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Abstract

The least recently used (LRU) replacement policy per-

forms poorly in the last-level cache (LLC) because temporal

locality of memory accesses is filtered by first and second

level caches. We propose a cache segmentation technique

that dynamically adapts to cache access patterns by pre-

dicting the best number of not-yet-referenced and already-

referenced blocks in the cache. This technique is indepen-

dent from the LRU policy so it can work with less expen-

sive replacement policies. It can automatically detect when

to bypass blocks to the CPU with no extra overhead. In

a 2MB LLC single-core processor with a memory inten-

sive subset of SPEC CPU 2006 benchmarks, it outperforms

LRU replacement on average by 5.2% with not-recently-

used (NRU) replacement and on average by 2.2% with ran-

dom replacement. The technique also complements existing

shared cache partitioning techniques. Our evaluation with

10 multi-programmed workloads shows that this technique

improves performance of an 8MB LLC four-core system on

average by 12%, with a random replacement policy requir-

ing only half the space of the LRU policy.

1. Introduction

Modern processors have large on-chip caches to mitigate

off-chip memory latency. The least recently used (LRU) re-

placement policy represents the cache blocks in a set as a

recency stack where the most recently used (MRU) block is

at the top of the stack. This policy picks the LRU block as

the replacement candidate as blocks recently used are more

likely to be accessed in the near future. However, in a three-

level cache hierarchy, this temporal locality is filtered by the

L1 and L2 caches. Thus, LRU performs poorly in the last-

level cache (LLC) [23, 7, 16]. Recent proposals change the

insertion policy, placing incoming blocks in different stack

positions to adapt to workload characteristics [23, 7, 28].

These proposals are resistant to scans and to thrashing. A

scan is a burst of accesses to data that are never reused be-

fore being evicted. Thrashing workloads have a working set

size greater than the cache size, causing useful cache blocks

to be evicted. Though these proposals take care of scanning

and thrashing workloads, they depend on the recency levels

the LRU policy and insert blocks adaptively in either re-

cent or non-recent positions. Thus, these techniques cannot

be applied to policies with no inherent levels, for example

random replacement. In this paper we propose a decoupled

technique that is scan and thrash resistant and can be used

with any replacement policy. Recent insertion-based pro-

posals require low overhead but cannot detect blocks that

will not be reused, i.e. zero-reuse blocks. Replacement

policies that can bypass zero-reuse blocks [14, 10], i.e., pass

them along to the CPU without placing them in the cache,

require significant hardware overhead. Our proposed tech-

nique is not only scan and thrash resistant, but can auto-

matically detect zero-reuse blocks irrespective of the base

replacement policy without significant overhead.

We propose segmenting cache sets into referenced and

non-referenced blocks, i.e. blocks that have been refer-

enced at least once since being placed in the cache and

blocks that have not yet been referenced since their ini-

tial access. This technique attempts to maintain the best

number of non-referenced and referenced blocks depend-

ing on the workload characteristics. We propose a scalable

low-overhead segment predictor based on sampling that can

predict the best segmentation at runtime. It adjusts the seg-

mentation based on cache access patterns. It can resist scans

and thrashing by evicting non-referenced blocks. This tech-

nique is completely decoupled from the replacement pol-

icy. Dynamic Cache Segmentation(DCS) decides whether

a victim should be selected from non-referenced blocks or

referenced blocks. Any replacement policy can be used to

choose the victim from that specific list. The technique

can improve performance with inexpensive policies like Not

Recently Used (NRU) and random. This scan and thrash

resistant technique requires far less space than LRU and

can still detect zero-reuse blocks. Dynamic segmentation

with automated bypass can improve performance with ran-

dom replacement, requiring only half the space overhead of
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LRU. It can also be used for multi-core workloads with a

conjunction of any cache partitioning techniques. The con-

tributions of this paper are:

• We propose a dynamic cache segmentation tech-

nique that attempts to keep the best number of non-

referenced and referenced blocks in cache sets. We

propose a sampling-based scalable low-overhead tech-

nique to predict the best segmentation.

• We show that the segmentation technique can be de-

coupled from the replacement policy and can work

with inexpensive policies like NRU and random.

It also automatically detects bypassing opportunities

without any extra overhead irrespective of the replace-

ment policy being used.

• We show that cache segmentation complements cur-

rent shared cache partitioning techniques. Dynamic

cache partitioning even with a default random policy

can outperform LRU using half the space overhead.

In a single-core processor with 2MB LLC, DCS outper-

forms LRU policy on average by 5.2% with NRU replace-

ment and on average 2.2% with random replacement, with a

memory intensive subset of SPEC CPU 2006 benchmarks.

Evaluation with multi-programmed workloads shows that

the technique improves the performance of a 8MB LLC in

a four-core system on average by 12% with random replace-

ment requiring half the space of LRU.

