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Abstract 

Many enterprise and mobile systems must operate 

within strict power constraints.  These systems 

dynamically trade off performance and power to 

maximize performance while keeping power within 

specified limits.  In multi-core systems, maximizing the 

number of active cores within a strict power budget 

requires minimizing the power per core. Lowering core 

voltage dramatically reduces power, but compromises 

cache reliability. Mixed-cell cache architectures, where 

part of the cache is designed with larger, more robust 

cells, enable caches to operate reliably at low voltage 

while minimizing the added cost of larger cells. But 

mixed-cell caches suffer from poor low-voltage 

scalability since caches can only use robust cells at low 

voltage, sacrificing up to 75% of cache capacity. Such 

capacity reduction strains shared cache resources, 

leading to significant performance losses.   

In this paper, we propose a mixed-cell architecture 

that improves multi-core performance by allowing the 

use of both robust and non-robust cells. Our 

mechanisms store modified data only in robust lines by 

modifying the cache replacement policy and handling 

writes to non-robust lines. For a multi-core processor, 

our best mechanism improves performance by 17%, 

and reduces dynamic power in the L1 data cache by 

50% over prior mixed-cell proposals.   

1. Introduction 

Power continues to be an important design 

constraint in modern microprocessors.  In mobile 

systems, thermal design power (TDP) plays a key role 

in determining the form factor of the device.  Likewise, 

data centers are built with fixed power and cooling 

capabilities.  Improving performance within a given 

power constraint (MIPS/watt) yields direct economic 

benefits by increasing the compute capability supported 

by a fixed investment in datacenter infrastructure.   

Designers have responded to continuing demand 

for performance within power constraints with 

traditional improvements in core performance and 

efficiency, but also by increasing the number of cores 

on a die.   Today, state of the art server processors may 

contain tens of cores; and even mobile products, 

including tablets and smart phones, have more than one 

core.  Increasing core counts, in the context of fixed 

power budgets, is a key challenge for future systems.   

 Today’s performance oriented systems meet 

specific power targets by varying the voltage of active 

cores as the number of active cores changes [9].  As 

cores become inactive, the voltage of the remaining 

cores rises to maximize performance.  As the number of 

active cores increases, the voltage of all cores will drop 

to avoid exceeding power limits.  Changing the voltage 

in response to changes in core activity allows the power 

budget of these systems to remain constant regardless 

of the number of active cores. In fact, a given power 

budget can support more cores as long as the power 

consumed per core is reduced via microarchitectural 

improvements or by reduced voltage. 

Voltage reduction in a power-limited system 

permits an increase in active cores, increasing 

performance for workloads that benefit from additional 

cores.  However, reducing voltage leads to a dramatic 

loss of reliability for memory circuits operating at low 

voltages.   To circumvent this problem, prior work has 

explored using separate voltages for the core logic and 

caches.  This captures most of the power benefits by 

reducing the core voltage, while ensuring reliable cache 

operation at a higher voltage. However, separate 

voltage domains greatly increase design complexity 

[17].  Such complexity can be avoided by building 

the cache with cells better suited for low voltage 

operation.  Improving a cell’s reliability at low voltage 

involves upsizing existing transistors or adding new 

ones, both of which increase power and area.   

The high overhead of cell upsizing has led 

architects to propose mixed (heterogeneous) cell cache 

architectures, consisting of traditional cells and robust 

cells [7], with the goal of minimizing the use of 

expensive, robust memory cells, while continuing to 

harvest their low voltage benefits.  Mixed-cell cache 

architectures achieve this by implementing a small 

portion of the cache with robust cells, and the 

remainder with non-robust cells.  When operating at a 

high voltage, both portions would be used to maximize 

cache capacity and performance.  When operating at 
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low voltage, the failure-prone non-robust cells would be 

turned off, reducing cache capacity by up to 75%.   

This paper builds on previous work in mixed-cell 

cache architectures, focusing on improving their 

performance and efficiency benefits at near threshold 

voltage (NTV), 590mV in our case.  We observe that 

the main value of reducing voltage in future multi-core 

systems is to increase the number of active cores that fit 

within a constrained power budget.  For highly parallel 

workloads, we show that the ability to utilize more 

active cores makes the lowest voltage operating point 

also the highest in performance.  While prior work 

argued that reducing cache size was acceptable at low 

voltage, we show that reducing cache size (especially 

for large L3 caches) leads to large performance losses 

in low voltage multi-core systems.   

We propose a mixed-cell cache architecture that 

preserves both the performance benefits of large caches 

and the ability to operate at low voltage.  In a mixed-

cell cache, non-robust cache lines are more susceptible 

to failures at low voltage, while robust lines are resilient 

to such failures. To address this disparity, we treat 

modified and unmodified data differently. We use 

simple error-detection mechanisms (e.g., parity) on the 

non-robust lines, and use them only for unmodified 

(clean) lines.  If an error is detected, the cache access is 

handled like a cache miss. Modified (dirty) data, which 

cannot be recovered from other caches or memory, are 

stored only in robust ways. We modify the cache 

replacement policy to ensure the allocation of modified 

lines to robust ways.  We propose and evaluate three 

alternatives for dealing with writes to non-robust lines.   

Some key contributions of this paper are: 

1. We propose an enhanced mixed-cell cache 

architecture that ensures reliable NTV (590mV) 

operation through careful management of modified 

and unmodified data.  When operating at NTV, our 

technique improves performance by 17% and 

reduces L1 data cache dynamic power by 50% over 

previous proposals. 

2. We achieve the performance improvement at NTV 

while preserving the high-voltage performance 

benefits of previous mixed-cell cache designs.    

3. In contrast to prior work, we show that when 

lowering voltage is used to improve performance 

through increased core count, losing cache capacity 

to reduce voltage is a poor tradeoff. The additional 

capacity demand of multi-core workloads out-

weighs power reductions at low voltage.  

