism (where all the cells are robust, and the

cache size is smaller than the baseline). The write-

through (WT) mechanism performs 18% worse, on

average, due to additional writeback traffic that

increases congestion in the on-die interconnect and

memory bus. The MC_DISABLE proposal in [7] has

the whole cache operational at the single-processor,

high-voltage configuration, so it performs 9.5% better

than ROBUST. Our MC mechanisms perform similar to

MC_DISABLE if we use LRU cache replacement at

high voltage. However, if we use the same replacement

policy as low-voltage (Section 3.2), they perform better

by 5.6% (MC_WB), 8.4% (MC_SWP), and 3.4%

(MC_DUP) on average.

We performed simulations to evaluate the

applicability of ECC-based mechanisms in the L1 data

cache. Our experiments show that increasing the L1

access latency by one cycle, from 3 to 4 cycles,

degrades performance by 5%. This demonstrates the

need to implement a non-ECC mechanism in the L1 to

avoid latency increases and performance losses.

Multi-Core Performance for Mixed-Cell Designs.
Figure 10 shows the speedup of different alternatives

for a 4-core system running at low voltage, relative to

the ROBUST mechanism (Section 5.3). Since multi-

core performance is more sensitive to cache parameters,

other mechanisms show significant slowdowns

compared to just upsizing all cache lines while losing

half the cache capacity. Write-through (WT) introduces

a significant amount of network traffic leading to an

average 73% slowdown vs. ROBUST. MC_DISABLE

only operates a quarter of the cache capacity at low-

voltage leading to an average 12% slowdown. While

MC_WB slows down performance by 16% on average

due to the extra writeback traffic, the other two

mechanisms improve performance by 3.5% (MC_SWP)

and 2.6% (MC_DUP). Compared to MC_DISABLE,

MC_SWP improves performance by 17% while

MC_DUP improves performance by 16%, on average.
Network Traffic. Figure 11 shows increases in on-die

bandwidth for the alternatives discussed in Section 5.3.

Figure 12 illustrates increases in memory bandwidth

demand. These figures demonstrate why WT degrades

performance. On average, WT increases on-die traffic

and memory bandwidth (off-die) by factors of 18x and

62x. MC_WB is also bandwidth hungry, increasing on-

die traffic by a factor of 5, and memory traffic by

almost a factor of 9. MC_DISABLE increases traffic

because of the smaller cache sizes, by 152% and 45%

for on-die and memory bandwidth, respectively. In

contrast, MC_SWP and MC_DUP increase on-die

bandwidth by an average of 47% and 44% respectively,

and memory bandwidth by 14% and 4.8%. Consider

the top 4 workloads (6, 14, 17, 18) each of which make

more than 20 million requests from memory, 5 times

more than other workloads. For these, MC_SWP and

Figure 9. Single-core speedup vs. ROBUST.

Figure 10. 4-Core Speedup vs. ROBUST for workload mixes in Table 1.

MC_DUP increase memory bandwidth by 9% and 3%,

compared to 30% for MC_DISABLE. MC_WB and

WT increase memory traffic by factors of 3x and 18x.

When focusing on only the worst on-die traffic

offenders, we observe similar trends. Based on these

comparisons, MC_SWP and MC_DUP clearly improve

over alternatives.

6.2 Energy Efficiency

Although our approach allows operation at a

reduced voltage, the reduction in Vmin must

compensate for the dynamic and static power added by

the larger robust cells. In designs where one or more of

the caches share a power supply with the core,

reductions in cache Vmin enable reductions in core

Vmin. Our mixed-cell cache reduces cache Vmin by

125mV, leading to a 50% reduction in core power, and

therefore allowing us to double the number of active

cores at the same power budget. However, cell

upsizing adds both static power (a problem in large L3

caches), and dynamic power (a problem in L1 caches).
Static Power in L3 Cache. Figure 13 compares the

static power for different alternatives in the L3 cache

where static power dominates total power. We compare

MC_DUP/SWP, MC_DISABLE, ROBUST, and a

fourth option (separate Vcc) in which the cache has a

separate power supply. The static power of the caches,

normalized to the separate Vcc configuration at high

voltage, is shown on the Y axis as a function of voltage

(X axis). MC_DISABLE sees a significant reduction

in static power at 715mV, the Vmin of the non-robust

portion of the cache, due to power gating of the non-

robust portion and its associated loss of cache capacity.