2. Motivation

Recent work has shown that last-level caches (LLCs)

perform poorly with the LRU replacement policy [23, 7,

16]. Upper level caches filter out the temporal locality, de-

stroying the property upon which LRU relies, that most re-

cently used block will be used again in the near future. LRU

performs poorly in the LLC when the working set is larger

than the cache size (thrashing) or bursts of non-temporal

references evict the active working set (scanning).

2.1. Addressing Workload Behavior

Recent proposals addressing these effects include chang-

ing the insertion policy [23, 7] so that thrashing and scan-

ning workloads can perform well in the LLC. Dynamic In-

sertion Policy (DIP) [23] avoids thrashing by attempting

to keep a portion of the workload in the cache by insert-

ing blocks responsible for thrashing into the LRU position.

Thus, some part of the working set always remains in the

cache and thrashing blocks can not pollute the whole cache.

DIP uses LRU for all other non-thrashing workloads, so it

performs poorly for workloads where frequent scans discard

the working set in the LLC. RRIP [7] is an insertion policy

Technique Thrash Scan DetectDecoupledOverhead

resistantresistantbypass

DIP yes no no no low

RRIP yes yes no no low

DCS yes yes yes yes low

Table 2: Comparison among techniques

with NRU replacement policy that is both scan and thrash

resistant. It inserts thrashing blocks at the end of the NRU

stack and other blocks near the end of the NRU stack. Thus

RRIP adapts to both thrash resistant DIP and scan resistant

LFU. The performance of RRIP depends on the number of

NRU levels as non-scanning blocks must be re-referenced

before they are evicted.

2.2. A Decoupled Flexible Policy

Clearly, it would be best to have a policy that is resistant

to both scanning and thrashing but also works with mixed

access patterns. Both DIP and RRIP are dependent on a

policy that divides the blocks of a set in levels of recency

(LRU and NRU) to insert blocks into a specific position.

We propose a mutable technique that is decoupled from the

choice of replacement policy and works with all access pat-

terns. Additionally, the technique can detect when to bypass

blocks without extra overhead. Most blocks brought into the

LLC are never used again. Recent work has proposed tech-

niques where zero-reuse blocks are identified and evicted

earlier [14, 13, 12]. However they require significant ex-

tra overhead to identify blocks that are never reused. We

propose a mutable scan and thrash resistant technique with

automated bypass that works with any replacement policy

without significant overhead.

2.3. Segmenting Cache Sets with Prediction

We propose to segment cache sets into two parts: the

referenced list and non-referenced list. Blocks that have

been referenced again after being brought into the cache be-

long to the referenced list while blocks that have not been

reused are in the non-referenced list. A segment predic-

tor predicts the best segmentation for the two lists. It pre-

dicts the best segment size for the non-referenced list; the

resulting size for the reference list is simply the size of

the non-referenced list subtracted from the total number of

ways. This technique attempts to keep the best number of

referenced and non-referenced blocks by choosing replace-

ment victims from the list that has more blocks than the

predicted best number of blocks. This technique can ad-

dress thrashing and scanning blocks by keeping the non-

referenced list as a singleton block. It also chooses the best
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Table 1: Effect of static segmentation. Row 1 shows the benchmarks with no effect of segmentation. Row 2 shows LRU

friendly benchmarks and row 3 shows benchmarks which are effected by segmentation.

segmentation size for mixed access patterns. Table 1 shows

the instructions-per-cycle (IPC) with static segment sizes

for the SPEC CPU 2006 benchmarks. We show the IPC

when each benchmark is run with static segement size 1 to

16. The maximum IPC is achieved at different segment size

for different benchmarks. For scanning and thrashing work-

loads, the best static segment size of the non-referenced list

is one, where mixed access pattern workloads perform best

with variable segment sizes. For example, perl performs

best with segment size 1 but bzip performs best with sege-

ment size 4. This clearly shows that we need an adpative

mechnism to determine the best segment size at runtime and

unlike previous policies [23, 7], staticially determining the

insertion position is not enough to achieve the best possible

performance.

Our technique selects the list from which the victim

should be chosen. Any replacement policy can be used

within a list, even random replacement. Thus, the replace-

ment policy is decoupled from the segmentation technique.

Another advantage is that segmentation automatically de-

tects when to bypass lines. When the predicted best seg-

mentation size is one, blocks arriving to the LLC cannot be

referenced. So segmentation can identify a zero-reuse block

without any extra overhead.

