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Abstract

Computer aided design of a prosthesis for a below-the-
knee (trans-tibial) amputee begins with a digitized repres-
entation of the shape of the residual limb. Certain anatom-
ical landmarks must be located on this shape to identify op-
timal areas for load and pressure relief. A method of locat-
ing the midpoint of the patellar tendon, the distal end of the
tibia and the head of the fibula is presented. The method in-
volves training ensembles of neural networks on shapes for
which the markers have been located manually; the neural
networks are then used to find the landmarks for arbitrary
shapes. Experimental results show that the method is at
least as accurate as a trained prosthetist.

1. Introduction

The first step in the computer aided design of a below-
the-knee (BK) prosthetic limb socket is the digitization of
the surface of the amputee's residual limb. This can be done
using a mechanical digitizer on the inside of a plaster cast
of the residual limb or by using a laser imager that scans
the residual limb with a laser as it rotates around the pa-
tient's leg. A prosthetic socket CAD program modifies the
resulting shape to that of a biomechanically correct socket.
The original shape is modified so that the resulting socket
will provide pressure in pressure tolerant areas and relief
in pressure sensitive areas. A computer controlled milling
machine then mills out the modified shape to make a pattern
for socket fabrication.

During the modification process, three areas on the sur-
face of the skin receive particular attention: the midpoint
of the patellar tendon (MPTN), the distal end of the crest
of the tibia (DECT) and the head of the fibula (HDFB).

These landmarks are represented on the shape by the point
on the skin closest to the corresponding anatomical feature.
A bar is shaped across the MPTN is to receive the greatest
part of the load. The HDFB and DECT are augmented to
provide relief, as these areas are sensitive to pressure. Fig-
ure 1 shows a lateral and anterior views of a digitized shape
of a BK amputee along with the bones; in this case, the
bone shapes are made from data in a CT scan of the patient.
Unfortunately, most patients cannot be imaged this way be-
cause of the cost, unnecessary exposure to radiation, and
other factors; the positions of the bones must be deduced
just from the surface of the skin.

Locating the landmarks is usually done by placement of
nonreflective markers (recognized during digitization) from
palpation of the skin or by visual inspection in the CAD
program. There are several factors affecting the accuracy of
these techniques:

e Human error: sometimes the technician puts the
marker for the landmark in the wrong place. Some-
times, a patient will move his or her leg during the di-
gitization process, causing errors to be introduced.

o Different technicians may have slight differences of
opinion about precisely where a landmark should be
placed.

e Landmarks on the residual limbs of larger people are
difficult to locate due to excess adipose tissue obscur-
ing bony prominences such as the head of the fibula.

e There are several different surgical procedures for a
BK amputation, each leaving a different appearance of
the surface of the skin[4,5]. Also, traumatic amputa-
tions often leave little room for decision in this area;
the location of the DECT can vary widely from shape
to shape.



Figure 1. Bone Structure of a BK Amputee, with Landmarks

Landmarks are shown with black markers. From top to bottom, MPTN, HDFB, and DECT.

A method for locating these landmarks with a higher de-
gree of accuracy and consistency would be a benefit to
prosthetics design. Previous research has used surface
curvature anaylsis[1] to locate the landmarks. Using this
technique, landmarks are located by measuring areas of
greatest curvature on the surface of the skin which, presum-
ably, correspond to bony prominences. The authors repor-
ted achieved a root mean squared error of 8.4mm, 7.7mm,
and 8.5mm between their algorithm and a human techni-
cian locating the MPTN, HDFB, and DECT, respectively.
However, the research was limited to eight shapes and it is
unclear whether the technician or algorithm was more ac-
curate.

Our approach to locating these landmarks is to train en-
sembles of neural networks for each landmark using about
one hundred shapes. We achieved a high degree of accur-
acy on shapes held out for testing, and have confirmed the
locations of the landmarks by having a prosthetist locate the
landmarks for each shape.

