
Exploiting Procedure Level Locality to Reduce Instruction Cache Misses

Ravi V. Batchu Daniel A. Jiménez

Department of Computer Science
Rutgers University�

batchu,djimenez � @cs.rutgers.edu

Abstract

High instruction fetch bandwidth is essential
for high performance in today’s wide-issue out-
of-order processors. Instruction caches must pro-
vide a low miss rate as well as low latency. We
introduce Procedure Level Relocation, a class of
dynamic feedback-directed optimizations that sub-
stantially reduce the instruction cache miss rate by
exploiting the temporal locality of procedure usage.
Based on the observation that half of all proce-
dures executed are at most 128 bytes in length, we
present a Small Procedure Cache, a small and fast
explicitly managed memory for storing small pro-
cedures. We show that Procedure Level Relocation
into a Small Procedure Cache reduces the instruc-
tion cache miss rate by an average of 15%.

1 Introduction

Modern wide-issue processors require high in-
struction fetch bandwidth to fully utilize their re-
sources and achieve high performance. However,
the trend over the past few decades has been a
steadily increasing gap between the processor cycle
time and memory latency. Therefore it is crucial to
reduce the instruction cache miss rate.

At a basic level, programs are written as groups
of procedures. The object code generated by the
compiler, therefore, has groups of instructions cor-
responding to each procedure in the high level lan-
guage. There is a temporal locality in the usage of
procedures [5, 4]. Procedures accessed at a certain

point in time during execution tend to be accessed
again in the future.

16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB

Procedure Size (Bytes)

1.0

0.8

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n 

of
 P

ro
ce

du
re

s 
Sm

al
le

r 
T

ha
n 

X

Figure 1. Half of all procedure invocations
call a procedure that is at most 128 bytes.

In this paper we introduce the Small Procedure
Cache (SPC), a hardware/software mechanism that
exploits the temporal locality in the usage of pro-
cedures by caching frequently used procedures on
faster memory which is closer to the processor
core. Since it is possible that large procedures from
which only a few instructions are accessed can have
a detrimental effect on our strategy by unnecessar-
ily occupying more expensive memory, we restrict
our strategy to procedures which are smaller than
a certain size. Most procedures are small enough
so that our strategy does find candidates for relo-
cation. Figure 1 shows the relative frequency with
which procedures of less than a certain size are ex-
ecuted. Half of all procedure executed are less than

1



128 bytes. Thus, there is a large opportunity to
exploit procedure-level locality using a small, fast
memory that caches small procedures.

The SPC is located adjacent to the L1 cache,
occupying a small portion of the physical address
space. The physical memory references generated
by the Memory Management Unit (MMU) from the
virtual memory references issued by the core are
compared with a fixed value to determine whether
the addressed location is in SPC or the I-cache. The
reference is then sent to the appropriate structure.
In addition there is a small portion of code which
is executed very infrequently, after every 100 mil-
lion instructions to relocate the frequently accessed
procedures.

This paper makes the following contributions:

1. We introduce Procedure Level Relocation
(PLR), a class of dynamic feedback-directed
optimizations that exploit locality at the pro-
cedure level.

2. We present the Small Procedure Cache, an in-
stance of PLR that relocates frequently used
small procedures to an explicitly managed fast
memory.

3. We show that the Small Procedure Cache opti-
mization reduces instruction cache miss rates
15% on average versus a traditional instruc-
tion cache with the same hardware budget over
a set benchmarks representative of real-world
workloads.

This paper is organized as follows: Section 2
gives an overview of the related work in the mi-
croarchitecture and feedback-directed optimization
literature. Section 3 describes the Small Procedure
Cache in detail. Section 4 describes our experimen-
tal methodology for simulating the Small Procedure
Cache. Section 4.8 describes the benchmarks and
inputs used for this study. Section 6 concludes and
points to future research on Procedure Level Relo-
cation.

2 Related Work

In this paper we present a dynamic optimiza-
tion technique which exploits temporal locality in

the usage of procedures to reduce instruction cache
misses. While we know of no prior attempt to op-
timize programs by relocating procedures at run
time, there have been efforts to re-order procedures
at compile time and there have also been efforts to
exploit program locality at run time at other levels
of granularity.