3. Related Work

This section describes related work. There have been

many replacement policy proposals for both disk caches and

CPU caches. Prior work has proposed different versions of

the LRU replacement policy. Segmented LRU [9] was pro-

posed for disk caches. It augments each cache block with

a reference bit dividing the traditional LRU stack of cache

blocks into two logical sub-lists, the referenced list and the

non-referenced list. The replacement policy chooses the

LRU block from the non-referenced list. If all cache blocks

are in the referenced list then it selects the global LRU cache

block from among all the blocks in the set. This policy per-

forms poorly for LRU friendly workloads as the stale blocks

in the referenced list are rarely evicted.
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Figure 1: Logical view of the replacement scheme

There are other variations of the LRU replacement pol-

icy, such as the LRU-K policy [21]. This policy takes into

account the kth access from the last access to determine the

victim. The Least Frequently Used (LFU) policy chooses

the victim considering access frequency rather than the re-

cency [17]. LFU performs poorly with workloads that have

temporal locality, thus much work has been done to develop

hybrid policies that take into account both recency and fre-

quency [20, 2, 8]. Adaptive tuning policies like ARC and

CAR [20, 2] use segmentation to choose which list to evict

from. However, they require a large overhead to determine

the best segmentation. ARC requires tracking 2c lines for

a cache with size c. Pseudo-LIFO [4] chooses the victim

from a fill stack rather than a recency stack. This policy re-

quires extra overhead to track the fill positions of the blocks.

Other work also proposes to divide the LRU blocks into dif-

ferent partitions and replace from different portions of the

partitions [8, 19]. They all maintain a static ordering while

deciding which partition should be used to choose the vic-

tim. They cannot choose the partition adaptively.

Recent work propose changing the insertion policy to

adapt to different cache access patterns [23, 7]. Dynamic In-

sertion Policy (DIP) places incoming lines at the end of the

LRU stack [23]. RRIP attempts to insert lines near the end

of the recency stack [7]. Both of them takes into account

two types of workloads. DIP can handle LRU friendly and

thrashing workloads. RRIP can handle thrashing and scan-

ning workloads.

Another area of research predicts the last touch of the

blocks [16, 18]. Dead block predictors can detect when a

block is accessed for the last time and evict them to make

room for useful lines [14, 13]. However, dead block predic-

tion requires significant extra overhead for the predictor.

4. Dynamic Segmented Cache

Dynamic cache segmentation (DCS) partitions cache

sets into non-referenced blocks and referenced blocks. It

attempts to keep the best partition for all sets. If one of the

lists has more blocks than it is suppose to, the next victim

is chosen from that list. Figure 1 shows the logical view

of the segmented cache. The segment predictor predicts the

best partition size for a given workload. When a block must

be replaced from a set, either list can be chosen depending

on the current partition of the set. DCS needs only one bit

per cache block to differentiate referenced blocks from the

non-referenced blocks.In this section we describe in detail

the idea of DCS as well as several versions of the policy

based on different underlying replacement policies.

4.1. Predicting the Best Segmentation

Here we discuss how the segment predictor predicts the

best segment size. We use set-dueling with sampling to de-

termine the best segment size [23]. Set-dueling samples a

few “leader” sets from the cache that always implement one

particular policy chosen from the possible policies. Coun-

ters are used to keep track of which policy yields the fewest

misses and all of the other cache sets, i.e. “follower” sets,

follow the best policy. We consider two designs: one uses

some sampled sets of partial tags kept externally and the

other uses sampled sets in the cache. These randomly cho-

sen sample sets imitate a decision tree used to predict the

best segmentation. We consider five segments sizes for the

non-referenced list to choose from. They are segment size

1, 4, 8, 12 and 16 for a 16-way set-associative cache. Con-

sidering more segment sizes does not significantly improve

performance. In the segment predictor, two segment sizes

set-duel at each level. The winner of one level determines

the next competitor segment size for the next level. Figure 2

segment 8 winner

segment 1
winner

segment 8
winner

segment 12
winner

winner winner
segment 8segment 4

segment 16
winner

segment 16 winner

optimal

size 1
segment

size 4

size 16size 12

optimal
segment segment

optimal

optimal
segment

optimal
segment

size 8

set dueling between
segment size 4 and 8

set dueling between
segment size 1 and 8

set dueling between

segment size 16 and 8
set dueling between

segment size 12 and 16

Figure 2: Decision Tree Analysis to find the best non-

referenced segment size

shows each leaf representing the final best size. Each node

in the tree determines the next segment size to be consid-

ered. For example, if between segment sizes 8 and 16, seg-

ment size 8 is winning, that means that having at most 8
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Figure 3: 3D model of the Optimal Segment Predictor

blocks in the non-referenced list will yield the best perfor-

mance. In order to determine which partition between 1

and 8 is better, the next level duels between segment sizes

1 and 8. This way each node selects the next segment size

until it reaches a leaf. We use three kinds of leader sets.

Two leader sets are static and always uses segment sizes 8

and 16, ensuring that the predictor will respond to workload

phase changes. Depending on which leader set is winning,

the adaptive leader picks the segment size following the de-

cision tree. This way the technique can consider variable

segment sizes using only three types of leader sets. We can

visualize DCS as a three-dimensional decision making en-

gine while set-dueling is only one-dimensional as depicted

in Figure 3. Set-dueling can make only one of the two deci-

sions. In a two-dimensional decision engine, we can choose

one of four outcomes. We have added another dimension so

that we can choose one of eight decisions. However, we find

that choosing one of five outcomes is sufficient. This tech-

nique is different from multi-set-dueling [19] where each

decision has its own leader sets and they simultaneously set-

duel at each level in groups of two. Multi-set-dueling is not

scalable as the number of leader sets has to grow linearly

with the number of outcomes being considered.