Likewise, the reduced capacity of ROBUST

compensates for increased cell size. Static power for

MC_DUP and MC_SWP are equivalent and are plotted

together. At Vmin, MC_DUP and MC_SWP reduce

power by 10% vs. separate Vcc, without the cost of the

additional power supply, or its additional inefficiencies.

Dynamic Power in L1 Cache. Figure 14 compares the

dynamic power, normalized to separate Vcc at high

voltage, for different alternatives in the L1 cache (with

much higher dynamic power than static power). In

general, both mixed-cell approaches and the ROBUST

approach incur significant penalties relative to the

baseline. MC_DISABLE and ROBUST both suffer

from the need to service all cache requests with robust

cells. In contrast, MC_SWP benefits from splitting L1

cache access between the non-robust and the power

hungry robust cells. Although robust ways represent

only 25% of L1 cache capacity, our experiments show

that forcing writes to robust ways causes 65% of the L1

access to be handled by the robust ways. MC_DUP,

with the ability to handle writes in both robust and non-

robust ways handles only 35% of the L1 accesses in

robust ways and consumes 30% less power than

MC_SWP as a result. Overall, the dynamic power of

MC_DUP is 50% better than MC_DISABLE (similar to

[7]) and within 30% of the configuration with a

separate power supply without the additional costs and

inefficiencies of a separate supply.

7. Conclusions

Mixed-cell cache architectures enable low-voltage

operation for a fraction of the cache composed of robust

cells. This tradeoff allows using the entire cache when

Figure 11. 4-Core On-Die Bandwidth vs. BASE (log scale) for workload mixes in Table 1.

1

10

100

ROBUST

WT

MC_DISABLE

MC_WB

MC_SWP

MC_DUP

No
rm

ali
ze

d
On

-D
ie

Ba
nd

wi
dth

 vs
. B

AS
E

Figure 12. 4-Core Memory Bandwidth vs. BASE (log scale) for workload mixes in Table 1.

1

10

100

1000

10000

ROBUST

WT

MC_DISABLE

MC_WB

MC_SWP

MC_DUP

No
rm

ali
ze

dM
em

or
y

Ba
nd

wi
dth

 vs
. B

AS
E

operating at high voltage, but loses capacity at low

voltage. In power constrained multi-core systems, the

lowest voltage mode maximizes the number of active

cores and therefore needs the most cache capacity.

We evaluated a power-constrained system with the

ability to operate 1, 2 and 4 cores within the same

power budget. To support 4 active cores, our system

uses a mixed-cell cache architecture to operate at

590mV (NTV), where the 75% capacity loss

experienced by our baseline mixed-cell cache

architecture resulted in a 12% performance loss. We

describe a novel mechanism that avoids losing cache

capacity by managing cache data to allow the use of

both robust and non-robust portions. Consistent with

prior work, our proposal delivers a 9.5% performance

benefit relative to a non-mixed cell baseline using only

robust cells. However, in contrast to prior work, our

design avoids significant cache size reductions at low

voltage, improving multi-core performance an average

of 17% and saving 50% of the L1 dynamic power.

Acknowledgements
We are very grateful to Aamer Jaleel who helped us

with his simulator, CMP$im. We thank the anonymous

reviewers for their helpful feedback.

References
[1] Jaume Abellà, et al., “Low Vccmin Fault-Tolerant Cache with

Highly Predictable Performance”, International Symposium on

Microarchitecture, pp. 111 - 121, Dec. 2009.
[2] M. Agostinelli, et al., “Erratic fluctuations of SRAM cache Vmin

at the 90nm process technology node,” IEDM Technical Digest, pp.

655-658, Dec 2005.
[3] Amin Ansari, et al., “ZerehCache: Armoring Cache Architectures

in High Defect Density Technologies”, International Symposium on

Microarchitecture, pp. 100 - 110, Dec. 2009.
[4] Arup Chakraborty, et al., “E < MC2: Less Energy through Multi-

Copy Cache,” Conference on Compilers, Architecture, and Synthesis

for Embedded Systems (CASES), pp. 237-246, Oct. 2010.

[5] Zeshan Chishti, et al., “Improving Cache Lifetime Reliability at

Ultra-low Voltages”, International Symposium on Microarchitecture,
pp. 89 - 99, Dec. 2009.

[6] Ronald G. Dreslinski, et al., “Reconfigurable Energy Efficient

Near Threshold Cache Architectures,” International Symposium on
Microarchitecture, pp. 459-470, Dec. 2008.

[7] Hamid Reza Ghasemi, Stark Draper, and Nam Sung Kim, “Low-

Voltage On-Chip Cache Architecture using Heterogeneous Cell Sizes
for Multi-Core Processors,” International Symposium on High-

Performance Computer Architecture, pp. 38-49, Feb 2011.