2.1 Static procedure re-ordering techniques

Hatfield and Gerald [10], Ferrari [12], McFar-
ling [18], Pettis and Hanson [20], and Gloy and
Smith [13] have presented methods to rearrange
the procedures to improve locality based on profile
data.

Most of these use profile data in the form of a
weighted call graph (WCG) where a weighted edge
between two nodes represents the frequency with
which one procedure calls another. By rearrang-
ing the program so that procedures with strong con-
nections are placed adjacent to one another, conflict
misses can be avoided.

2.2 Static vs. dynamic optimization

The effectiveness of static code layout tech-
niques depends on the stability of profile data from
one run to the next. Producing an input set rep-
resentative of the workloads in real life can often
be very difficult or impossible, especially when the
application offers multiple functionalities. Mod-
ern applications also use Dynamically Loaded Li-
braries (DLLs). Application software is often
shipped as a collection of DLLs. Dynamic linking
imposes limits on compile time code layout strate-
gies. Dynamic code generation environments, like
Java virtual machines, also make static code lay-
out techniques impractical. Thus, our research pro-
poses to do procedure relocation at run-time, rather
than at compile time.

2.3 Dynamic binary translation

There are several efforts involving code transfor-
mation during run time. Dynamic binary transla-
tion systems run binaries compiled for one platform
on a totally different platform [16, 11, 8, 25, 22]
The key factor in all of these technologies is the ju-
dicious choice of sufficiently frequently executed

2



pieces of code for translation into native code,
while interpreting the less frequently used portions
of the program.

2.4 Dynamic code placement

Other techniques have been proposed for dy-
namic code placement. Chen and Leupen [6]
present just in time code layout, which copies pro-
cedures into memory when they are first invoked,
resulting in a reduction in the footprint of the exe-
cutable by 50%.

2.5 Dynamic optimization

There are also dynamic optimization systems
which exploit instruction locality to aggressively
optimize at run time. Dynamo [1] and Mojo [7]
are both user level software efforts to optimize pro-
grams executing on the HPUX/PA-RISC and Win-
dows/x86 platforms, respectively. Replay [19] is
a new processor framework that supports dynamic
optimization, in hardware. Kistler and Franz [15]
presented a dynamic optimization system by utiliz-
ing the idle time and dynamically collecting execu-
tion profiles.

The above techniques for dynamically optimiz-
ing code involve disassembling the binary exe-
cutable followed by aggressive optimization of
code. Because of the high overhead, they have to
be fairly selective to ensure that the code which is
optimized would in fact be repeatedly executed in
the future. There are cases for which Dynamo and
Morph “bail out,” i.e., stop optimizing the binary
and just execute it normally. Simpler heuristics like
procedure caching, having a lesser overhead, would
be less susceptible to such failures.

2.6 Trace Cache

A trace cache is a specialized instruction cache
that exploits instruction locality by organizing in-
structions in the order they are executed, rather than
in their static program order[21].

One disadvantage of trace cache is code duplica-
tion [14, Page 448]. Due to conditional branches,
different hot paths often share the same blocks.
This results in the duplication of code in the trace

cache. The amount of duplication grows exponen-
tially with the trace length and is an obstacle in
building longer traces. Other costs, like trace iden-
tification and address mapping, also increase with
the trace length. While the outcome of a direct con-
ditional branch provides a good hint for the next
time the same instruction is executed, the same is
not true of indirect branches and indirect calls.

Unlike schemes for procedure re-ordering, trace
caches, operating with physical addresses1 , cannot
relieve the pressure on TLB since the stream of vir-
tual addresses remains unaltered with the addition
of a trace cache.

3 Procedure Level Relocation

Procedure Level Relocation (PLR) is a dynamic
feedback-directed optimization that exploits tem-
poral locality in the usage of small procedures.
PLR relocates heavily used small procedures into
a Small Procedure Cache (SPC), a portion of mem-
ory that resides on the same physical structure as
the L1 instruction cache. The SPC operates with
the same latency and bandwidth as that of the L1
cache. The SPC is essentially an explicitly man-
aged instruction cache used by the operating system
for storing frequently used procedures.