4.2. Decoupled from Replacement Policy

Partitioning the cache sets into non-referenced and refer-

enced list enables decoupling the replacement policy from

the segmentation. DCS only decides which list should be

used for choosing replacement victims depending on the

current and best list sizes. Each list is free to use any re-

placement policy to choose the replacement victim. DCS

can be used with simple and light replacement policies like

Not Recently Used (NRU) and random replacement. In Sec-

tion 7 we show that DCS with simple NRU and random

policies outperforms the more costly LRU policy.

Dynamic Segmentation with NRU Policy The NRU

policy approximates the recency stack based LRU policy

but using only one bit, called the NRU bit, per cache block.

The NRU recency stack has only two levels, so each level

can have more than one block. By contrast, the LRU policy

is organized such that each block will reside in a distinct

level. In NRU, when a new line is placed in the cache, its

NRU bit is set to zero moving the cache block to the top

of the recency stack. On a cache miss a block whose NRU

bit is set to one is selected as the victim. Since there can

be many blocks in the lower recency level, the NRU victim

search starts from a fixed cache way. If there is no block

with its NRU bit set to one, then all of the NRU bits are set

to one. We adapt DCS to use the NRU policy for each list to

select the victim. Each cache block needs one bit to identify

referenced and non-referenced lines and one bit to track the

NRU policy within the lists.

Dynamic Segmentation with Random Policy The ran-

dom replacement policy selects a victim pseudo-randomly

from a cache set. It has no information about temporal lo-

cality, so it tends to perform poorly for LRU friendly work-

loads. It also has no information about thrashing/scanning

workloads so it performs poorly for them as well. Never-

theless, it is the simplest replacement policy with no cache

block overhead. We show that DCS works well even with

random replacement. The segment predictor picks the list

that from which the victim should be chosen and a block is

randomly chosen from that list. This provides the random

policy some information about the workload access pattern.

In Section 7 we show that DCS with random replacement

can outperform the LRU policy. Per block overhead in this

case is just one bit that differentiates non-referenced and

referenced lines.

Ignoring Segmentation Figure 1 shows that there are

some workloads that will always perform better with LRU

than with any segmentation size. In these cases we can

choose to ignore the segmentation. We can implement a ver-

sion of DCS that incorporates non-segmented policies like

NRU/LRU. After the predictor chooses the best segmenta-

tion, that segmentation set-duels with the non-segmented

policy. If the winner of this final stage is non-segmented

policy, then the segment predictor concludes that the work-

load is LRU-friendly and the replacement decision ignores

the segmentation. In the case of NRU policy, it picks one of

the non-recently used blocks from the whole set.
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4.3. Automated Bypass

The LLC frequently has a large fraction of zero-reuse

blocks [14, 10]. Bypassing these blocks to the core can sig-

nificantly improve LLC efficiency. Bypassing allows the

LLC to save space for other useful blocks in the cache

by not placing a suspected zero-reuse block in the cache.

One advantage of DCS is that it can inherently detect zero-

reuse blocks without any extra overhead. A large number

of zero-reuse blocks are referenced when there are thrash-

ing/scanning workloads. DCS can detect these workloads

and identify the phases where it can safely bypass an in-

coming block. When the current partition size is one, DCS

can safely bypass incoming blocks. The policy keeps one

incoming block in the LLC after every 32 misses to prevent

the working set from becoming stale.

4.4. Ensuring Thrashing Resistant

DCS does not enforce the partition size in cache sets.

Rather, it attempts to gradually converge to the partition size

predicted by the segment predictor. When bursts of lines are

placed in the cache they all start from the non-referenced

list. This initialization can cause the number of lines to far

exceed the predicted best size. Figure 4 shows the run time

1 5 10 15 20 25 30
Cycles (M)

0

5

10

15

S
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t 
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Optimal Segment Size

Figure 4: Runtime non-referenced segment size for three

representative sets from 483.xalancbmk

non-referenced segment size of three representative sets for

the benchmark 483.xalancbmk chosen randomly. The

segment predictor predicts the best non-referenced list size

to be one. Some sets quickly converge to the best size while

some converge slowly. However, there are also a large num-

ber of sets where bursts of accesses always keep the current

partition far more than the predicted best size of one. We

solve this problem by inserting blocks in the not-recent part

of the not-referenced list. This ensures that thrashing blocks

are discarded from the cache, while maintaining part of the

working set in the cache.

