Exploiting Procedure Level Locality to Reduce I nstruction Cache Misses

Ravi V. Batchu

Daniel A. Jiménez

Department of Computer Science
Rutgers University
{batchu,djimenez}@cs.rutgers.edu

Abstract

High instruction fetch bandwidth is essential for
high performance in today's wide-issue out-of-order
processors. Instruction caches must provide a low
miss rate as well as low latency. We introduce Pro-
cedure Level Relocation, a class of dynamic feedback-
directed optimizations that substantially reduce thein-
struction cache miss rate by exploiting the temporal
locality of procedure usage. Based on the observation
that half of all procedures executed are at most 128
bytes in length, we present a Small Procedure Cache,
a small and fast explicitly managed memory for stor-
ing small procedures. We show that Procedure Level
Relocation into a Small Procedure Cache reduces the
instruction cache miss rate by an average of 15%.

1 Introduction

Modern wide-issue processors require high instruc-
tion fetch bandwidth to fully utilize their resources and
achieve high performance. However, the trend over the
past few decades has been a steadily increasing gap
between the processor cycle time and memory latency.
Therefore it is crucial to reduce the instruction cache
miss rate.

At a basic level, programs are written as groups of
procedures. The object code generated by the com-
piler, therefore, has groups of instructions correspond-
ing to each procedure in the high level language. There
is a temporal locality in the usage of procedures [5, 4].
Procedures accessed at a certain point in time during
execution tend to be accessed again in the future.

1.0+

0.8

0.6

0.4+

0.2+

00
16 32 64 128 25 512 1KB 2KB 4KB 8KB 16KB

Fraction of Procedures Smaller Than X

Procedure Size (Bytes)

Figure 1. Half of all procedure invocations call
a procedure that is at most 128 bytes.

In this paper we introduce the Small Procedure
Cache (SPC), a hardware/software mechanism that ex-
ploits the temporal locality in the usage of procedures
by caching frequently used procedures on faster mem-
ory which is closer to the processor core. Since it is
possible that large procedures from which only a few
instructions are accessed can have a detrimental effect
on our strategy by unnecessarily occupying more ex-
pensive memory, we restrict our strategy to procedures
which are smaller than a certain size. Most procedures
are small enough so that our strategy does find candi-
dates for relocation. Figure 1 — a plot obtained from
the data collected during a complete machine simu-
lation as described in Section 4 — shows the relative
frequency with which procedures of less than a certain
size are executed. Half of all procedures executed are

less than 128 bytes. Thus, there is a large opportunity
to exploit procedure-level locality using a small, fast
memory that caches small procedures.

The SPC is located adjacent to the L1 cache, occu-
pying a small portion of the physical address space.
The physical memory references generated by the
Memory Management Unit (MMU) from the virtual
memory references issued by the core are compared
with a fixed value to determine whether the addressed
location is in SPC or the I-cache. The reference is then
sent to the appropriate structure. In addition there is
a small portion of code which is executed very infre-
quently (after every 100 million instructions) to relo-
cate the frequently accessed procedures.

This paper makes the following contributions:

1. We introduce Procedure Level Relocation (PLR),
a class of dynamic feedback-directed optimiza-
tions that exploit locality at the procedure level.

2. We present the Small Procedure Cache, an in-
stance of PLR that relocates frequently used
small procedures to an explicitly managed fast
memory.

3. We show that the Small Procedure Cache op-
timization reduces instruction cache miss rates
15% on average versus a traditional instruction
cache with the same hardware budget over a set
benchmarks representative of real-world work-
loads.

This paper is organized as follows: Section 2 gives
an overview of the related work in the microarchi-
tecture and feedback-directed optimization literature.
Section 3 describes the Small Procedure Cache in de-
tail. Section 4 describes our experimental methodol-
ogy for simulating the Small Procedure Cache. Sec-
tion 4.8 describes the benchmarks and inputs used for
this study. Section 6 concludes and points to future
research on Procedure Level Relocation.

2 Reated Work

In this paper we present a dynamic optimization
technique which exploits temporal locality in the us-
age of procedures to reduce instruction cache misses.
While we know of no prior attempt to optimize pro-
grams by relocating procedures at run time, there have

been efforts to re-order procedures at compile time and
there have also been efforts to exploit program locality
at run time at other levels of granularity.