MMUCPU

D−cache

I−cache

SPC

L2−cache Main Memory

Figure 2. Procedure Cache in Memory Hi-
erarchy

1Trace caches accessed by virtual addresses are not promis-
ing. Multiple processes can have the same virtual address for
different locations. Combining the virtual address and process
ID results in the duplication of the code in dynamically linked
libraries

3



3.1 Instruction reference generation

Instruction references to the portion of memory
mapped to the SPC are satisfied by the SPC, while
other instructions references go through the tradi-
tional memory hierarchy. The SPC is located in a
fixed area at one end of the physical address space
so that checking whether a reference is for the SPC
involves a single comparison. The MMU is set up
by the kernel so that the SPC appears in the same
virtual address space in all the processes. All refer-
ences are first checked to see whether they can be
satisfied by the instruction prefetch buffer and un-
dergo virtual to physical address translation in the
Memory Management Unit (MMU) before they are
directed to the SPC or the L1 instruction cache.

3.2 Frequency of relocations

There is a trade-off associated with procedure re-
location. Relocation results in an additional over-
head while improved locality results in better per-
formance. We do relocations only after very long
periods of execution, so that the benefit of reloca-
tion can be amortized over it. As described in Sec-
tion 4, the relocation is done by the operating sys-
tem after every 100 million instructions. We es-
timate that at this granularity, the overhead from
procedure relocation will be far less than that of
other operating system functions, such as processor
scheduling.

3.3 Relocating procedures

Each procedure keeps a count of how often it has
been invoked. After a relocation epoch of 100 mil-
lion instructions has passed, the operating system
runs an algorithm to perform procedure relocations.
The following is an overview of the steps that are
taken:

1. Procedures are prioritized for relocation based
on an estimate of their temporal localities.

2. Procedures are copied contiguously in priority
order until the SPC is full or there are no more
procedures.

3. Each old instance of a procedure is patched
so that the next time it is invoked, the caller

will be patched to invoke the new copy in the
SPC. Note that this happens only once per call
site; each subsequent invocation is automati-
cally directed to the new copy.

4. Call sites of procedures residing in the previ-
ous generation of the SPC are patched back to
call their original targets.

3.4 Relocation policy

The 100 million instruction relocation epoch is
divided into four quarters. At the time of relocation,
procedures are selected based on a priority com-
puted by dividing the total frequency of their usage
in the relocation epoch by the procedure size. Pro-
cedures are then chosen using an estimate of their
future temporal locality, based on their activity in
the previous four quarters. First, procedures which
were accessed in all four quarters of the relocation
are copied into SPC in the order of decreasing pri-
ority. If there is any remaining space, procedures
which were used in the last quarter and at least two
other quarters are copied in the order of decreasing
priority. In the remaining space, procedures which
used in the last quarter are copied. Finally in any
left over space, procedures are selected solely on
their priority. In practice, the SPC is usually full
after the first round of copies.

We refill the SPC on each relocation from
scratch. This is equivalent to removing the pro-
cedures from SPC and placing them back. Since
procedures do not have a fixed size this approach
makes it easy to decide the placement of proce-
dures in the SPC. Refilling the SPC has the down-
side that the machine would have to fix the call sites
again. However, since the relocation is a very in-
frequent event, this approach is not likely to have a
great impact. Our approach, in this matter, is sim-
ilar to the complete flush of the fragment cache in
Dynamo [1].

3.5 Implementation details

Implementation of the relocation algorithm
brings up a number of details:

Patch-up code To handle calls to relocated pro-
cedures, patch-up code is inserted into the begin-

4



ning of the original copy of the procedure. This
patch-up code redirects call sites to the new loca-
tion in the SPC. This lazy approach to updating the
call site only after it is actually encountered during
execution saves considerable overhead compared to
an approach which corrects the call sites immedi-
ately after relocating the procedure. This is because
not all call sites for the relocated procedure are
likely to be encountered. There has also been con-
siderable amount of work [3] demonstrating execu-
tion path locality which indicates that only a small
fraction of the call sites really need to be patched.
The patch up code also maintains a record of the
call sites it modified to facilitate restoration of the
call site when the procedure is relocated back to the
original location.

Replacement After a relocation phase, call sites
must be redirected back to the original instances of
procedures that were in the previous generation of
the SPC. When the call site was originally mod-
ified, it was placed on a queue. During reloca-
tion, call sites on the queue are visited and restored.
Since only a few call sites will have been patched,
this queue will be short and the redirection phase
will be quick.