4.5. Mutable Policy

01 0 0 0age 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 11 11 1 1 1 1 1 1 1 1used

01 1 1 1age 1 1 1 1 0 0 0 0 0 0 0

used 0 1 1 1 11 11 1 1 1 1 1 1 1 1

01 0 0 0age 1 1 1 0 0 0 0 0 0 0 0

used 0 0 0 0 11 11 1 1 1 1 1 1 1 1

referenced listnon−referenced
list

referenced list

referenced listnon−referenced list

non−referenced list

k=segment size

s= segment size predicted
by optimal predictor

victim

victim

victim any of these blocks

approximating NFU, victim = maxage{Snonref}

when k ≥ s

approximating DIP, victim = maxage{Snonref}

approximating NRU, victim = maxage{Snonref

S

Sref}
when ignore segmentation

when k = s = 1

Figure 5: Three cases of Dynamic segmentation

Depending on the underlying replacement policies al-

lowed by implementation constraints, DCS can mutate

among LRU, LFU, DIP and in between. Using NRU as

the baseline policy it mutates between NRU, which ap-

proximates LRU, Not Frequently Used (NFU), which ap-

proximates LFU, DIP (with underlying NRU policy), and

in between. Let S is the set of the blocks in the lists.

Snonref = {ai}
k
i=1

and Sref = {ai}
assoc−k
i=1

. If k is the

size of non-referenced list and s is the size predicted by the

optimal predictor, according to our policy

victim =







maxage{Snonref}, if k ≥ s

maxage{Sref}, if k < s

maxage{Sref

⋃

Snonref}, ignore segmentation

The first case in Figure 5 shows DCS approximating to

LFU. In this case blocks in the non-referenced list have been

accessed just once. However all the other blocks in the ref-

erenced list have been accessed more than once. If there are



Appears in Proceedings of the 18th International Symposium on High Performance Computer Architecture (HPCA-18), February, 2012.

1

no blocks in the non-referenced list, then one block from

the referenced list is evicted. In this case that block is a

Not Frequently Used block in the whole set. Since we im-

plement a dynamic insertion policy when the segment pre-

dictor predicts the non-referenced segment size to be one,

DCS falls back to DIP [23] with default replacement pol-

icy NRU. With DIP, blocks are inserted at the end of the

LRU list. With DCS, when best non-referenced segment

size is predicted to be one, incoming blocks are inserted in

the NRU position of the non-referenced list. This ensures

that thrashing blocks are evicted as soon as possible. This

is depicted in the 2nd case in the Figure 5. In the last case,

the replacement policy ignores the segmentation. In this

case since the underlying policy is one-bit NRU, it replaces

the Not Recently Used block irrespective of which segment

it resides in. Depending on the underlying policy used in

the referenced and non-referenced lists, DCS can fall back

to other policies as well. For example when FIFO policy is

used in the non-referenced list it becomes a 2Q policy [8].

5. DCS with Shared Cache Partitioning

set dueling between segment set dueling between segment

size p/2 and p

segment p/2 winner segment p winner

size 1 and p/2 size p−p/4 and p

winner
segment p/2

winner
segment p−p/4 segment p

winner

segment 2 winner

optimal segment optimal segment

set dueling between
segment size 1 and 2

segment 1 winner

size 2size 1

size 1
optimal segment

set dueling between segment

optimal segment
size 1

optimal segment
size p/2 size p−p/4

set dueling between segment

set dueling between segment set dueling between segment

size p/2 and p

segment p/2 winner segment p winner

size 1 and p/2 size p−p/4 and p

winner

segment p−p/4 segment p
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segment segment

segment segment

optimal segment
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optimal segment

segment 1 winner

core 2

core 1

core 0

core 3

Figure 6: Dynamic Segmentation in each partition of UCP

DCS partitions cache sets into referenced and non-

referenced lists. This technique can partition shared cache

sets depending on the mixed access pattern from all the

workloads. However, it does not take into account the dif-

ferent behavior of different programs or threads. This can

be solved by using DCS in conjunction with any adap-

tive way-partitioning technique [25, 26, 27]. Our shared-

cache-aware DCS technique segments the ways belonging

to a specific thread assigned by a cache partitioning tech-

nique. Thus, DCS complements way-partitioning. Since

cache segmentation is decoupled from replacement policy,

segmenting the partitioned cache can work with random re-

placement. Partitioning the partitions essentially limits the

number of replacement candidates such that even choosing

a candidate at random is often sufficient. In Figure 6 we

show how DCS determines the segment size from each UCP

partition [25]. If the partition size is p, the segment size is

chosen from p, p − p/4, p/2, p/4 and 1.

6. Experimental Methodology

This section outlines the experimental methodology used

in this study.

We use a memory-intensive subset of 19 SPEC CPU

2006 benchmarks chosen with a methodology outlined be-

low. We have grouped these 19 benchmarks according to

their response to static segmentation shown at table 1.