2. Methods
2.1. Shape representation

For this project, 120 different residual limb shapes were
obtained from a laser imager. The laser imager uses a struc-
tured lighting system where a plane of laser light illuminates
the residual limb of the amputee. Where the plane of light
interects the limb, a line is produced. Two video cameras
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obliquely view this line. A custom video board extracts the
location of the line from the video images in real time. The
imager rotates around the residual limb viewing the limb
from 64 angular locations. The scan time is approximately
five seconds. Small black tape markers are placed on the
residual limb at the regions of anatomical interest such as
MPTN, DECT, and HDFB. The locations of these markers
show up as holes in the data that are recognized as land-
mark locations. The resulting data is assembled into a three
dimensional shape. This shape is written to a file as a se-
quence of approximately 40 to 50 data slices. Each slice
of data is composed of 64 points of equal angular distance
from one another (i.e., A8 = 2x/64). The same angular
values are used for each slice, so from top to bottom corres-
ponding points form a profile. The distances between slices
are not uniform, so a list of z values, one for each slice,
is written to the data file. The landmark locations are also
included in the file with a short descriptive string.

2.2. Approach to the problem

We approached the problem of finding a landmark as
finding the pair (¢, z) of angle and z-value for the landmark.
Finding the radius is not needed since there can only be one
radius for each (8, z) pair ; the mapping to the surface of
the skin is straightforward.

I This is not true for a general shape in cylindrical coordinates, but is
true for the roughly cylindrical geometry of the BK residual limb



2.3. Algorithm

The algorithm to find a landmark given the shape inform-
ation is:

1. Preprocess the shape into a grid of normalized radius
values.

2. Rotate the grid for many values of 4, each time present-
ing the grid to an ensemble of trained one-output
neural networks. Choose the predicted #-value, 6, as
that with the best response from the ensemble.

3. For many values of z, present a portion of the grid
close to (#, z) to another ensemble. Choose the pre-
dicted z-value, z, as that with the best response from
the ensemble.

2.4. Preprocessing

The preprocessing algorithm places radius values for
each slice/profile pair into corresponding positions in a
two-dimensional array of reals. The array is resized from
(64 x number of slices) to (96, 96) and interpolated radius
values chosen so that the spacing between slices is uniform.
The values in the array are then smoothed (averaged with
nearest neighbors) to reduce any noise from the digitization
process. The values are then normalized so that the mean
is 0, then scaled so that all the values are between -1 and
1. The neural networks for predicting 6 (6-networks) use
a 16 x 16 grid whose values are chosen from equidistant
points in the larger array. The neural networks for predict-
ing z (z-networks) use a 16 x 64 grid of values from the
neighborhood of (6, z) (for some z) for testing, or (6, z) for
training. Figure 2 shows greyscale images of the normal-
ized 96 x 96 grid, a 16 x 16 grid suitable for presentation to
the #-networks, and a 16 x 64 grid suitable for presentation
to the z-networks.

2.5. Training

One hundred different residual limb shapes were used
for training the neural network. The shapes were divided
into two sets of 50 by choosing a random permutation of
files and dividing it in two. Two more sets of 50 were
chosen using another random permutation. The first two
were used to train and cross-validate two é-networks and
two z-networks. The second two were similarly used to
produce four more # and z networks.

Experimentation showed that ADALINE[6] neurons were
a good choice for the #-networks. Backpropagation nets
with eight hidden units proved to work well for the z-
networks.

As the preprocessed grid was rotated clockwise (as seen
from above the shape), the outputs of the #-networks were

trained to change from 1 to O as the correct value for 6
crossed the middle profile of the grid. For the z-networks,
the outputs were trained to change from 1 to O as the cor-
rect z-value became greater than the z-value for the current
16 x 64 input grid. We validated each network by using
it in an ensemble of size one and applying it using the al-
gorithm described above. For the §- networks, we used the
absolute value of the angular distance between 6 and 6 as
a measure of error; training was stopped when the error on
the validation set reached a minimum. We trained the z-
networks similarly, using the absolute value of the distance
between z and z as a measure of error. The ADALINES usu-
ally reached a mean squared error (MSE) of 0.05 by the
time training was stopped. The backprop networks usually
reached an MSE of from 0.001 to 0.003 before training was
stopped. The 6 nets typically reached an error of within one
profile, or 0.1 radians for the HDFB and DECT. The nets for
the MPTN had somewhat less error. The z-values reached
an error of within 1.5 slices for each marker.