Code expansion When procedures are selected
for relocation the original area where they appear
is left intact and another copy is created in the SPC.
Leaving the original code intact allows us to sim-
ply overwrite the copy in the SPC when it is re-
placed with another procedure. The above strat-
egy of copying rather than moving means that there
would be two copies of some procedures. Never-
theless, code expansion is minimal because the size
of the SPC is on the order of one kilobyte. There
is also likely to be a beneficial effect on the avail-
ability of physical page frames. Code which is ex-
ecuted frequently would be copied into the SPC,
making references to the original copy unnecessary
and (possibly) freeing up the physical page frame
containing the original copy.

Maintaining proper control transfer To main-
tain program semantics in the presence of dy-
namic relocation, control instructions should con-

tinue to transfer control to the intended destination.
Position independent code is generated using pc-
relative addressing. This would ensure that all the
intra-procedure control transfers would operate cor-
rectly. Returns to the relocated procedures are han-
dled by examining the stack at the time of reloca-
tions. Any returns to procedures which get relo-
cated (either into the SPC or back to their original
location) are updated at relocation time.

3.6 System wide relocation

Previous work [5, 4] has shown that besides the
fact there exists a working set of procedures for
each program, the working set size varies as pro-
grams execute. While dynamically linked libraries
used simultaneously by multiple processes may be
mapped into different areas of the individual vir-
tual address space, typically using a system call like
mmap, there is actually only a single copy of the li-
brary in the physical memory. Therefore, the SPC
is used for caching procedures from all the pro-
cesses executing on the machine.

4 Methodology

In this Section, we describe our methodology for
studying procedure level relocation and simulating
the procedure cache.

4.1 Simulator code base

Our simulator is based on the Bochs x86
simulator[17]. Bochs simulates the entire machine
platform so that it can support the execution of
a complete operating system and applications that
run on it. This allows us to include the effects of the
execution of the operating system code due to con-
text switches, system calls and kernel daemons run-
ning in the background. Modern applications (e.g.
mozilla) are often shipped as multiple executables
running as multiple processes. Almost all applica-
tions use dynamic linking. Our simulation strategy
can support all of the above scenarios. For all of our
experiments we simulate the Red Hat Linux oper-
ating system version 6.0.

5



Name Description Input Data Set Instructions exe-
cuted in 100 Million

186.crafty
Plays chess using alpha-beta
search

train input crafty.in 307

176.gcc gcc compiler for the M88100 train input cp-decl.i 35
253.perlbmk Perl v5.005 03 interpreter train input diffmail.in 307

255.vortex
Object oriented database pro-
gram

train input lendian.raw 148

mozilla A web browser
Copy of HPCA web
page

25

Table 1. Benchmarks and inputs used for this study

4.2 Instruction cache simulations

To evaluate the effects of dynamic procedure re-
location we performed a complete machine simula-
tion at the instruction level. Our simulator performs
the following actions:

1. It captures the sequence of memory references
that occur while running the workload on a
normal machine,

2. It keeps track of the location of all procedures
and processes as the machine runs.

3. It monitors the usage of procedures in each re-
location epoch and simulates the relocation of
procedures into the procedure cache.

4. It builds a new sequence of memory refer-
ences based on the sequence in step (1) and the
knowledge of the location of all procedures in
the presence of dynamic procedure relocation.

5. It then feeds the two sequences to a cache sim-
ulator simulating separate instruction caches
to estimate the resulting miss rates.

Next, we describe how we achieve the above
steps.

4.3 Identifying procedures

As the simulator runs, it has to identify the cur-
rent procedure being executed based on the con-
tents of the simulated instruction pointer. This re-
quires the knowledge of the location of all the pro-
cedures in the virtual address space of the process

being simulated. Hence the simulator has to keep
track of the location of all the procedures in the
corresponding virtual address space and the asso-
ciated processes. Events like process creation, pro-
cess termination, procedure resolution when a dy-
namically linked procedure is first called, and the
loading of code when an application is initially
launched are all very high level and involve sev-
eral machine instructions. We instrument the Linux
kernel to inform our simulation infrastructure when
one of these high-level events occurs. Based on the
observations from Figure 1, we relocate only those
procedures with a size at most 128 bytes.