In the remainder of this paper, we discuss the 

impact of decreasing cache capacity and increasing 

cache latency on low-voltage multi-core performance, 

and summarize prior schemes for achieving reliability 

at lower voltages (Section 2). We explain our proposed 

techniques in detail in Section 3, and the circuit area 

and latency overheads in Section 4. We introduce the 

experimental methodology in Section 5, evaluate our 

design in Section 6, and conclude in Section 7. 

2. Background 

2.1 Multi-Core Performance at Low Voltage 

As systems become more power-constrained, the 

challenge will be to maximize power-efficient 

performance across a broad operating range.  Each core 

in a multi-core system, for example, may be operating 

at very low voltages when running highly-parallel 

workloads with sufficient work to utilize all cores.  

Seconds later, after other cores go idle, a single core 

may “turbo”, i.e., operate at a higher voltage and 

frequency, and use all the shared cache and bandwidth 

resources to improve single-thread performance.  In 

systems with higher core counts, the high voltage/high 

frequency operating points will not be the operating 

points where performance is most critical.  Instead, the 

highest performance operating point will be where the 

maximum number of cores is active.  In a power 

constrained system, this operating point will be 

characterized by all cores operating at the lowest 

voltage to ensure the system meets power constraints.   

To illustrate this, we model a hypothetical 

processor based on Intel’s SandyBridge (SNB) 

processor.  When possible, we leverage published data 

from SNB to set the parameters of our experiments 

[8][20][26].   Intel’s ultra-low-voltage (ULV) SNB has 

a TDP of 17W, divided between a GPU and two cores.   

At 700mV, 1.4GHz is the typical operating frequency 

for these cores. Each core in our hypothetical processor 

includes 32KB L1 instruction and data caches and a 

256KB Mid-Level (L2) Cache. All cores share a 4MB 

Last-Level (L3) Cache.  To evaluate the impact of 

different Vmin mechanisms on different operating 

points, we add two operating modes to our hypothetical 

2-core system.  Each operating mode is constrained to 

the same power envelope as the 2-core SNB operating 

at 700mV.  Operating a single core at 850mV, for 

example, requires the same power as 2 cores operating 

at 700mV, likewise, 4 cores at 590mV.  To project the 

frequency of the cores at 590 and 850mV, we rely on 

simulated logic delay vs. voltage data by Kulkarni and 

Roy [16], and apply it to our hypothetical 2-core 

processor with a 700mV, 1.4 GHz operating mode.  

Based on this analysis we expect the 4 cores operating 

at 590mV to be able to operate at 825 MHz, while a 

single core operating at 850mV would run at 2.1 GHz.  

In this paper we evaluate approaches to enable 

operation at near-threshold voltage (590mV) and their 

impact on performance at different operating modes.    



 

 

Figure 1 shows the speedup obtained by running 

multiple instances of the SPECCPU2006 benchmarks 

[22] on 2-core and 4-core processors vs. a single-core 

processor. We present more details on our evaluation 

methodology in Section 5. The figure shows that most 

benchmarks achieve significant performance 

improvements at the same power envelope as a single-

core system, even though they run at a much lower 

frequency and share cache and bandwidth resources. 

Compared to a single-core system, a 4-core system has 

37% better performance, and a 2-core system has 31% 

better performance on average (using the geometric 

mean). A few cache-sensitive applications (e.g., mcf) 

lose performance for the 4-core system compared to 

single-core due to sharing of the L3 and bandwidth 

resources. Other benchmarks have worse 4-core 

performance vs. 2-core for the same reason.  However, 

most benchmarks see significant performance 

improvements (up to 139%). In 21 of the 29 

benchmarks, we observe a speedup (with a geometric 

mean 21.3%) for a 4-core system over a 2-core system. 

This clearly illustrates the necessity of low-voltage 

operation to scale multi-core performance, and the need 

to preserve low-voltage cache capacity to avoid losing 

the multi-core performance benefits. 

2.2 Related Work 

In a given technology, SRAM bit cells generally 

employ minimum-geometry transistors which are 

susceptible to systematic as well as random process 

variations such as random dopant fluctuations (RDF) 

and line edge roughness (LER).  Process variations 

produce VT (threshold voltage) mismatch between 

neighboring transistors, resulting in asymmetric bit cell 

characteristics, and making bit cells susceptible to 

failure at low voltage.   With bit cells susceptible to 

failure, large memory structures in the core, such as 

caches, become unreliable at low voltage.  As a result, 

the core must operate at a minimum voltage (Vmin) to 

ensure reliable operation, and reducing core Vmin relies 

on reducing the Vmin of its caches.  Reducing cache 

Vmin has become an area of active research.  Previous 

work that addresses the challenge of operating caches at 

low voltage fits into two broad categories: circuit 

solutions and architectural solutions.   

2.2.1 Circuit Solutions. In general, circuit techniques 

strive to reduce Vmin by improving the bit cell.  One 

approach is to reduce the voltage for the core logic, but 

provide a separate higher voltage for caches.  However, 

providing separate voltages complicates the design.  A 

partitioned power supply increases power grid routing  
complexity, reduces on-die decoupling capacitance, 

increases  susceptibility to voltage droops, and may 

require level shifters that add latency to signals that 

cross voltage domains [17].  Generating multiple 

voltages also increases complexity and inefficiency.  

Recent work has argued in favor of integrated 

regulators. Depending on the regulator design and 

target change in voltage, these incur power losses (~15-

20%) [14].    
Most commercial processors use multiple voltages 

generated off-chip by high-efficiency off-chip voltage 

regulators (~95% efficiency).  Intel’s Sandybridge 

processor, for example, has 6 separate power supplies 

for graphics, memory controller, analog, and IO.  As 

the number of cores increases, providing multiple 

voltages for each core will become increasingly 

impractical.  A four-core system with separate voltages 

for the core and its private L1/L2 caches would require 

3 voltage domains per core (i.e., a total of 12 power 

supplies), in addition to those needed for other system 

components.   

Another way to improve bit cell Vmin involves 

upsizing its constituent devices.  Threshold voltage 

(VT) variation depends inversely on the transistor gate 

area (σVT α 1/√W.L) [12], where W is the transistor 

channel width and L is the transistor channel Length.  