[8] Intel Corp., “2nd Generation Intel® Core™Processor Family
Mobile and Intel®Celeron® Processor Family Mobile,” Datasheet,

Vol. 1, 2011.

[9] Intel Corp., “Intel® Turbo Boost Technology in Intel® Core™
Microarchitecture (Nehalem) Based Processors,” White Paper, 2008.

[10] Aamer Jaleel, et al., “CMP$im: A Pin-Based On-The-Fly Multi-

Core Cache Simulator,” 4th Workshop on Modeling, Benchmarking
and Simulation, Beijing, China, June 2008.

[11] JILP Workshop on Computer Architecture Competitions: Cache

Replacement Championship, http://www.jilp.org/jwac-1/, 2010.

[12] Muhammad M. Khellah, et al., “Read and Write Circuit Assist

Techniques for Improving Vccmin of Dense 6T SRAM Cell,” Conf.

on Int. Circuit Design and Technology, pp. 185–189, Jun. 2008.
[13] Jangwoo Kim, et al., “Multi-bit Error Tolerant Caches Using

Two-Dimensional Error Coding”, International Symposium on

Microarchitecture, pp. 197 - 209, Dec. 2007.
[14] Wonyoung Kim, David Brooks, and Gu-Yeon Wei, “A Fully-

Integrated 3-Level DC/DC Converter for Nanosecond-Scale DVFS,”
IEEE Journal of Solid-State Circuits, 47(1), pp.206-219, Jan. 2012.

[15] Jaydeep Kulkarni, Keejong Kim and Kaushik Roy, “A 160 mV

Robust Schmitt Trigger Based Subthreshold SRAM”, IEEE Journal
of Solid-State Circuits, vol. 42, no. 10, pp. 2303 - 2313, Oct. 2007.

[16] Jaydeep Kulkarni and Kaushik Roy, “Ultra-low Voltage Process

Variation Tolerant Schmitt Trigger based SRAM Design”, IEEE
Transactions on VLSI Systems, 2011.

[17] Wai-Kei Mak and Jr-Wei Chen, “Voltage Island Generation

under Performance Requirement for SoC Designs,” Asia & South
Pacific Design Automation Conference, Jan. 2007.

[18] Erez Perelman, Greg Hamerly, and Brad Calder, “Picking

Statistically Valid and Early Simulation Points,” International
Conference on Parallel Architectures and Compilation Techniques,

pp. 244-255, Sep. 2003.

[19] David Roberts, Nam Sung Kim and Trevor Mudge, “On-Chip
Cache Device Scaling Limits and Effective Fault Repair Techniques

in Future Nanoscale Technology”, Digital System Design

Architectures, Methods and Tools, pp. 570 - 578, Aug. 2007.
[20] Efi Rotem, et al., “Power Management Architecture of the 2nd

Generation Intel® Core™ Microarchitecture, Formerly Codenamed

Sandy Bridge”, HotChips, Aug. 2011.
[21] Stanley Schuster, “Multiple Word/Bit Line Redundancy for

Semiconductor Memories”, IEEE Journal of Solid-State Circuits, vol.

13, no. 5, pp. 698 - 703, Oct. 1978.
[22] SPEC CPU2006 Benchmarks, http://www.spec.org/cpu2006/

[23] Chris Wilkerson, et al., “Reducing Cache Power with Low Cost,

Multi-bit Error-Correcting Codes”, International Symposium on
Computer Architecture, pp. 83-93, Jun. 2010.

[24] Chris Wilkerson, et al., “Trading off Cache Capacity for

Reliability to Enable Low Voltage Operation”, International

Symposium on Computer Architecture, pp. 203 - 214, Jun. 2008.

[25] Doe Hyun Yoon and Mattan Erez, “Memory Mapped ECC:

Low-Cost Error Protection for Last Level Caches”, International
Symposium on Computer Architecture, pp. 116-127, Jun., 2009.

[26] Marcelo Yuffe, et al., “A Fully Integrated Multi-CPU, GPU and

Memory Controller 32nm Processor”, International Solid-State
Circuits Conference, pp. 264-266, Feb, 2011.

[27] Wei Zhang, et al., “ICR: In-Cache Replication for Enhancing

Data Cache Reliability,” International Conference on Dependable
Systems and Networks, pp. 291-300, Jun. 2003.

Figure 13. L3 static power comparison.

Figure 14. L1 dynamic power comparison.

Figure 13. L3 static power comparison.