4.4 Accounting for dynamically linked li-
braries

Dynamically linked procedures do not appear in
the executable. When the application is initially
launched, all the call sites for a dynamically linked
procedure contain a call to a Procedure Linkage Ta-
ble (PLT) stub which directs the control to a re-
solver in the run time linker. The resolver finds
out the location of the procedure being called and
patches the program so that future calls go directly
to the dynamically linked procedure. We modified
the resolver, a component of glibc, so that the
simulator could detect the existence of the newly
linked procedure. Our changes, both in the kernel
and the run time linker, are very minimal.

4.5 Cache simulator

The information about the memory references is
available in the existing bochs data structures and

6



our simulator accesses them to capture the mem-
ory reference stream on the normal machine and
transform it to reflect our optimization. We devel-
oped a cache simulator to estimate the miss rates for
the different memory reference streams. Since the
LRU replacement strategy is expensive to imple-
ment, we selected a replacement strategy called the
clock algorithm (or the second chance algorithm)
for the replacement strategy. This strategy results
in low miss rates like the LRU and has low imple-
mentation overhead, comparable to that of FIFO.
The simulator counts the number of instructions ex-
ecuted in the simulated machine and after every 100
million instructions it simulates a relocation by up-
dating the address of the relocated procedures. The
relocations are based on the usage counts for the
procedures which are obtained during the simulated
execution.

4.6 Cache details

For this study, the base cache configuration is a
65KB instruction cache with 64 byte blocks and 2-
way set associativity. The SPC configuration is a
64KB instruction cache with 64 byte blocks and 2-
way set associativity plus a 1KB small procedure
cache. Cache miss rates are reported as the number
of times the I-cache is filled from the L2 cache di-
vided by the total number of blocks requested from
the first-level structure (either I-cache or SPC). The
simulated CPU prefetches an entire block from the
first level structure into a prefetch buffer so that
subsequent references to the same block without in-
tervening references to other blocks are all counted
as one access.

4.7 Simulated environment

For our experiments we simulate a Pentium-
class workstation with an NE2000 network inter-
face card, a VGA monitor, 2 ATA channels con-
nected to 3 IDE hard drives and a CD-ROM drive.
The simulated computer is loaded with a Red Hat
6.0 distribution and the workloads are launched in
a terminal while running the X Window System.
Cache simulation makes the simulation many or-
ders of magnitude slower. We turn on the cache

simulation only when we start executing the work-
loads on the simulated machines.

4.8 Benchmarks

To evaluate the effects of PLR on the instruction
cache miss rate we selected those integer bench-
marks from SPEC CPU2000 suite that are known to
have large instruction footprints (gcc, vortex, perl
and crafty) as well as Mozilla. The four SPEC
benchmarks have been shown to incur a 25% to
30% performance penalty due to the limited space
in the I-cache while the rest of the benchmarks
in this suite have a performance penalty less than
3% [24]. Previous work [26, 24] on reducing in-
struction cache misses have used this same subset
of SPEC benchmarks for their studies. We believe
that these benchmarks characterize real-world ap-
plications that would be used in a production envi-
ronment.

One of the prerequisites for running a workload
on our simulation platform is that the executable(s)
constituting the workload have a symbol table in
them so that information about procedures can be
extracted. This is not true of the applications like
Netscape which comes pre-packaged in the Red
Hat distribution on our simulated box. Since the
simulated computer runs much more slowly than a
real machine, building large programs like mozilla
on the simulator is not feasible. We created an en-
vironment similar to that on the simulated box to
build the mozilla binaries which had symbol tables
in them. Preparing large real world applications
which are likely to have large instruction footprints,
for the simulation platform is a non-trivial task.

Table 1 describes each workload. They were all
run in an X windows environment in the simulated
machine. The cache simulation was only turned on
when these workloads were running.

5 Results

In this Section, we describe the results of our
simulation experiments with the Small Procedure
Cache.

7



5.1 Miss rates

Figure 3 shows the instruction miss rates for
two configurations: a 65KB instruction cache and
a 64KB instruction cache with a 1KB SPC. Miss
rates for each benchmark as well as the arithmetic
mean miss rate are given. In each case, the SPC
yields a lower miss rate than the larger instruction
cache alone. On average, the SPC configuration
yields a miss rate of 1.82%, while the larger instruc-
tion cache alone yields a miss rate of 2.15%.

