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Emerging Non-Volatile Memory (NVM) technologies are explored as potential alternatives to traditional
SRAM/DRAM-based memory architecture in future microprocessor design. One of the major disadvantages
for NVM is the latency and energy overhead associated with write operations. Mitigation techniques to
minimize the write overhead for NVM-based main memory architecture have been studied extensively.
However, most prior work focuses on optimization techniques for NVM-based main memory itself, with little
attention paid to cache management policies for the Last-Level Cache (LLC).

In this article, we propose a Writeback-Aware Dynamic CachE (WADE) management technique to help
mitigate the write overhead in NVM-based memory.1 The proposal is based on the observation that, when
dirty cache blocks are evicted from the LLC and written into NVM-based memory (with PCM as an example),
the long latency and high energy associated with write operations to NVM-based memory can cause system
performance/power degradation. Thus, reducing the number of writeback requests from the LLC is critical.

The proposed WADE cache management technique tries to keep highly reused dirty cache blocks in
the LLC. The technique predicts blocks that are frequently written back in the LLC. The LLC sets are
dynamically partitioned into a frequent writeback list and a nonfrequent writeback list. It keeps a best size
of each list in the LLC. Our evaluation shows that the technique can reduce the number of writeback requests
by 16.5% for memory-intensive single-threaded benchmarks and 10.8% for multicore workloads. It yields a
geometric mean speedup of 5.1% for single-thread applications and 7.6% for multicore workloads. Due to the
reduced number of writeback requests to main memory, the technique reduces the energy consumption by
8.1% for single-thread applications and 7.6% for multicore workloads.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Cache Memories

General Terms: Design, Performance

Additional Key Words and Phrases: Last-level cache, nonvolatile memory, replacement policy, cache
segmentation

1WADE means “walk through water with difficulty because of the pressure of the water against the legs.”
We envision our WADE technique as relieving the pressure of write overheads for NVM-based memory
architecture.
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1. INTRODUCTION

Technology scaling of SRAM and DRAM is increasingly constrained by fundamental
technology limits. Emerging memory technologies, such as Spin Torque Transfer RAM
(STT-RAM), Phase-Change RAM (PCM), and Resistive RAM (RRAM), are being ex-
plored as potential alternatives to existing memories in future computing systems.
Compared to the traditional SRAM/DRAM technology, these emerging memories have
the common advantages of high density, low standby power, better scalability, and
nonvolatility, and hence become very attractive as the alternatives for future memory
hierarchy.

In order to use such emerging memories as main memory, several design issues
must be solved. The most important is the performance and energy costs of writes.
Since NVM has an inherently stable mechanism for data storage, it takes more time
and energy to overwrite data. Write endurance is another challenge in PCM-based and
RRAM-based main memory systems. For example, state-of-the-art process technology
has demonstrated that the write endurance for PCM is around 108 to 109 writes. The
problem is further aggravated by the fact that the service of memory write requests
consumes power and delays the service of subsequent memory read requests, causing
performance degradation [Stuecheli et al. 2010; Wang et al. 2012; Lee et al. 2010]. This
write inefficiency problem is worse in NVM-based main memory. Thus, if we directly
replace DRAM with NVM as main memory, the long latency and high energy consump-
tion of writes could offset performance and power benefits and result in degradations.
Much previous work has investigated techniques to mitigate the overheads of write
operations, such as read-before-write, load balancing, novel write-buffer structure, or
hybrid cache/memory architecture [Joo et al. 2010; Qureshi et al. 2009; Sun et al. 2009;
Ramos et al. 2011], which will be discussed in Section 5. However, the majority of
these techniques focus on optimization techniques for NVM-based main memory itself,
paying little attention to cache management of the LLC.

This article focuses on evaluating the impact of LLC management policies on the
memory performance/power and tailors the cache replacement policy to the underlying
NVM-based main memory. Caches are used to mitigate the performance gap between
the main memory and processor. A variety of dynamic cache management techniques
[Jaleel et al. 2008; Qureshi et al. 2007; Jaleel et al. 2010; Qureshi et al. 2006; Khan
et al. 2012; Xie and Loh 2009; Chang and Sohi 2007; Qureshi and Patt 2006] have
been proposed to improve cache efficiency. Most of these techniques provide better
performance by dynamically learning access patterns, selecting the management pol-
icy, or partitioning the cache capacity. Dirty cache blocks evicted from the LLC will
be written into main memory, which can degrade performance and energy efficiency,
especially in an NVM-based main memory system. Clean cache blocks will not affect
the system performance and energy once they are evicted from the LLC. Most previous
cache management policies are not aware of the disparity in miss penalty for dirty and
clean cache blocks. Zhou et al. [2012] take the first step to exploit the LLC partition-
ing and replacement policy by considering the negative impact of writeback requests.
They propose to partition the shared LLC among multicore by taking into account the
writeback penalty. However, their technique can only be applied to multicore systems
with the Least-Recently-Used (LRU) replacement policy.
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This article introduces the Writeback-Aware Dynamic cachE (WADE) management
technique in the context of NVM-based main memory. WADE improves system perfor-
mance and energy efficiency by reducing the number of writeback requests to NVM-
based main memory. The technique is decoupled from the LLC replacement policy. It
tries to keep highly reused dirty data in the LLC. LLC blocks are classified into frequent
writeback blocks and nonfrequent writeback blocks. The frequent writeback blocks are
cache blocks in the LLC that are written back to main memory with high frequency
within a certain access interval. The remaining cache blocks are classified as nonfre-
quent writeback blocks. The nonfrequent writeback blocks can be clean cache blocks or
dirty cache blocks that are not written into main memory frequently. The cache set
is dynamically partitioned into a frequent writeback list and a nonfrequent writeback
list. WADE improves cache efficiency by trying to keep the best size of each list. The
evaluation shows the technique can improve the system performance and reduce the
energy consumption for both single-thread and multicore workloads. Our contributions
can be summarized as follows:

—We investigate write latency and energy consumption in the context of PCM-based
main memory, with analysis of the disparity in miss penalties for different types of
data. We propose to differentiate the miss penalty for dirty cache blocks and clean
cache blocks.