Consequently, upsizing devices can dramatically reduce 

variations and improve Vmin.  However, as illustrated 

in Figure 2, the Vmin benefits of upsizing a typical 6T 

bit cell diminish as device size increases.   

Figure 2 compares the Vmin for four different 

caches implemented in a 65nm technology
1
.  Each 

cache is implemented using one of four different 6T 

                                                 
1
 In this paper, we use failure probability data from a recently 

published paper [16] rather than an earlier work [15]. The new data 

shows higher operating voltages as it uses a newer process technology 
(65 nm vs. 130 nm) where variations are significantly higher.  

 
Figure 1. Speedup of 2-core and 4-core systems vs. single-core. 
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cells taken from [16].  Like earlier work [24], we set 

Vmin at the point when the cache failure probability is 

1/1000. The figure depicts the probability (y-axis) that 

the cache will contain a single failing bit as a function 

of voltage (x-axis).   A 4MB cache constructed with a 

minimum-sized six-transistor (6-T) cell, 4M-min, 

exhibits very high failure rates (~30%) even at high 

voltages (>900mV).  The 4M-2X implementation of a 

4MB cache doubles the device sizes in each memory 

cell, increasing cell area by 33%.  4M-4X quadruples 

the size of the devices, doubling the size of the cell.  

4M-8X uses the most robust cell with devices that are 

eight times as large and a 233% larger cell size than 

4M-min. Increasing cell sizes initially yields dramatic 

improvements vs. minimum-sized cells (note the 

275mV improvement moving from 4M-min to 4M-2X). 

But further size increases yield smaller benefits, 60mV 

and 55mV for the 4M-4X and 4M-8X, respectively. 

 Cell upsizing may come with additional power 

overheads as well.  Since leakage varies linearly as a 

function of transistor dimensions, cell upsizing 

increases static power. Larger cells also add switching 

capacitance on the word lines (WL) and bit lines (BL) 

increasing dynamic power.  Figure 3 plots normalized 

active and static energy (y-axis) vs. cell size (x-axis). 

We calculate the energy for each cell at the lowest 

operating voltage it can sustain.  Upsizing from the 

minimum cell to the 2X cell yields a substantial benefit 

since the reduction in Vmin (275mV) more than 

compensates for the additional power introduced by 

larger devices.  Further upsizing, however, increases 

power since the costs of larger devices outweigh the 

savings from voltage reductions (-60mV, -55mV). 

2.2.2 Architectural Solutions..  Another approach to 

reducing Vmin uses failure-prone cells with smaller 

devices, but augments the memory array with the 

capability to repair itself in the context of bit failures.  

Prior work introduced a number of different repair 

mechanisms which depend on memory tests to identify 

bad bits [1][3][19][21][24]. Relying on memory tests 

limits the applicability of these approaches when 

memory tests are expensive or failures are erratic [2].  

Other repair mechanisms rely on a variety of coding 

techniques, such as Error-Correcting Codes (ECC), to 

autonomously identify and repair defective bits [5][13].  

Prior work on this topic has focused on reducing the 

overhead of ECC; in some cases focusing on the cost of 

storing the code bits [25], and in other cases focusing 

on the cost of the coding logic [23].    

Fundamentally, each of these approaches trades off 

the repair mechanism overhead for the ability to 

compensate for defective bits.  For memory designs 

with very high failure rates, this tradeoff may be 

unattractive.  To illustrate this, Figure 4 depicts a 4 MB 

cache implemented with a minimum sized cell (4M-

min) and an ECC code applied at a cache line 

granularity.  As the strength of the code increases, its 

Vmin benefit diminishes.  Doubling the strength of the 

code from a 2-bit ECC (2ECC) to a code with the 

ability to correct 4-bit errors (4ECC) reduces Vmin by 

75mV.  On the other hand, increasing the strength from 

an 8-bit ECC (8ECC) to a 16-bit ECC (16ECC) reduces 

Vmin by 50mV.  To operate at 700mV with the 4M-

min, we would need to strengthen the ECC past the 

point of diminishing returns to 16ECC.   

For comparison, Figure 4 includes the upsized 4M-

4X from Figure 2, and 4M-2X-1ECC, a hybrid 

implementation that uses both 2X upsized cells and 1-

bit  ECC.  In comparing 16ECC and 4M-4X we see that 

both produce acceptable yield loss of 0.1% at 700mV.  

Although the additional bits required for 16ECC 

introduce 34% overhead vs. 100% overhead for 4M-

4X, the ECC checking logic (2-4million transistors) and 

Figure 3. Active and static energy vs. cell size. 

Figure 2. Vmin improvements with bit cell upsizing. 

Figure 4. Improving Vmin with cell upsizing vs. ECC. 



 

 

latency makes 16ECC less attractive.   4M-2X-1ECC, 

with an overhead of about 40% for modest cell upsizing 

and a small single-bit error correcting code (SECDED) 

delivers the best overall tradeoff.  Doubling the device 

size in the minimum cell allows 4M-2X-1ECC to 

capture most of the benefit available through cell 

upsizing, after which ECC can be used at a low cost to 

provide additional Vmin improvement.    

To address the high overheads of operating at 

NTV, Wilkerson et al. [24] improve Vmin by storing 

error-correction patterns in cache resources, trading off 

cache capacity for low voltage operation.  Chishti et al. 

[5] identify the limitations of testing-based 

implementations, and propose to provide error 

correction capability using Orthogonal Latin Square 

Codes.  Chakraborty et al. [4] also trade off cache 

capacity for lower voltage.  A multi-copy cache stores 

two copies of each clean datum and three copies of each 

dirty datum to allow detection and correction of 

corrupted bits, respectively.   

In [6], Dreslinski et al. propose to combine the low 

voltage benefits of robust upsized cells and the cost 

benefits of smaller cells by building caches with a 

mixture of cell types.  Cache lines consisting of robust 

cells operate at low voltage, while a separate power 

supply provides a higher voltage to less robust cells.  