2.1 Static procedure re-ordering technigues

Hatfield and Gerald [10], Ferrari [12], McFar-
ling [18], Pettis and Hanson [20], and Gloy and
Smith [13] have presented methods to rearrange the
procedures to improve locality based on profile data.

Most of these use profile data in the form of a
weighted call graph (WCG) where a weighted edge
between two nodes represents the frequency with
which one procedure calls another. By rearranging the
program so that procedures with strong connections
are placed adjacent to one another, conflict misses can
be avoided.

2.2 Static vs. dynamic optimization

The effectiveness of static code layout techniques
depends on the stability of profile data from one run
to the next. Producing an input set representative of
the workloads in real life can often be very difficult
or impossible, especially when the application offers
multiple functionalities. Modern applications also use
Dynamically Loaded Libraries (DLLs). Application
software is often shipped as a collection of DLLs. Dy-
namic linking imposes limits on compile time code
layout strategies. Thus, our research proposes to do
procedure relocation at run-time, rather than at com-
pile time.

2.3 Dynamic binary translation

There are several efforts involving code transforma-
tion during run time. Dynamic binary translation sys-
tems run binaries compiled for one platform on a to-
tally different platform [16, 11, 8, 25, 22] The key fac-
tor in all of these technologies is the judicious choice
of sufficiently frequently executed pieces of code for
translation into native code, while interpreting the less
frequently used portions of the program.

2.4 Dynamic code placement

Other techniques have been proposed for dynamic
code placement. Chen and Leupen [6] present just in

time code layout, which copies procedures into mem-
ory when they are first invoked, resulting in a reduction
in the footprint of the executable by 50%.

2.5 Dynamic optimization

There are also dynamic optimization systems which
exploit instruction locality to aggressively optimize at
run time. Dynamo [1] and Mojo [7] are both user level
software efforts to optimize programs executing on the
HPUX/PA-RISC and Windows/x86 platforms, respec-
tively. Replay [19] is a new processor framework that
supports dynamic optimization, in hardware. Kistler
and Franz [15] presented a dynamic optimization sys-
tem by utilizing the idle time and dynamically collect-
ing execution profiles.

The above techniques for dynamically optimizing
code involve disassembling the binary executable fol-
lowed by aggressive optimization of code. Because of
the high overhead, they have to be fairly selective to
ensure that the code which is optimized would in fact
be repeatedly executed in the future. There are cases
for which Dynamo and Morph “bail out,” i.e., stop op-
timizing the binary and just execute it normally. Sim-
pler heuristics like procedure caching, having a lesser
overhead, would be less susceptible to such failures.

2.6 Trace Cache

A trace cache is a specialized instruction cache that
exploits instruction locality by organizing instructions
in the order they are executed, rather than in their static
program order[21].

One disadvantage of trace cache is code duplica-
tion [14, Page 448]. Due to conditional branches, dif-
ferent hot paths often share the same blocks. This
results in the duplication of code in the trace cache.
The amount of duplication grows exponentially with
the trace length and is an obstacle in building longer
traces. Other costs, like trace identification and ad-
dress mapping, also increase with the trace length.
While the outcome of a direct conditional branch pro-
vides a good hint for the next time the same instruction
is executed, the same is not true of indirect branches
and indirect calls.

Unlike schemes for procedure re-ordering, trace

caches, operating with physical addresses®, cannot re-
lieve the pressure on TLB since the stream of vir-
tual addresses remains unaltered with the addition of
a trace cache.

3 Procedure Level Relocation

Procedure Level Relocation (PLR) is a dynamic
feedback-directed optimization that exploits temporal
locality in the usage of small procedures. PLR relo-
cates heavily used small procedures into a Small Pro-
cedure Cache (SPC), a portion of memory that resides
on the same physical structure as the L1 instruction
cache. The SPC operates with the same latency and
bandwidth as that of the L1 cache. The SPC is essen-
tially an explicitly managed instruction cache used by
the operating system for storing frequently used pro-
cedures.