176.gcc 186.crafty 253.perlbmk 255.vortex mozilla Arithmetic Mean

Benchmark

0

2

4

6

In
st

ru
ct

io
n 

C
ac

he
 M

is
s 

R
at

e

65KB instruction cache
64KB instruction cache + 1KB procedure cache

Figure 3.

Figure 4 gives the percentage decrease in miss
rates for the two configurations, showing the im-
provement given by the SPC. The largest improve-
ment is in 186.crafty, where the miss rate
is decrease by 44%, from 0.68% to 0.38%. For
mozilla, the benchmark with the largest miss
rates, the SPC gives a 15% decrease in miss rates,
from 5.73% to 4.90%.

5.2 Discussion

Programs have been shown to have large
scale behavior extending over billions of instruc-
tions [23]. A combination of the SPC and L1 cache
performs better than a larger L1 cache because a
more intelligent scheme is used in deciding how to
retain information in the faster and more expensive
memory at the L1 cache level. During the operation
of a complete machine, there is “noise” in the ref-
erences due to the sporadic execution of code in the

176.gcc 186.crafty 253.perlbmk 255.vortex mozilla Arithmetic Mean

Benchmark

50

40

0

10

20

30

40

50

P
er

ce
nt

 D
ec

re
as

e 
in

 M
is

s 
R

at
e

Figure 4.

interrupt service routines, context switch code and
background processes. References from such code
in a plain L1 cache can result in conflict misses
which replace heavily used code. A combination
of L1 cache and SPC turns out to be less suscepti-
ble to such vulnerabilities.

The usual cache generally operates at a fixed
granularity; the one we compare against in this pa-
per uses a 64 byte cache line like the I-cache in Pen-
tium 4. This can result in wastage of space in the
I-cache if only a few bytes are used in the cache
line. On the other hand in the SPC we pack proce-
dures closely. As mentioned earlier more than half
of the invocations of the programs we studied were
made to small procedures. While the SPEC bench-
marks we studied were statically linked, in real pro-
grams there are likely to be more small procedures
invocations because of the stubs (consisting of only
3 instructions and 16 bytes in the case of x86) for
dynamically linked procedures.

6 Conclusions

In this paper we present a system-wide dynamic
feedback-directed technique to do Procedure Level
Relocation (PLR). To the best of our knowledge
this is the first such effort to exploit locality at the
level of procedures. We show that a 64KB instruc-
tion cache augmented with a 1KB Small Procedure
Cache has a miss rate which is on average 15%
lower than an L1 cache which is 65KB in size.

We simulate the complete machine in enough de-
tail to bring up an operating system. This enables us

8



to take into account all the memory references gen-
erated and select heavily used small procedures for
relocation from any application, dynamic library or
the underlying kernel.

Much work remains to be done to explore all the
merits of exploiting locality at the level of proce-
dures. We intend to explore the benefits of better
placement strategies for procedures within the SPC.
Minimizing the number of cache lines each proce-
dure occupies in the SPC could improve the con-
ventional sequential prefetch of instruction into the
CPU core. Another promising area for future re-
search is to vary the length of the relocation epoch.
It can be dynamically changed by automatically
detecting the collective phase behavior of all the
processes. Techniques which adapt to the phase
behavior have been explored in other areas like
clustered microarchitectures [2] as well as multi-
configuration I-caches [9].

References

[1] Vasanth Bala, Evelyn Duesterwald, and San-
jeev Banerjia. Dynamo: A transparent dy-
namic optimization system. In Proceedings of
the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation,
2000.

[2] Rajeev Balasubramonian, Sandhya
Dwarkadas, and David H. Albonesi. Dy-
namically managing the communication-
parallelism trade-off in future clustered
processors. In Proceedings of the 30th an-
nual international symposium on Computer
Architecture, 2003.

[3] Thomas Ball and James R. Larus. Using paths
to measure, explain and enhance program be-
havior. IEEE Computer, 33(7):57–65, July
2000.

[4] Ravi Batchu and Saul Levy. Working sets at
function level. Technical Report DCS TR-
480, Department of Computer Science, Rut-
gers University, 2002.