By moving recently accessed data to the low voltage 

cache lines, Dreslinksi et al. service the majority of 

requests using low voltage cache lines, and reduce 

active power in the L1 cache.    

Ghasemi et al. also propose an architecture that 

mixes cell types (i.e., sizes) [7], where both robust and 

non-robust cells are used to provide the full cache 

capacity at high voltage. As the voltage decreases, the 

cache portion with cells that are not robust for a given 

voltage is disabled, reducing the cache capacity (and 

static power) by 25%-75% depending on operating 

voltage. This approach impacts performance negligibly 

at low voltage when the number of operating cores is 

fixed across the operating voltages. Nonetheless, it may 

notably impact performance as more cores are activated 

at lower voltage. 

In [6], the reduced voltage does little to improve 

leakage since most cells continue to operate at a less 

efficient higher voltage.  To address this, Ghesemi et al. 

propose to power-gate the non-robust portions of the 

cache, reducing cache capacity by 50-75% [7].  

This paper argues that the reduced voltage is often 

a vehicle to increase active cores in power-constrained 

systems, so performance at low voltage is critical and 

the loss of cache capacity is unacceptable.  In the next 

section, we propose a mechanism that combines a 

circuit technique (cell upsizing) with architecture 

techniques to improve low-voltage performance with 

little overhead.   

3. Mixed-Cell (MC) Cache Design 

 The key idea behind our mixed-cell cache is to 

protect modified lines by storing them in robust cells, 

while using the remainder of the cache for clean lines. 

We use simple error detection and correction 

mechanisms to detect errors in clean lines. We allocate 

write misses to robust lines, and read misses to clean 

lines. On a subsequent write to a clean line, we 

investigate three alternatives to ensure modified data is 

not lost. In the remainder of this section, we describe 

the details of our implementation. 

3.1 Cache Architecture  

Figure 5 shows all three levels of our cache 

hierarchy with support for robust cells. Our baseline 

cache hierarchy is typical of what’s found in modern 

processors [11] with a 32KB 8-way L1 cache, 256KB 

8-way L2 cache, and a 4MB 16-way L3 cache. For each 

level in the cache hierarchy, we implement two ways 

with robust cells, while the remaining ways use 

standard (non-robust) cells. This adds an area overhead 

of 25% (L1 and L2) and 12.5% (L3) for the cache data 

array. We add a status bit associated with each tag 

indicating whether the associated line is a robust way or 

a non-robust way. We don’t necessarily need this extra 

bit if the robust ways are fixed to two specific ways 

(Way 0 and Way 1 in Figure 5). We also add an extra 

LRU bit since we implement a different replacement 

algorithm in the low-voltage mode.  

The right level of error detection capability varies 

for different cache levels.  Since the L1 cache is byte-

accessible and extremely latency sensitive, we use a 

parity bit for each byte in the L1 [27], similar to Intel’s 

Atom and Core processors.   We use simple SECDED 

ECC for each line in the L2 and L3 caches. We provide 

this protection for both robust and non-robust lines to 

account for soft errors as well as voltage-dependent 

failures.  In general, detectable errors in clean data are 

recoverable, but those in dirty data are not.  To 

minimize DUE (detectable unrecoverable errors), we 

handle modified data differently from unmodified data.   

If an error is detected in a clean line, it is treated 

like a cache miss and is obtained from the next level in 

the cache hierarchy.  For modified data, however, we 

must ensure a very low probability of failure, which we 

achieve through the use of robust (upsized) cells.  This 

is particularly true in the L1, where parity is unable to 

correct bit errors and the increased robustness of the 

cell allows us to minimize the likelihood of bit errors.  

To simplify our L1 cache implementation, we handle 

all accesses to failing lines as cache misses. Since the 

number of such lines is small, this has a very little 

impact on performance. For the L2 and L3 caches, 

SECDED ECC corrects most errors. Errors that are 

detected but not corrected (e.g., lines with two errors) 



 

 

are handled as cache misses and obtained from the next 

cache level or from memory. L2 and L3 lines that incur 

double-bit errors can be disabled to avoid undetectable 

errors, i.e., silent data corruption (SDC), when soft 

errors hit the same line.   

Although a detailed analysis of the pros and cons 

of disabling cache lines is outside the scope of this 

paper, our analysis shows that the probability of failures 

in robust cells is extremely low at the voltages we 

consider. For example, we find that 99.9% of the L3 

caches will suffer failures in less than 1% of all lines at 

low voltage (Section 4).  It's worth noting, however, 

that despite the minimal loss of capacity in the average 

set, specific sets may suffer significant capacity loss.  

These sets may cause performance outliers when 

running workloads that exercise them heavily. Due to 

this performance variability some designs may prefer 

alternative approaches to mitigate defects.   

Our Mixed-Cell cache handles writes differently 

from reads. The main condition we need to satisfy is to 

store modified data only in robust ways. To achieve this 

goal, we modify the cache replacement policy to handle 

write misses differently from read misses (Section 3.2). 

We also need to handle subsequent writes to non-robust 

lines (Section 3.3). 

3.2 Changes to Cache Replacement Policy  

We assume the baseline caches implement a Least-

Recently Used (LRU) replacement policy. While the 

proposed mechanism could be applied to other 

replacement policies, we chose LRU to simplify our 

description. In our mixed-cell cache architecture, we 

allocate write misses only to robust ways, and read 

misses to non-robust ways. On a read miss, we choose a 

replacement victim, NR_LRU, only from non-robust 

ways based on LRU bits. On a write miss, we choose a 

victim, GLOBAL_LRU that is the LRU line among all 

ways of the set (both robust and non-robust). If the 

victim line is robust, we trigger a writeback for 

modified data, and allocate the new line in its place. If 

the chosen victim is in a non-robust way, we choose the 

LRU line from the two robust ways (RB_LRU), trigger 

a writeback for modified data to convert the RB_LRU 

line to a clean line, move the RB_LRU line to use the 

GLOBAL_LRU line’s storage, and allocate the new 

line to the RB_LRU line.  