SPC

CPU | MMU |-cache L2-cache — Main Memory

]Di

D-cach

;

Figure 2. Procedure Cache in Memory Hierar-
chy

3.1 Instruction reference generation

Instruction references to the portion of memory
mapped to the SPC are satisfied by the SPC, while
other instructions references go through the traditional
memory hierarchy. The SPC is located in a fixed area
at one end of the physical address space so that check-
ing whether a reference is for the SPC involves a sin-
gle comparison. The MMU is set up by the kernel so
that the SPC appears in the same virtual address space
in all the processes. All references are first checked
to see whether they can be satisfied by the instruction

Trace caches accessed by virtual addresses are not promising.
Multiple processes can have the same virtual address for different
locations. Combining the virtual address and process ID resultsin
the duplication of the code in dynamically linked libraries

prefetch buffer and undergo virtual to physical address
translation in the Memory Management Unit (MMU)
before they are directed to the SPC or the L1 instruc-
tion cache.

3.2 Frequency of relocations

There is a trade-off associated with procedure re-
location. Relocation results in an additional overhead
while improved locality results in better performance.
We do relocations only after very long periods of ex-
ecution, so that the benefit of relocation can be amor-
tized over it. As described in Section 4, the relocation
is done by the operating system after every 100 mil-
lion instructions. We estimate that at this granularity,
the overhead from procedure relocation will be far less
than that of other operating system functions, such as
processor scheduling.

3.3 Relocating procedures

Each procedure keeps a count of how often it has
been invoked. After a relocation epoch of 100 million
instructions has passed, the operating system runs an
algorithm to perform procedure relocations. The fol-
lowing is an overview of the steps that are taken:

1. Procedures are prioritized for relocation based on
an estimate of their temporal localities.

2. Procedures are copied contiguously in priority or-
der until the SPC is full or there are no more pro-
cedures.

3. Each old instance of a procedure is patched so
that the next time it is invoked, the caller will
be patched to invoke the new copy in the SPC.
Note that this happens only once per call site;
each subsequent invocation is automatically di-
rected to the new copy.

4. Call sites of procedures residing in the previous
generation of the SPC are patched back to call
their original targets.

3.4 Relocation policy

The 100 million instruction relocation epoch is di-
vided into four quarters. At the time of relocation, pro-
cedures are selected based on a priority computed by

dividing the total frequency of their usage in the re-
location epoch by the procedure size. Procedures are
then chosen using an estimate of their future tempo-
ral locality, based on their activity in the previous four
quarters. First, procedures which were accessed in all
four quarters of the relocation are copied into SPC in
the order of decreasing priority. If there is any remain-
ing space, procedures which were used in the last quar-
ter and at least two other quarters are copied in the
order of decreasing priority. In the remaining space,
procedures which used in the last quarter are copied.
Finally in any left over space, procedures are selected
solely on their priority. In practice, the SPC is usually
full after the first round of copies.

We refill the SPC on each relocation from scratch.
This is equivalent to removing the procedures from
SPC and placing them back. Since procedures do not
have a fixed size this approach makes it easy to decide
the placement of procedures in the SPC. Refilling the
SPC has the downside that the machine would have to
fix the call sites again. However, since the relocation
is a very infrequent event, this approach is not likely
to have a great impact. Our approach, in this matter, is
similar to the complete flush of the fragment cache in
Dynamo [1].

3.5 Implementation details

Implementation of the relocation algorithm brings
up a number of details:

Patch-up code To handle calls to relocated proce-
dures, patch-up code is inserted into the beginning of
the original copy of the procedure. This patch-up code
redirects call sites to the new location in the SPC. This
lazy approach to updating the call site only after it is
actually encountered during execution saves consider-
able overhead compared to an approach which corrects
the call sites immediately after relocating the proce-
dure. This is because not all call sites for the relo-
cated procedure are likely to be encountered. There
has also been considerable amount of work [3] demon-
strating execution path locality which indicates that
only a small fraction of the call sites really need to
be patched. The patch up code also maintains a record
of the call sites it modified to facilitate restoration of
the call site when the procedure is relocated back to

the original location.

Replacement After a relocation phase, call sites
must be redirected back to the original instances of
procedures that were in the previous generation of the
SPC. When the call site was originally modified, it was
placed on a queue. During relocation, call sites on the
queue are visited and restored. Since only a few call
sites will have been patched, this queue will be short
and the redirection phase will be quick.