Benchmarks like 433.milc experience no effect under seg-

mentation. Some of them are very LRU-friendly. Table 4

shows the benchmark grouping. We use a modified ver-

Insensitive 433.milc 434.zeusmp 436.cactusADM

to segmentation 462.libquantum 470.lbm

LRU friendly 435.gromacs 450.soplex 459.GemsFDTD

471.omnetpp 473.astar

Sensitive 400.perlbench 401.bzip2 403.gcc

to segmentation 429.mcf 437.leslie3d 456.hmmer

481.wrf 482.sphinx3 483.xalancbmk

Table 4: Benchmarks grouping

sion of CMP$im, a memory-system simulator [5]. The ver-

sion we used was provided with the JILP Cache Replace-

ment Championship [1]. It models an out-of-order 4-wide

8-stage pipeline with a 128-entry instruction window. This

infrastructure enables collecting instructions-per-cycle fig-

ures as well as misses per kilo-instruction. The experiments

model a 16-way set-associative last-level cache to remain

consistent with other previous work [15, 18, 23, 24]. The

microarchitectural parameters closely model Intel Core i7

(Nehalem) with the following parameters: L1 data cache:

32KB 8-way associative, L2 unified cache: 256KB 8-way

L3: 2MB/core. Each benchmark is compiled for the x86 64

instruction set. The programs are compiled with the GCC

4.1.0 compilers for C, C++, and FORTRAN. We use Sim-

Point [22] to identify a single one billion instruction char-

acteristic interval (i.e.simpoint) of each benchmark. Each
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MPKI MPKI IPC MPKI MPKI IPC
Name (LRU) (MIN) (LRU) FFWD Name (LRU) (MIN) (LRU) FFWD

astar 2.275 2.062 1.829 185B bzip2 0.836 0.589 2.713 368B
cactusADM 13.529 13.348 1.088 81B gcc 0.640 0.524 2.879 64B
GemsFDTD 13.208 10.846 0.818 1060B gromacs 0.357 0.336 3.061 1B
hmmer 1.032 0.609 3.017 942B lbm 25.189 20.803 0.891 13B
leslie3d 7.231 5.898 0.931 176B libquantum 23.729 22.64 0.558 2666B
mcf 56.755 45.061 0.298 370B milc 15.624 15.392 0.696 272B
omnetpp 13.594 10.470 0.577 477B perlbench 0.789 0.628 2.175 541B
soplex 25.242 16.848 0.559 382B sphinx3 11.586 8.519 0.655 3195B
wrf 5.040 4.434 0.934 2694B xalancbmk 18.288 10.885 0.311 178B
zeusmp 4.567 3.956 1.230 405B

Table 3: SPEC CPU 2006 benchmarks with LLC cache misses per 1000 instructions for LRU and optimal (MIN), instructions-

per-cycle for LRU for a 2MB cache, and number of instructions fast-forwarded to reach the simpoint (B = billions).

benchmark is run with the first ref input provided by

runspec.

6.1. Single-Thread Workloads

For single-core experiments, the infrastructure simulates

one billion instructions. We simulate a 2MB LLC for the

single-thread workloads. In keeping with the methodology

of recent cache papers [15, 16, 24, 23, 18, 11, 14, 6, 7], we

choose a memory-intensive subset of the benchmarks. We

use the following criterion: a benchmark is included in the

subset if the number of misses in the LLC decreases by at

least 1% when using the optimal [3] replacement and by-

pass policy instead of LRU. Table 3 shows memory inten-

sive SPEC CPU 2006 benchmarks with the baseline LLC

misses per 1000 instructions (MPKI), optimal MPKI, base-

line instructions-per-cycle (IPC), and the number of instruc-

tions fast-forwarded (FFWD) to reach the interval given by

SimPoint.

6.2. Multi-Core Workloads

Table 5 shows ten mixes of SPEC CPU 2006 simpoints

chosen four at a time with a variety of memory behaviors

characterized in the table by cache sensitivity curves. We

use these mixes for quad-core simulations. Each bench-

mark runs simultaneously with the others, restarting after

250 million instructions, until all of the benchmarks have

executed at least one billion instructions. For the multi-core

workloads, we report the weighted speedup normalized to

LRU. That is, for each thread i sharing the 8MB cache, we

compute IPCi. Then we find SingleIPCi as the IPC of the

same program running in isolation with an 8MB cache with

LRU replacement. Then we compute the weighted IPC as
∑

IPCi/SingleIPCi. We then normalize this weighted IPC

with the weighted IPC using the LRU replacement policy.

7. Results

In this section we present results and analysis of decou-

pled dynamic cache segmentation (DCS) by itself and with

the optimizations described in Section 4.

7.1. Effect of Dynamic Segmentation
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Figure 7: Enforced thrash resistance and automated bypassing

In this section we report how DCS performs in presence

of enforced partitioning and automated bypassing. Figure 7

shows the speedup of DCS compared to LRU replacement.