3.3 Handling Writes to Non-Robust Lines  

Our mixed-cell cache architecture needs to prevent 

DUE and SDC for modified data. For lines allocated on 

a write miss, the cache replacement algorithm 

guarantees that modified data will only be stored in 

robust cells. However, for lines that were allocated to 

non-robust ways on a read miss, we explore different 

alternatives to prevent failures: 

1. Writeback. We handle the write to a non-robust line 

like we would for a write-through cache. We store 

modified data in the same non-robust line, but convert it 

to a clean line by writing back the data immediately to 

the next cache level. This writeback traffic causes 

additional network congestion, as well as power and 

latency overheads. A write to the L1 cache can trigger 

 

 
Figure 5. Mixed-cell cache architecture. L1 cache uses byte parity. L2 and L3 use SECDED ECC. 
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cascading writes all the way to memory if the L2 and 

L3 caches allocated the same line to non-robust ways.  

2. Swap. For many benchmarks, we observe that a 

write to a cache line is usually followed by more writes 

to the same cache line. To reduce writeback traffic, we 

handle a write to a non-robust line by swapping with 

the LRU way of robust lines in the set, RB_LRU. The 

RB_LRU line triggers a writeback to convert to a clean 

line. The RB_LRU line is then swapped with the 

written line. The status and LRU bits are also swapped 

between the two cache tags. This approach reduces 

traffic as it is more likely to write to the most recently-

written line than it is to write to the LRU robust line. 

We model this mechanism’s overhead by blocking 

access to the cache for 3 cycles (L1) or 6 cycles (L2 and 

L3 that have 32-byte accesses) to account for using the 

cache read and write ports to perform the swap.  

3. Duplication. To avoid writeback traffic and the 

additional swap latency, we explore trading off capacity 

to save this overhead. In this mechanism, we assign 

each two consecutive non-robust lines as “partner lines” 

similar to [27]. For example, in Figure 5’s L1 cache, the 

line in way 2 is a partner line to that in way 3, the line 

in way 4 is a partner line to that in way 5, and the line 

in way 6 is a partner line to that of way 7. When a write 

occurs to a non-robust line, we evict its partner line and 

write the data to both lines, using two extra cycles. We 

modify the replacement algorithm so that the partner 

line is always invalid and is not a candidate for 

replacement. This duplication causes losing some cache 

capacity, but avoids writeback traffic and swap 

overhead. When writing to a duplicate line, we perform 

the write to both the original line and its partner. When 

reading from a duplicate line, we check parity (L1) or 

ECC (L2/L3), and trigger a read from the partner line if 

an error is detected. 

In Section 6, we compare the relative performance 

for these three implementations. We next explore 

mixed-cell alternative designs and their overheads.  

4. Mixed-Cell Vmin Analysis 

In mixing cell types, we hope to enable reliable 

operating modes as low as 590mV while minimizing 

overheads when operating at higher voltages.  Using 

this baseline, we construct three hypothetical designs 

capable of operating at 590mV, creating the additional 

power headroom to run four cores.  Due to the dramatic 

benefits the 2X cell produces relative to the minimum 

cell, we use the 2X upsized cells in our baseline cache 

designs.  The dotted lines in Figure 6 show the Vmin of 

the L1, L2 and L3, the three largest Vmin limiting 

structures in a typical CPU.  Each cache consists of 2X 

upsized cells; the L2 and L3 are augmented with a 

SECDED code.  Due to high sensitivity to additional 

latency in the L1 and high cost of per-byte ECC, the L1 

implements byte parity which allows error detection but 

cannot repair failing bits.  As depicted in Figure 6, the 

lack of ECC causes the Vmin of the L1 cache (700mV) 

to exceed that of the L2 and L3 caches, each of which 

can operate comfortably below 700mV.  However, 

none of the arrays can operate below 600mV.    

As proposed in [7], we replace two ways in both 

the L2 and L3 caches with 4X upsized cells.  By 

leveraging the 4X larger cells to store irreplaceable data 

and the ability of the SECDED code to detect (but not 

correct) 2 bit errors in non-critical data, we can improve 

the Vmin of both caches by 60mV, meeting our 590mV 

target.  In the L1, we adopt a similar mechanism to [6], 

replacing 2-ways in the L1 with upsized cells.  Since 

the 4X upsized cells fail to operate reliably at 590mV 

without ECC protection, we use the larger 8X upsized 

cells as our robust cells instead.  Figure 6 shows the 

impact of adding more robust cells on Vmin, improving 

the L1 cache by 125mV and the L2 and L3 by 60mV 

each, enough to permit 590mV operation.   

In Figure 7, we compare three reduced Vmin 

designs to a baseline that uses more robust cells.  

Rather than plotting the Vmin of each cache separately, 

Figure 7 shows the maximum Vmin of all caches for 

each mechanism.  We describe the compared 

mechanisms in more detail in the next section. 

ROBUST builds all caches using only robust cells.  

MC_DISABLE applies the mixed-cell approach 

proposed in [6] and [7] to all caches in the hierarchy.  

Lines implemented with robust cells replace two ways 

out of each 8-way set in the both the L1 and L2 caches, 

and four out of sixteen ways in the L3.  Since only 

robust ways operate at low voltage, the Vmin of the 

robust portion of the cache determines the overall cache 

Vmin.  The smaller cache capacity when operating at 

Vmin accounts for the slight improvement the 

MC_DISABLE shows when compared to ROBUST.  

MC_SWP refers to our proposed mechanism in which 

both the robust portions of the cache and the non-robust 

portions of the cache combine to determine Vmin.  In 

general, our ability to detect errors in the non-robust 

portions of the cache result in 10X reduction in failure 

rate relative to the robust portions.  As a result the 

robust portions of the cache determine the Vmin for 

both MC_DISABLE and MC_SWP, causing them to 

exhibit similar failure rates at 590mV.   