Code expansion When procedures are selected for
relocation the original area where they appear is left
intact and another copy is created in the SPC. Leaving
the original code intact allows us to simply overwrite
the copy in the SPC when it is replaced with another
procedure. The above strategy of copying rather than
moving means that there would be two copies of some
procedures. Nevertheless, code expansion is minimal
because the size of the SPC is on the order of one
kilobyte. There is also likely to be a beneficial ef-
fect on the availability of physical page frames. Code
which is executed frequently would be copied into the
SPC, making references to the original copy unneces-
sary and (possibly) freeing up the physical page frame
containing the original copy.

Maintaining proper control transfer To maintain
program semantics in the presence of dynamic relo-
cation, control instructions should continue to transfer
control to the intended destination. Position indepen-
dent code is generated using pc-relative addressing.
This would ensure that all the intra-procedure control
transfers would operate correctly. Returns to the relo-
cated procedures are handled by examining the stack
at the time of relocations. Any returns to procedures
which get relocated (either into the SPC or back to
their original location) are updated at relocation time.

3.6 System wide relocation

Previous work [5, 4] has shown that besides the fact
there exists a working set of procedures for each pro-
gram, the working set size varies as programs exe-
cute. While dynamically linked libraries used simul-
taneously by multiple processes may be mapped into
different areas of the individual virtual address space,

typically using a system call like mrap, there is actu-
ally only a single copy of the library in the physical
memory. Therefore, the SPC is used for caching pro-
cedures from all the processes executing on the ma-
chine.

4 Methodology

In this Section, we describe our methodology for
studying procedure level relocation and simulating the
procedure cache.

4.1 Simulator code base

Our simulator is based on the Bochs x86
simulator[17]. Bochs simulates the entire machine
platform so that it can support the execution of a com-
plete operating system and applications that run on it.
This allows us to include the effects of the execution
of the operating system code due to context switches,
system calls and kernel daemons running in the back-
ground. Modern applications (e.g. mozilla) are of-
ten shipped as multiple executables running as mul-
tiple processes. Almost all applications use dynamic
linking. Our simulation strategy can support all of the
above scenarios. For all of our experiments we simu-
late the Red Hat Linux operating system version 6.0.

4.2 Instruction cache simulations

To evaluate the effects of dynamic procedure relo-
cation we performed a complete machine simulation at
the instruction level. Our simulator performs the fol-
lowing actions:

1. It captures the sequence of memory references
that occur while running the workload on a nor-
mal machine,

2. It keeps track of the location of all procedures and
processes as the machine runs.

3. It monitors the usage of procedures in each relo-
cation epoch and simulates the relocation of pro-
cedures into the procedure cache.

4. It builds a new sequence of memory references
based on the sequence in step (1) and the knowl-
edge of the location of all procedures in the pres-
ence of dynamic procedure relocation.

o Instructions exe-
N Description Input Data Set
ame ol P o el nput Data Se cuted in 100 Million
186.crafty se:)r/csh chess using - alpha-beta train input crafty.in 307
176. gcc gcc compiler for the M88100 train input cp-decl.i 35
253. per | bk | Perl v5.005_03 interpreter train input diffmail.in 307
255. vortex ;ZJ:]Ct oriented - database pro- train input lendian.raw 148
. Copy of HPCA web
nozilla A web browser pagpey 25

Table 1. Benchmarks and inputs used for this study

5. It then feeds the two sequences to a cache simu-
lator simulating separate instruction caches to es-
timate the resulting miss rates.

Next, we describe how we achieve the preceeding
steps.

4.3 ldentifying procedures

As the simulator runs, it has to identify the cur-
rent procedure being executed based on the contents
of the simulated instruction pointer. This requires the
knowledge of the location of all the procedures in the
virtual address space of the process being simulated.
Hence the simulator has to keep track of the location
of all the procedures in the corresponding virtual ad-
dress space and the associated processes. Events like
process creation, process termination, procedure res-
olution when a dynamically linked procedure is first
called, and the loading of code when an application
is initially launched are all very high level and involve
several machine instructions. We instrument the Linux
kernel to inform our simulation infrastructure when
one of these high-level events occurs. Based on the ob-
servations from Figure 1, we relocate only those pro-
cedures with a size at most 128 bytes.