2.6. Ensemble technique

Ensemble networks combine the outputs of several
neural networks[2]. The output of the ensemble is a
weighted average of the outputs of each network, with the
ensemble weights determined as a function of the relative
error of each network determined in training[2]; the res-
ulting network often outperforms the constituent networks.
There is a growing body of research into ensemble meth-
ods, for example, improvements in performance can res-
ult from training the individual networks to be decorrelated
with each other[3]. Our technique differs in that the en-
semble weights are determined dynamically, i.e., upon each
propagation through the network, as opposed to statically,
as part of the training algorithm. This allows the ADALINE
networks to benefit from ensemble techniques and, we be-
lieve, also improves the accuracy of backpropagation en-
sembles. Both our ADALINES and backprop net give an out-
put in the range [0..1]. A threshold function can be applied
to, e.g., outputs of 0.6 and 0.9, but the output of 0.6 has a
higher probability of being wrong. Our ensemble technique
attempts to capture this idea. The uncertainty u(y) of the
output y of a network is defined as:

[y ify <1/2
uly) = { 1 —y otherwise

Clearly, the uncertainty rises for outputs y > 0.5 as y falls,
and for outputs y < 0.5 as y rises. If the outputs of the in-
dividual networks (without thresholding) are y1, 2, ..., ¥n,
then the ensemble weight w; for output unit y; given by:

exp(—yu(yi)?)
> iy exp(—yu(y;)?)

w; =



Figure 2. Greyscale normalized 96 x 96 array, #-network input grid, z-network input grid

where ~ is a gain term determined empirically. The weights
are multiplied by their respective outputs to find the output
of the ensemble. A rigorous analysis of this technique is
beyond the scope of this paper, but the point is that it al-
lows ADALINE outputs, which are simply dot products of
weights and inputs, to escape the linearity inherent in en-
semble combinations (otherwise, any weighted average of
ADALINE outputs is simply the output of a third “virtu-
al” ADALINE with no more computational power than its
component neurons). The result seems to work better than
static weights for backprop networks, too, but we have only
tried it on the problem at hand and, with ADALINE neurons,
the two-input XOR problem, which it can solve (unlike the
standard ADALINE).

3. Reaults

We had a trained prosthetist examine the twenty residual
limb shapes we held out for testing. We hid the markers
that had been placed by palpation at the time of the scan
and asked him to place the markers for DECT, HDFB, and
MPTN where he thought they should go. He had access
to a sophisticated CAD program with a false-color mode
showing the surface curvature at each point to help find the
bony prominences. We then ran our algorithm on the same
shapes and compared the algorithm's error with the pros-
thetist's error. Table 1 shows the results of this experiment
as median and mean of the errors in Euclidean distance
between the palpated and predicted landmarks for both the
algorithm and the human. Figure 3 shows the anterior of
a typical shape after the prosthetist and the algorithm have
made their predictions. The palpated landmark is represen-
ted with an X, the prosthetists prediction with a square, and
the algorithms prediction with a diamond.

4. Conclusions and futuredirections

From the results, we believe that our method is at least
as accurate as a trained professional sitting at a CAD pro-
gram finding the markers. It remains to be seen whether our
technique is more accurate; ideally, we would like to use
shapes where the bone positions are determined by a CT
scan, rather than palpated or guessed. To our knowledge, a
large enough corpus of such shapes doesn't exist yet. We
also believe our ensemble technique, which began as an ad
hoc method of improving performance, deserves more in
depth study.
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