Circuit/Design Overheads. Our mixed-cell cache 

design uses typical 6-T bit cells and upsized 6-T bit 

cells. Mixing these two cell types within a sub-array 

(bank) can reduce area efficiency and introduce 

manufacturing complications.  Matching the poly-pitch 

of the different cell types and growing the cell in only 

one dimension (Figure 8) mitigates design and 

manufacturing complexity of a mixed-cell cache.  



 

 

Mixing cell types at a sub-array level (such that each 

sub-array consists of only one cell type and different 

sub-arrays consist of different cells) avoids this 

problem.  In fact, many of today’s CPUs use different 

cell types for tag and data arrays. Our mixed-cell cache 

organizes cache ways as banks (sub-arrays). Some sub-

arrays can be implemented with robust cells, and the 

remaining sub-arrays with smaller (non-robust) cells.  

 
Figure 8: Upsized cell pitch-matched with nominal cell. 

As mentioned earlier, larger cells come with area 

and power overheads.  Kulkarni et al. [15][16] analyzed 

the impact of device upsizing on the bit cell area. When 

each transistor is upsized by 4X, the cell area doubles, 

resulting in 4X increase in bit cell leakage as well as 

WL/BL capacitances. In this work, we model 6-T bit 

cells upsized to improve Vmin.  In addition to bit cell 

upsizing, several read/write assist techniques have been 

proposed to achieve low Vmin operation. Read-write 

assist techniques control the magnitude and the duration 

of different node biases (such as word-lines, bit lines, 

bit cell VSS node, and bit cell VCC node) [12]. Assist 

techniques can lower Vmin at the expense of the higher 

switching capacitance (CDYN). A “robust cell” can be 

achieved by the optimal combination of bit cell size 

and/or assist techniques to enable lower Vmin.  

5. Evaluation Methodology 

5.1 Baseline Configuration 

We use CMP$im [10], a Pin-based x86 simulator.  

Our baseline processor is 4-wide out-of order with 128-

entry reorder buffer and a three-level cache hierarchy, 

similar to the baseline of the Cache Replacement 

Championship [11]. Each core has L1 split instruction 

and data caches, a unified L2 cache, and all cores in our 

2-core and 4-core processor share the L3 cache.  

Cache Configuration. We use a 32KB, 4-way L1 

instruction cache, a 32KB, 8-way 32KB L1 data cache, 

a 256KB 8-way L2 cache (per core), and a 4MB, 16-

way shared L3 cache. The L3 cache is a non-

inclusive/non-exclusive cache. All caches use 64-byte 

lines, and implement LRU as the default replacement 

policy. The load-to-use latencies for the L1, L2, and L3 

caches are 3, 10, and 25 cycles, respectively. We keep 

the shared L3 size constant between our single-core, 2-

core, and 4-core configurations. This translates into 

larger cache capacity per core for single-core 

(4MB/core) and 2-core (2MB/core) configurations 

compared to the 4-core system (1MB/core). We assume 

on-die interconnects can transfer 32-bytes per cycle 

between the L1 and L2, and between the L2 and L3 

caches. This limits our on-die bandwidth to one 64-byte 

line every two cycles between the L1 and L2, and 

between each of the L2 caches and the L3 cache. This 

increases network congestion and latency when 

writeback traffic contends with cache misses for the 

shared interconnect. We also model the extra latency 

and cache port utilization due to swaps and 

duplications. For each swap in MC_SWP, we assume 

the L1 cache is inaccessible for three cycles, and the L2 

and L3 are inaccessible for six cycles. We assume a 

duplication in MC_DUP makes the cache inaccessible 

for an extra cycle (L1) or two cycles (L2 and L3).  

Memory Configuration. We model a 200-cycle 

latency to memory at the high frequency (2.1GHz for a 

single processor). The memory latency (in cycles) 

decreases when we use lower frequencies for the 2-core 

and 4-core systems. For the 2-core system running at 

1.4GHz, memory latency decreases to 130 cycles as the 

cycle time is longer. For the 4-core processor running at 

825MHz, memory latency becomes 80 cycles. We 

support a maximum of 32 outstanding misses to 

memory. We implement four memory controllers per 

chip, each with a 6GB/sec bandwidth to memory, for a 

total of 24GB/sec memory bandwidth. This bandwidth 

is shared between all cores in the system, so the 

bandwidth per core is higher for our single-core 

(24GB/sec/core) and 2-core (12 GB/sec/core) compared 

to our 4-core system (6GB/sec/core). 

Reliability. We assume our baseline system 

implements per-byte parity for the L1 cache, and 

Figure 6. Vmin at different cache levels in baseline and 

mixed-cell caches. 

Figure 7. Vmin for all caches in baseline, all robust, and 

mixed-cell caches. 



 

 

SECDED ECC for the L2 and L3 caches to guard 

against soft errors. Since the on-die network uses 32-

byte transfers, we implement SECDED ECC on 32-

bytes in the L2 and L3 caches to protect against cache 

and network failures. Our single-core baseline runs at 

850 mV with a 2.1 GHz frequency. The 2-core system 

runs at 700 mV with a 1.4 GHz frequency. The 4-core 

system runs at 590 mV with an 825 MHz frequency.  

5.2 Benchmarks 

We simulate benchmarks from the SPECCPU2006 

suite [22].  We use SimPoint [18] to identify a single 

characteristic interval (i.e., simpoint) of each 

benchmark. Each benchmark is run with the first 

reference input. We first run 50 million instructions to 

warm up the internal structures and then run the 

simulation for 100 million instructions. For multi-core 

simulations, each benchmark runs simultaneously with 

the others, restarting after 100 million instructions, until 

all of the benchmarks have executed at least 100 

million instructions after the warmup. We use 

instructions-per-cycle (IPC) to measure single-core 

performance. For multi-core workloads, we use the 

weighted speedup normalized to the baseline. That is, 

we compute IPCi for each application i sharing the L3 

cache, then compute IsolatedIPCi for application i 

running in isolation with the same L3 cache size. We 

compute the weighted IPC of a workload as sum of its 

components’ (IPCi/IsolatedIPCi).  