4.4 Accounting for dynamically linked libraries

Dynamically linked procedures do not appear in the
executable. When the application is initially launched,
all the call sites for a dynamically linked procedure
contain a call to a Procedure Linkage Table (PLT) stub
which directs the control to a resolver in the run time

linker. The resolver finds out the location of the pro-
cedure being called and patches the program so that
future calls go directly to the dynamically linked pro-
cedure. We modified the resolver, a component of
gl i bc, so that the simulator could detect the exis-
tence of the newly linked procedure. Our changes,
both in the kernel and the run time linker, are very min-
imal.

45 Cache simulator

The information about the memory references is
available in the existing bochs data structures and our
simulator accesses them to capture the memory ref-
erence stream on the normal machine and transform
it to reflect our optimization. We developed a cache
simulator to estimate the miss rates for the different
memory reference streams. Since the LRU replace-
ment strategy is expensive to implement, we selected a
replacement strategy called the clock algorithm (or the
second chance algorithm) for the replacement strategy.
This strategy results in low miss rates like the LRU and
has low implementation overhead, comparable to that
of FIFO. The simulator counts the number of instruc-
tions executed in the simulated machine and after ev-
ery 100 million instructions it simulates a relocation by
updating the address of the relocated procedures. The
relocations are based on the usage counts for the pro-
cedures which are obtained during the simulated exe-
cution.

4.6 Cache details

For this study, the base cache configuration is a
65KB instruction cache with 64 byte blocks and 2-way

set associativity. The SPC configuration is a 64KB in-
struction cache with 64 byte blocks and 2-way set as-
sociativity plus a 1KB small procedure cache. Thus it
was ensured that the hardware budgets for both config-
urations were same. Although actual hardware imple-
mentation of the base cache configuration might be im-
practical because the number of sets in the base cache
is not a power of two, it is straightforward to simuate
such a configuration for the purpose of comparison.
Cache miss rates are reported as the number of times
the I-cache is filled from the L2 cache divided by the
total number of blocks requested from the first-level
structure (either I-cache or SPC). The simulated CPU
prefetches an entire block from the first level structure
into a prefetch buffer so that subsequent references to
the same block without intervening references to other
blocks are all counted as one access.

4.7 Simulated environment

For our experiments we simulate a Pentium-class
workstation with an NE2000 network interface card,
a VGA monitor, 2 ATA channels connected to 3 IDE
hard drives and a CD-ROM drive. The simulated com-
puter is loaded with a Red Hat 6.0 distribution and the
workloads are launched in a terminal while running the
X Window System. Cache simulation makes the sim-
ulation many orders of magnitude slower. We turn on
the cache simulation only when we start executing the
workloads on the simulated machines.

4.8 Benchmarks

To evaluate the effects of PLR on the instruc-
tion cache miss rate we selected those integer bench-
marks from SPEC CPU2000 suite that are known to
have large instruction footprints (gcc, vortex, perl and
crafty) as well as Mozilla. The four SPEC bench-
marks have been shown to incur a 25% to 30% per-
formance penalty due to the limited space in the I-
cache while the rest of the benchmarks in this suite
have a performance penalty less than 3% [24]. Previ-
ous work [26, 24] on reducing instruction cache misses
have used this same subset of SPEC benchmarks for
their studies. We believe that these benchmarks char-
acterize real-world applications that would be used in
a production environment.

One of the prerequisites for studying the effects of
procedure level relocation on our simulation platform
is that the executable(s) constituting the workload have
a symbol table in them so that information about pro-
cedures can be extracted. This is not true of applica-
tions like Netscape which comes pre-packaged in the
Red Hat distribution on our simulated box. Since the
simulated computer runs much more slowly than a real
machine, building large programs like mozilla on the
simulator is not feasible. We created an environment
similar to that on the simulated box to build the mozilla
binaries which had symbol tables in them. Other than
the change to leave the executables unstripped all other
aspects of the build process were left intact so that the
executables were representative of those used in a pro-
duction environment. Preparing large real world appli-
cations which are likely to have large instruction foot-
prints, for the simulation platform is a non-trivial task.

Table 1 describes each workload. They were all run
in an X windows environment in the simulated ma-
chine. The cache simulation was only turned on when
these workloads were running.

5 Results

In this Section, we describe the results of our simu-
lation experiments with the Small Procedure Cache.

5.1 Miss rates

Figure 3 shows the instruction miss rates for two
configurations: a 65KB instruction cache and a 64KB
instruction cache with a 1KB SPC. Miss rates for each
benchmark as well as the arithmetic mean miss rate are
given. In each case, the SPC yields a lower miss rate
than the larger instruction cache alone. On average, the
SPC configuration yields a miss rate of 1.82%, while
the larger instruction cache alone yields a miss rate of
2.15%.