DCS uses NRU as the base line replacement policy. The

x-axis represents a memory intensive subset of SPEC CPU

2006 benchmarks grouped according to their behavior with

respect to static segmentation as illustrated in Table 4. DCS

alone achieves a geometric mean 2.4% speedup and re-
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Work

-load

Name

Benchmarks Type

Cache

Sensi-

tivity

Curve

mix1
mcf hmmer libquantum

omnetpp
ssif

 25.5

 43.5

mix2
gobmk soplex libquantum

lbm
sfii

 12.6

 22.0

mix3
zeusmp leslie3d libquantum

xalancbmk
isis

 9.4

 14.6

mix4
gamess cactusADM soplex

libquantum
iifi

 9.5

 19.0

mix5 bzip2 gamess mcf sphinx3 siss
 16.6

 36.4

mix6
gcc calculix libquantum

sphinx3
siis

 6.6

 9.7

mix7 perlbench milc hmmer lbm sisi
 9.6

 10.4

mix8 bzip2 gcc gobmk lbm sssi
 5.4

 6.7

mix9 gamess mcf tonto xalancbmk isss
 16.6

 37.0

mix10
milc namd sphinx3

xalancbmk
ifss

 4.5

 12.4

Table 5: Multi-core workload mixes with cache sensitivity

curves, LLC misses per 1000 instructions (MPKI) on the

y-axis for LLC sizes 128KB through 32MB on the x-axis.

s=sensitive, i=insensitive and f=LRU friendly

duces misses by 4.3% on average. By inserting the non-

referenced lines in the non-recent part of the NRU stack we

enforce thrash resistance, improving performance by a ge-

ometric mean of 4.9% over LRU and reducing misses by

6.7%. Turning on the automated bypassing yields an aver-

age speedup of 5.2% and reduces misses by 7.8%. In gen-

eral, we can see that DCS can improve performance up to

44% for the sensitive benchmarks. However, it hurts perfor-

mance for LRU-friendly workloads when the default policy

used is NRU. The insensitive benchmarks show no or very

minimal effect with DCS.

7.2. Effect of Segment Predictor

We randomly choose 16 sampled sets for each of the

leader sets. The counter size is 11 bits for a 2MB LLC. The

in-cache configuration uses the original cache sets to pre-

dict the best segmentation. The out-of-cache configuration

uses 15-bit partial tags represented externally to the cache to

reproduce the sampling set behavior. The in-cache config-

uration improves performance by 4.9% and reduces misses

by 7% on average over LRU replacement. The out-of-cache

configuration improves performance by 5.2% and reduces

misses by 7.8% on average over LRU policy. The out-of-

cache configuration has the advantage that it avoids cache

sets that use the wrong segmentation in the leader sets. This

is why LRU-friendly workloads perform worse with the

in-cache predictor than the out-of-cache predictor. How-

ever, the out-of-cache predictor is limited by the accesses of

the original cache. So if the winning non-referenced seg-

ment size is one, the predictor decides which segmentation

is better given that the LLC access pattern is the dynamic

segmentation policy. The in-cache predictor decides which

segmentation is best given that LLC access pattern is fol-

lowing the NRU policy. This is why benchmarks 437.leslie

and 481.wrf perform poorly in the out-of-cache predictor

configuration.

7.3. Comparison with Other Policies
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Figure 8: Comparison with other policies

Figure 8 compares DCS with other recent scan and

thrash resistant policies. We compare DCS technique with

DIP [23] that uses LRU as the baseline policy. We also com-

pare DCS with RRIP [7] that uses two-bit NRU as the base-

line policy. DCS uses a one-bit NRU policy. All policies

use the same number of leader sets. Figure 8 shows that,

compared to LRU replacement, DIP and RRIP achieve ge-

ometric mean 3.1% and 4.1% speedups. DCS outperforms

both of these techniques, achieving a 5.2% geometric mean

speedup.

In Figure 9 we show that DCS with random policy out-

performs LRU replacement. Random replacement by it-

self slows down performance on average by 1%. However,

DCS with random replacement improves performance by
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Figure 9: Dynamic Segmentation with Random Policy

DCS DCS DCS

NRU NRU Rand

(in) (out) (out)

ref bit, per line 1bit 1bit 1bit

repl state, per line 1 bit 1 bit 0 bit

set type, per set 2 bits 2 bits 2 bits

psel counters 23 bits 23 bits 23 bits

cache overhead ((perline×ways8.5KB 8.5KB 4.5KB

+per set)× sets+psel counters)

sampler set entry (partial tag 0 bit 18 bits 17 bits

+ref bit+valid bit+repl state)

number of sampler set 0 16 16

total sampler overhead (4 types 0 2.25KB 2.12KB

×sampler sets×sampler ways)

total 8.5KB10.75KB6.62KB

% increase in LLC Data Area 0.41% 0.52% 0.32%

Table 6: Space overhead in a 2MB 16 way LLC

1.8% and 2.2% respectively for the in-cache and out-of-

cache predictors. DCS coupled with random replacement

improves performance up to 33% over LRU.