For most of our results in Section 6, we use a 

cache-sensitive subset of SPECCPU2006 benchmarks. 

We selected eighteen benchmarks that see more than a 

3% slowdown when either the L1 or L3 cache is 

reduced to a quarter of its original size. The 4-core 

workload mixes are randomly chosen from these 

eighteen benchmarks. We have ten homogeneous 

workloads (running four copies of the same 

application), and ten heterogeneous workloads (running 

a mix of four different benchmarks).  Table 1 lists the 

benchmarks included in each of 4-core workloads. 
Table 1. Four-Core Workloads. 

Num. Mix Num. Mix 

1 4X 400.perlbench 2 4X 403.gcc   

3 4X 416.gamess  4 4X 444.namd   

5 4X 445.gobmk  6 4X 450.soplex  

7 4X 453.povray  8 4X 471.omnetpp 

9 4X 482.sphinx3 10 4X 483.xalancbmk  

11 bzip2, gcc, soplex, 

xalancbmk  

12 perlbench, omnetpp, 

sphinx3, xalancbmk  

13 bzip2, astar, 
sphinx3, xalancbmk  

14 gcc, mcf, soplex, 
sphinx3 

15 gcc, astar, sphinx3, 

xalancbmk  

16 perlbench, bzip2, 

soplex, xalancbmk  

17 perlbench, gcc, mcf, 
namd  

18 perlbench, mcf, 
gobmk, astar  

19 perlbench, gobmk, 

soplex, sphinx3 

20 perlbench, gobmk, 

omnetpp, xalancbmk 

5.3 Simulated Configurations 

We compared the following configurations: 

Baseline (BASE). Our baseline configuration is 

explained in detail in Section 5.1. To compare the same 

area as our heterogeneous-cell designs, we increase the 

cache capacity in the L1 and L2 caches by 25%, and the 

L3 cache by 12.5%. We use a 40KB, 10-way L1 data 

cache, a 320KB, 10-way L2 cache, and an 18-way, 4.5 

MB L3 cache. This configuration could not operate at 

low voltage, but we include its results for reference.  

ROBUST. This configuration uses robust cells for the 

whole cache with no changes to the cache replacement 

policy. We use a 20KB, 5-way L1 data cache, a 160KB, 

5-way L2 cache, and a 9-way, 2.25 MB L3 cache.  

Write-through (WT). This configuration uses standard 

cells as the baseline, and protects modified data by 

propagating it down the cache hierarchy. A processor 

store instruction to the L1 data cache triggers a write to 

the L2, and a write to the L2 triggers a write to the L3 

cache. This configuration has significant slowdowns 

due to contention for on-die and memory bandwidth. 

MC_DISABLE. This configuration uses a mix of 

robust and non-robust cells like the proposal by 

Ghasemi, et. al. [7].  At low voltage, only the robust 

cells are used, resulting in an 8KB, 2-way L1 data 

cache, a 64KB 2-way L2 cache, and a 1MB 4-way L3 

cache (larger area than our proposals which use only 

two robust L3 ways).  

MC_WB. This configuration implements the mixed-

cell writeback mechanism (Section 3.3). We allocate 

write misses to robust ways and read misses to non-

robust ways. Subsequent writes to non-robust ways 

trigger writebacks to the next cache level or to memory. 

MC_SWP. MC_SWP implements the mixed-cell swap 

mechanism (Section 3.3). On a write to a non-robust 

line, the line is swapped with a robust line, triggering a 

writeback from the robust line. 

MC_DUP. This configuration implements the mixed-

cell duplication mechanism (Section 3.3). On a write to 

a non-robust line, the partner non-robust line is evicted 

and the write goes to both the original line and its 

partner line. This mechanism reduces cache size when a 

large percentage of writes goes to non-robust lines. 

6. Results 
In this section, we present the experimental results 

for our proposal. Section 6.1 evaluates low-voltage 

multi-core performance and compares it to single-core 

performance. Section 6.2 analyzes the power and 

energy-efficiency of our proposals vs.  prior techniques. 

6.1 Performance 

We evaluate the performance of single-core and 

multi-core systems using the same power budget 

(Section 2.1). A single-core runs at a higher voltage and 

frequency, and uses the whole L3 cache, on-die and 



 

 

memory bandwidth. For the same power budget, 2- and 

4-core configurations run at lower voltages and 

frequencies, and share the L3 and bandwidth resources. 
Single-Core Performance for Mixed-Cell Designs. 
Figure 9 shows the speedup of different alternatives 

described in Section 5.3 compared to the ROBUST 

mechanism (where all the cells are robust, and the 

cache size is smaller than the baseline). The write-

through (WT) mechanism performs 18% worse, on 

average, due to additional writeback traffic that 

increases congestion in the on-die interconnect and 

memory bus. The MC_DISABLE proposal in [7] has 

the whole cache operational at the single-processor, 

high-voltage configuration, so it performs 9.5% better 

than ROBUST. Our MC mechanisms perform similar to 

MC_DISABLE if we use LRU cache replacement at 

high voltage. However, if we use the same replacement 

policy as low-voltage (Section 3.2), they perform better 

by 5.6% (MC_WB), 8.4% (MC_SWP), and 3.4% 

(MC_DUP) on average.  

We performed simulations to evaluate the 

applicability of ECC-based mechanisms in the L1 data 

cache. Our experiments show that increasing the L1 

access latency by one cycle, from 3 to 4 cycles, 

degrades performance by 5%. This demonstrates the 

need to implement a non-ECC mechanism in the L1 to 

avoid latency increases and performance losses.  