Figure 4 gives the percentage decrease in miss
rates for the two configurations, showing the improve-
ment given by the SPC. The largest improvement is
in 186. cr af t y, where the miss rate is decrease by
44%, from 0.68% to 0.38%. For nozi | | a, the bench-
mark with the largest miss rates, the SPC gives a 15%
decrease in miss rates, from 5.73% to 4.90%.

S o
I 1

Instruction Cache Miss Rate
N
Il

Oﬂhhﬂ

176.gcc 186.crafty 253.perlbmk 255.vortex mozilla Arithmetic Mean
Benchmark
== 65K B instruction cache
== 64K B instruction cache + 1KB procedure cache

Figure 3. Miss rates with and without SPC

Per cent Decreasein Miss Rate

L -

176.gcc 186.crafty 253.perlbmk 255.vortex
Benchmark

mozilla Arithmetic Mean

Figure 4. Improvement in instruction cache
miss rates

5.2 Discussion

Programs have been shown to have large scale be-
havior extending over billions of instructions [23]. A
combination of the SPC and L1 cache performs bet-
ter than a larger L1 cache because a more intelligent
scheme is used in deciding how to retain information
in the faster and more expensive memory at the L1
cache level. During the operation of a complete ma-
chine, there is “noise” in the references due to the spo-
radic execution of code in the interrupt service rou-
tines, context switch code and background processes.
References from such code in a plain L1 cache can re-
sult in conflict misses which replace heavily used code.

A combination of L1 cache and SPC turns out to be
less susceptible to such vulnerabilities.

The usual cache generally operates at a fixed granu-
larity; the one we compare against in this paper uses
a 64 byte cache line like the I-cache in Pentium 4.
This can result in wastage of space in the I-cache if
only a few bytes are used in the cache line. On the
other hand in the SPC we pack procedures closely. As
mentioned earlier more than half of the invocations of
the programs we studied were made to small proce-
dures. While the SPEC benchmarks we studied were
statically linked, in real programs there are likely to
be more small procedures invocations because of the
stubs (consisting of only 3 instructions and 16 bytes in
the case of x86) for dynamically linked procedures.

6 Conclusions

In this paper we present a system-wide dynamic
feedback-directed technique to do Procedure Level
Relocation (PLR). To the best of our knowledge this
is the first such effort to exploit locality at the level of
procedures. We show that a 64KB instruction cache
augmented with a 1KB Small Procedure Cache has a
miss rate which is on average 15% lower than an L1
cache which is 65KB in size.

We simulate the complete machine in enough detail
to bring up an operating system. This enables us to
take into account all the memory references generated
and select heavily used small procedures for relocation
from any application, dynamic library or the underly-
ing kernel.

Much work remains to be done to explore all the
merits of exploiting locality at the level of procedures.
We intend to explore the benefits of better placement
strategies for procedures within the SPC. Minimizing
the number of cache lines each procedure occupies
in the SPC could improve the conventional sequen-
tial prefetch of instruction into the CPU core. Another
promising area for future research is to vary the length
of the relocation epoch. It can be dynamically changed
by automatically detecting the collective phase behav-
ior of all the processes. Techniques which adapt to
the phase behavior have been explored in other areas
like clustered microarchitectures [2] as well as multi-
configuration I-caches [9].

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

Vasanth Bala, Evelyn Duesterwald, and San-
jeev Banerjia. Dynamo: A transparent dy-
namic optimization system. In Proceedings of
the ACM S GPLAN Conference on Programming
Language Design and Implementation, 2000.

Rajeev Balasubramonian, Sandhya Dwarkadas,
and David H. Albonesi. Dynamically manag-
ing the communication-parallelism trade-off in
future clustered processors. In Proceedings of the
30th annual international symposium on Cont
puter Architecture, 2003.

Thomas Ball and James R. Larus. Using paths to
measure, explain and enhance program behavior.
|EEE Computer, 33(7):57-65, July 2000.

Ravi Batchu and Saul Levy. Working sets at
function level. Technical Report DCS TR-480,
Department of Computer Science, Rutgers Uni-
versity, 2002.