7.4. Space Overhead

We compare the space overhead of our dynamic cache

segmentation (DCS) with LRU, DIP and RRIP in Table 7.

LRU and DIP use four bits per cache block for the LRU

stack in a 2MB 16 way LLC. RRIP uses two NRU bits per

cache block. DCS also uses two bits per cache block. How-

LRU DIP RRIP DCS DCS DCS

NRU NRU Rand

(in) (out) (out)

per line 4b 4b 2b 2b 2b 1b

extra 0B 257.3B 513.3B514.8B 2.25KB 2.12KB

total 16KB16.25KB 8.5KB 8.5KB 10.75KB6.62KB

Table 7: Comparing space overhead with other policies

ever, it uses one of the bits for segmentation and the other

bit for a one-bit NRU policy. For DIP and RRIP, the extra

overhead is the bits required to differentiate the leader sets

from the follower sets. Both of them need only one counter

to set-duel between two policies. DCS with the in-cache

predictor uses only 12 bits more space than RRIP. These 12

bits are two extra counters (1 bit and 11 bits) used to choose

among five non-referenced segment sizes. DCS with the

out-of-cache predictor uses 15-bit partial tags to obtain the

best segmentation. The out-of-cache segment predictor has

15 bits of partial tag, one bit for segmentation and one bit

for NRU. The out-of-cache predictor uses 2.12 KB. DCS

with either in-cache and out-of-cache predictor uses far less

space than the LRU policy.

7.5. Dynamic Segment Size

In Figure 10, we show the predicted best non-referenced

segment size for each of the benchmark. Insensitive bench-
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Figure 10: Runtime predicted best non-referenced segment size

marks use a non-referenced segment size of eight most

of the time. LRU-friendly benchmarks choose to ig-

nore the segmentation. However, segmentation-sensitive
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Figure 12: Complementing cache partitioning technique

benchmarks choose different segmentations in various

phases. Benchmarks like 400.perlbench, 482.sphinx3 and

483.xalancbmk are thrashing workloads and always choose

segment size one. 403.gcc, 429.mcf and 437.leslie3d clearly

go through different phases and choose different segmenta-

tions at runtime.

7.6. Cache Sensitivity

Figure 11 shows DCS performance with several LLC

sizes: 1MB, 2MB, 4MB and 8MB. All of the cache con-

figurations are 16-way associative. Our technique with the

NRU policy outperforms LRU replacement on average by

5.2-8.7 for various cache sizes.

7.7. DCS with Shared Cache Partitioning

In this section we show that our technique complements

current way-partitioning techniques. Figure 12 compares

cache segmentation with utility-based cache partitioning

(UCP) [25] on multi-core workloads with a 8MB LLC. DCS

is not aware of thread-specific characteristics. It adapts to

the mixed access pattern from all threads and predicts the

best segmentation size for that mixture. Figure 12 shows

that it achieves 4.4% normalized weighted speedup com-

pared to LRU replacement. We implement a combined ver-

sion of DCS and UCP in which UCP predicts the best parti-

tioning for each thread and DCS predicts the best segmenta-

tion for each thread. UCP achieves 5.4% weighted speedup

over LRU. Complementing UCP with DCS achieves 11.4%

speedup using an underlying NRU policy. It also achieves

12% speedup with an underlying random replacement. The

space overhead for UCP is 68.75KB. However, our tech-

nique with random as the base replacement policy achieves

4.5% performance improvement over UCP with less than

half of the space requirement. The space overhead of our

technique is 45.25KB with NRU and 28.75KB with random

replacement, which is respectively 0.55% and 0.35% of the

8MB LLC capacity. Our technique with NRU and random

replacement performs similarly. Segmentation decreases

the number of candidates in each set. Victims can only be

selected from the specific ways belonging to the specific

list of that thread. This essentially makes NRU and random

perform very similarly. We have used 32 dedicated sets for

UCP and 16 dedicated sets for DCS. We have also compared

our technique with Thread Aware RRIP (TA-RRIP) which

is not a cache partitioning technique [7]. TA-RRIP outper-

forms LRU on average by 10.2%. We outperform TA-RRIP

even with an underlying random-policy.

8. Conclusion

Many previous studies have proposed a variety of mech-

anisms to improve LLC performance by adapting to cache

access pattern by insertion, zero-reuse prediction and by-

pass. In this paper we have introduced a single segmenta-

tion technique that inherently provides mutable cache man-

agement and bypass. We propose a decoupled technique

that is scan and thrash resistant even with random replace-

ment policy. Our technique complements existing cache

partitioning techniques by segmenting the dynamic parti-

tion of each thread on the runtime.

This paper investigates dynamic cache segmentation in

the context of single and multi-programmed workloads.

In future work we plan to take into account both shared

and private data in multi-threaded workloads. Shared data

should have an adaptive segment while private data of com-

peting threads should be segmented per thread just like the

multi-programmed workloads.
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