Multi-Core Performance for Mixed-Cell Designs. 
Figure 10 shows the speedup of different alternatives 

for a 4-core system running at low voltage, relative to 

the ROBUST mechanism (Section 5.3). Since multi-

core performance is more sensitive to cache parameters, 

other mechanisms show significant slowdowns 

compared to just upsizing all cache lines while losing 

half the cache capacity. Write-through (WT) introduces 

a significant amount of network traffic leading to an 

average 73% slowdown vs. ROBUST. MC_DISABLE 

only operates a quarter of the cache capacity at low-

voltage leading to an average 12% slowdown. While 

MC_WB slows down performance by 16% on average 

due to the extra writeback traffic, the other two 

mechanisms improve performance by 3.5% (MC_SWP) 

and 2.6% (MC_DUP). Compared to MC_DISABLE, 

MC_SWP improves performance by 17% while 

MC_DUP improves performance by 16%, on average. 
Network Traffic. Figure 11 shows increases in on-die 

bandwidth for the alternatives discussed in Section 5.3. 

Figure 12 illustrates increases in memory bandwidth 

demand. These figures demonstrate why WT degrades 

performance.  On average, WT increases on-die traffic 

and memory bandwidth (off-die) by factors of 18x and 

62x.  MC_WB is also bandwidth hungry, increasing on-

die traffic by a factor of 5, and memory traffic by 

almost a factor of 9. MC_DISABLE increases traffic 

because of the smaller cache sizes, by 152% and 45% 

for on-die and memory bandwidth, respectively.   In 

contrast, MC_SWP and MC_DUP increase on-die 

bandwidth by an average of 47% and 44% respectively, 

and memory bandwidth by 14% and 4.8%.  Consider 

the top 4 workloads (6, 14, 17, 18) each of which make 

more than 20 million requests from memory, 5 times 

more than other workloads.   For these, MC_SWP and 

Figure 9. Single-core speedup vs. ROBUST. 

 

Figure 10. 4-Core Speedup vs. ROBUST for workload mixes in Table 1. 

 



 

 

MC_DUP increase memory bandwidth by 9% and 3%, 

compared to 30% for MC_DISABLE.   MC_WB and 

WT increase memory traffic by factors of 3x and 18x.  

When focusing on only the worst on-die traffic 

offenders, we observe similar trends.  Based on these 

comparisons, MC_SWP and MC_DUP clearly improve 

over alternatives.  

6.2 Energy Efficiency   

Although our approach allows operation at a 

reduced voltage, the reduction in Vmin must 

compensate for the dynamic and static power added by 

the larger robust cells.  In designs where one or more of 

the caches share a power supply with the core, 

reductions in cache Vmin enable reductions in core 

Vmin.  Our mixed-cell cache reduces cache Vmin by 

125mV, leading to a 50% reduction in core power, and 

therefore allowing us to double the number of active 

cores at the same power budget.  However, cell 

upsizing adds both static power (a problem in large L3 

caches), and dynamic power (a problem in L1 caches).  
Static Power in L3 Cache.  Figure 13 compares the 

static power for different alternatives in the L3 cache 

where static power dominates total power. We compare 

MC_DUP/SWP, MC_DISABLE, ROBUST, and a 

fourth option (separate Vcc) in which the cache has a 

separate power supply.  The static power of the caches, 

normalized to the separate Vcc configuration at high 

voltage, is shown on the Y axis as a function of voltage 

(X axis).   MC_DISABLE sees a significant reduction 

in static power at 715mV, the Vmin of the non-robust 

portion of the cache, due to power gating of the non-

robust portion and its associated loss of cache capacity.  

Likewise, the reduced capacity of ROBUST 

compensates for increased cell size.  Static power for 

MC_DUP and MC_SWP are equivalent and are plotted 

together.     At Vmin, MC_DUP and MC_SWP reduce 

power by 10% vs. separate Vcc, without the cost of the 

additional power supply, or its additional inefficiencies.   

Dynamic Power in L1 Cache. Figure 14 compares the 

dynamic power, normalized to separate Vcc at high 

voltage, for different alternatives in the L1 cache (with 

much higher dynamic power than static power). In 

general, both mixed-cell approaches and the ROBUST 

approach incur significant penalties relative to the 

baseline. MC_DISABLE and ROBUST both suffer 

from the need to service all cache requests with robust 

cells.  In contrast, MC_SWP benefits from splitting L1 

cache access between the non-robust and the power 

hungry robust cells.  Although robust ways represent 

only 25% of L1 cache capacity, our experiments show 

that forcing writes to robust ways causes 65% of the L1 

access to be handled by the robust ways.   MC_DUP, 

with the ability to handle writes in both robust and non-

robust ways handles only 35% of the L1 accesses in 

robust ways and consumes 30% less power than 

MC_SWP as a result.  Overall, the dynamic power of 

MC_DUP is 50% better than MC_DISABLE (similar to 

[7]) and within 30% of the configuration with a 

separate power supply without the additional costs and 

inefficiencies of a separate supply.   

7. Conclusions 

Mixed-cell cache architectures enable low-voltage 

operation for a fraction of the cache composed of robust 

cells. This tradeoff allows using the entire cache when 

 
Figure 11. 4-Core On-Die Bandwidth vs. BASE (log scale) for workload mixes in Table 1. 
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Figure 12. 4-Core Memory Bandwidth vs. BASE (log scale) for workload mixes in Table 1. 
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operating at high voltage, but loses capacity at low 

voltage.  In power constrained multi-core systems, the 

lowest voltage mode maximizes the number of active 

cores and therefore needs the most cache capacity.  

We evaluated a power-constrained system with the 

ability to operate 1, 2 and 4 cores within the same 

power budget.   To support 4 active cores, our system 

uses a mixed-cell cache architecture to operate at 

590mV (NTV), where the 75% capacity loss 

experienced by our baseline mixed-cell cache 

architecture resulted in a 12% performance loss.  We 

describe a novel mechanism that avoids losing cache 

capacity by managing cache data to allow the use of 

both robust and non-robust portions.  Consistent with 

prior work, our proposal delivers a 9.5% performance 

benefit relative to a non-mixed cell baseline using only 

robust cells.  However, in contrast to prior work, our 

design avoids significant cache size reductions at low 

voltage, improving multi-core performance an average 

of 17% and saving 50% of the L1 dynamic power.   
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