Ravi Batchu, Saul Levy, and Miles Murdocca. A
study of program behavior to establish temporal
locality at function level. Technical Report DCS
TR-475, Department of Computer Science, Rut-
gers University, 2002.

J. Bradley Chen and Bradley D. D. Leupen.
Improving instruction locality with Just-In-Time
code layout. In Proceedings of the USENIX Win-
dows NT Workshop, pages 25-32. USENIX As-
sociation, August 1997.

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken,
and David M. Gillies. Mojo: A dynamic op-
timization system. In Proceedings of the Third
ACM Workshop on Feedback-Directed and Dy-
namic Optimization, December 2000.

Bob Cmelik and David Keppel. Shade: A fast
instruction-set simulator for execution profiling.
In ACM SGMETRICS International Conference
on Measurement and Modeling of Computer Sys-
tems, pages 128-137, 1994.

Ashutosh S. Dhodapkar and James E. Smith.
Managing multi-configuration hardware via dy-
namic working set analysis. In Proceedings of

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

the 29th international symposium on Computer
Architecture, 2002.

D.J.Hatfield and J.Gerald. Program restructur-
ing for virtual memory. 1BM Systems Journal,
10(3):168-192, 1971.

Kemal Ebcioglu, Erik Altman, Michael
Gschwind, and Sumedh Sathaye. Dynamic
binary translation and optimization. |IEEE

Transaction on Computers, 50(6):529-548, June
2001.

Domenico Ferrari. Improving locality by criti-
cal working sets. Communications of the ACM,
17(11):614-620, November 1974.

Nikolas Gloy and Michael D. Smith. Pro-
cedure placement using Temporal-Ordering in-
formation. ACM Transactions on Program-
ming Languages and Systems, 21(5):977-1027,
September 1999.

John L. Hennessy and David A. Patterson. Com-
puter Architecture: A Quantitative Approach.
Morgan Kaufmann, 3 edition, May 2002.

Thomas Kistler and Michael Franz. Continuous
program optimization: Design and evaluation.
IEEE Transaction on Computers, 50(6):549-
566, June 2001.

Alexander Klaiber. The technology behind Cru-
soe(tm) processors. Transmeta White Paper, Jan-
uary 2000.

Kevin Lawton. Bochs: The open source 1A-32
emulation project. http://bochs.sourceforge.net.

Scott McFarling. Program optimization for in-
struction caches. In Proceedings of the Third In-
ternational Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 183-191. ACM, 1989.

Sanjay J. Patel and Steven S. Lumetta. rePLay: a
hardware framework for dynamic optimization.
IEEE Transactions on Computers, 50(6):590-
608, June 2001.

[20]

[21]

[22]

[23]

Karl Pettis and Robert C. Hansen. Profile guided
code positioning. In Proceedings of the ACM
S GPLAN'90 Conference on Programming Lan-
guage Design and Implementation, pages 16-27,
June 1990.

Eric Rotenberg, Quinn Jacobson, Yiannakis
Sazeides, and Jim Smith. Trace processors. In
Proceedings of the 30th Annual International
Symposium on Microarchitecture, pages 138-
148, 1997.

Kevin Scott and Jack Davidson. Strata: A soft-
ware dynamic translation infrastructure. In Pro-
ceedings of the IEEE 2001 Workshop on Binary
Trandlation, September 2001.

Timothy Sherwood, Erez Perelman, Greg
Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. In
Proceedings of the Tenth international confer-
ence on architectural support for programming

[24]

[25]

[26]

languages and operating systems, pages 45-57,
2002.

Viji Srinivasan, Edward S. Davidson, Gary S.
Tyson, Mark J. Charney, and Thomas R. Puzak.
Branch history guided instruction prefetching. In
Proceedings of the Seventh International Confer-
ence on High Performance Computer Architec-
ture (HPCA), pages 291-300, January 2001.

Emmett Witchel and Mendel Rosenblum. Em-
bra: Fast and flexible machine simulation. In
Proceedings of the ACM SSIGMETRICS confer-
ence on measurement and modeling of computer
systems, pages 68—79, 1996.

Yi Zhang, Steve Haga, and Rajeev Barua. Ex-
ecution history guided instruction prefetching.
In Proceedings of the Sxteenth ACM Inter-
national Conference on Supercomputing (ICS),
June 2002.