[5] Ravi Batchu, Saul Levy, and Miles Murdocca.
A study of program behavior to establish tem-

poral locality at function level. Technical Re-
port DCS TR-475, Department of Computer
Science, Rutgers University, 2002.

[6] J. Bradley Chen and Bradley D. D. Leupen.
Improving instruction locality with Just-In-
Time code layout. In Proceedings of the
USENIX Windows NT Workshop, pages 25–
32. USENIX Association, August 1997.

[7] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken,
and David M. Gillies. Mojo: A dynamic
optimization system. In Proceedings of the
Third ACM Workshop on Feedback-Directed
and Dynamic Optimization, December 2000.

[8] Bob Cmelik and David Keppel. Shade: A fast
instruction-set simulator for execution pro-
filing. In ACM SIGMETRICS International
Conference on Measurement and Modeling of
Computer Systems, pages 128–137, 1994.

[9] Ashutosh S. Dhodapkar and James E. Smith.
Managing multi-configuration hardware via
dynamic working set analysis. In Proceed-
ings of the 29th international symposium on
Computer Architecture, 2002.

[10] D.J.Hatfield and J.Gerald. Program restruc-
turing for virtual memory. IBM Systems Jour-
nal, 10(3):168–192, 1971.

[11] Kemal Ebcioglu, Erik Altman, Michael
Gschwind, and Sumedh Sathaye. Dynamic
binary translation and optimization. IEEE
Transaction on Computers, 50(6):529–548,
June 2001.

[12] Domenico Ferrari. Improving locality by crit-
ical working sets. Communications of the
ACM, 17(11):614–620, November 1974.

[13] Nikolas Gloy and Michael D. Smith. Proce-
dure placement using Temporal-Ordering in-
formation. ACM Transactions on Program-
ming Languages and Systems, 21(5):977–
1027, September 1999.

[14] John L. Hennessy and David A. Patterson.
Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 3 edition, May
2002.

9



[15] Thomas Kistler and Michael Franz. Con-
tinuous program optimization: Design and
evaluation. IEEE Transaction on Computers,
50(6):549–566, June 2001.

[16] Alexander Klaiber. The technology behind
Crusoe(tm) processors. Transmeta White Pa-
per, January 2000.

[17] Kevin Lawton. Bochs: The open
source IA-32 emulation project.
http://bochs.sourceforge.net.

[18] Scott McFarling. Program optimization
for instruction caches. In Proceedings of
the Third International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems, pages 183–
191. ACM, 1989.

[19] Sanjay J. Patel and Steven S. Lumetta. re-
PLay: a hardware framework for dynamic op-
timization. IEEE Transactions on Computers,
50(6):590–608, June 2001.

[20] Karl Pettis and Robert C. Hansen. Profile
guided code positioning. In Proceedings of
the ACM SIGPLAN’90 Conference on Pro-
gramming Language Design and Implemen-
tation, pages 16–27, June 1990.

[21] Eric Rotenberg, Quinn Jacobson, Yiannakis
Sazeides, and Jim Smith. Trace processors. In
Proceedings of the 30th Annual International
Symposium on Microarchitecture, pages 138–
148, 1997.

[22] Kevin Scott and Jack Davidson. Strata: A
software dynamic translation infrastructure.
In Proceedings of the IEEE 2001 Workshop
on Binary Translation, September 2001.

[23] Timothy Sherwood, Erez Perelman, Greg
Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior.
In Proceedings of the Tenth international con-
ference on architectural support for program-
ming languages and operating systems, pages
45–57, 2002.

[24] Viji Srinivasan, Edward S. Davidson, Gary S.
Tyson, Mark J. Charney, and Thomas R.
Puzak. Branch history guided instruction
prefetching. In Proceedings of the Seventh In-
ternational Conference on High Performance
Computer Architecture (HPCA), pages 291–
300, January 2001.

[25] Emmett Witchel and Mendel Rosenblum.
Embra: Fast and flexible machine simula-
tion. In Proceedings of the ACM SIGMET-
RICS conference on measurement and model-
ing of computer systems, pages 68–79, 1996.

[26] Yi Zhang, Steve Haga, and Rajeev Barua. Ex-
ecution history guided instruction prefetch-
ing. In Proceedings of the Sixteenth ACM
International Conference on Supercomputing
(ICS), June 2002.

10