—We propose a frequent-write predictor that predicts frequent writeback cache blocks
in the LLC. It takes into account both recency and frequency information and makes
a prediction at both coarse granularity and fine granularity.

—We propose to partition LLC sets into a frequent writeback list and a nonfrequent
writeback list. The technique is aware of the characteristics of each list and dynam-
ically learns the optimal size of each list.

—We present an evaluation of our technique with SPEC CPU 2006 [Henning 2006]
workloads simulated with the MARSSx86 [Patel et al. 2011] simulator combined
with a modified DRAMSim2 [Rosenfeld et al. 2011] for simulating PCM-based main
memory. Our evaluation shows that the technique yields a geometric mean speedup
of 5.1% for memory-intensive single-thread applications and 7.6% for multicore work-
loads. The techniques reduce the energy consumption in main memory by 8.1% for
single-thread applications and 7.6% for multicore workloads.

The rest of the article is organized as follows: Section 2 gives the background of
emerging nonvolatile memories, the impact of write on the PCM-based memory sys-
tem, and motivational results. Section 3 explains our writeback-aware dynamic cache
management technique. Section 4 presents our experimental methodology and results.
Section 5 discusses related work. Finally, Section 6 concludes the article.

2. BACKGROUND AND MOTIVATION

In this section, we first give a brief introduction on emerging nonvolatile memory and
the impact of memory write overhead on both performance and power. We then discuss
the motivation of our research with an example that demonstrates two interesting
observations, which shows the potential of our proposed WADE management technique.

2.1. Emerging Nonvolatile Memory

Even though our proposed technique works for DRAM-based memory systems, it works
much better for emerging NVM-based memory systems. Therefore, we first give a brief
introduction on emerging nonvolatile memory technologies.

In recent years, significant efforts and resources have been put into the research and
development of emerging memory technologies that combine attractive features such
as scalability, fast read/write, negligible leakage, and nonvolatility. Multiple promising
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Fig. 1. An illustration of Phase-change RAM (PCM) cell. The GST has two phases: the amorphous phase
with high resistance and the crystalline phase with low resistance.

candidates, such as PCM, STT-RAM, and RRAM, have gained substantial attention
and are being actively pursued by the industry [Raoux et al. 2008]. Among various
emerging memory technologies, PCM is one of the most promising candidates because
semiconductor companies have made dramatic R&D progress in recent years. For ex-
ample, Samsung demonstrated an 8Gbit PCM memory chip recently [Choi et al. 2012],
and a CMOS-compatible embedded PCM (Hitachi and STMicro) [Hanzawa et al. 2007;
Pellizzer et al. 2004] has been demonstrated, paving the way for integrating these
NVMs into traditional memory hierarchies. In addition, emerging 3D integration tech-
nologies [Sun et al. 2009] enable cost-effective integration of these NVMs with CMOS
logic circuits. Compared with DRAM, the PCM [Xie 2011] has high density, comparable
read access time, and reasonable write endurance, which made it a promising alter-
native to existing main memories. Thus, many innovative memory architectures using
PCM as main memory have emerged in the last several years [Qureshi et al. 2010; Xie
2011; Qureshi et al. 2009, 2009; Zhou et al. 2009; Lee et al. 2009].

In a PCM memory cell, the storage node is based on a chalcogenide alloy (typically
GeSBTe (GST) material), as shown in Figure 1. The resistance differences between
an amorphous (high-resistance) and crystalline (low-resistance) phase of chalcogenide-
based material indicate the stored value as “1” and “0,” respectively. Writing a bit to
the PCM cell is done through set and reset operations: for set operations, the phase-
change material is crystallized by applying an electrical pulse that heats a significant
portion of the cell above its crystallization temperature. In reset operations, a larger
electrical current is applied and then abruptly cut off to melt and then quench the
material, leaving it in an amorphous state. Compared to charge-based SRAM/DRAM,
PCM intrinsically takes longer and consumes more energy to overwrite the existing
data, which could result in performance degradation and high energy consumption.

2.2. The Impact of Write Latency and Energy

Caches are used to mitigate the performance gap between main memory and the
processor. When cache blocks are evicted from the LLC, the dirty blocks will be written
back to the main memory. Write requests may generate interference with read requests
and therefore affect the performance [Wang et al. 2012]. In addition, the latency and
energy overhead associated with the write operation may have significant impacts on
the overall system performance/power.

Figure 2 shows average performance and dynamic energy impacts of write requests
on various systems for memory-intensive SPEC CPU 2006 benchmarks. Perfect write
assumes write requests do not generate any interference with read requests and con-
sume zero dynamic energy, which is the optimal case. We assume that the read and
write memory requests for DRAM-based main memory have similar access latency
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Fig. 2. The performance and dynamic energy impact of write on various systems.

Fig. 3. LLC miss penalty on throughput and energy for dirty cache block and clean cache block.

and dynamic power consumption. For PCM-based main memory, the write latency and
energy consumption are assumed to be 10× of that for the read requests. The schedul-
ing policy we used for evaluation is read prioritizes write [Wang et al. 2012]. From
Figure 2(a), we can see that without write-induced interference, the system perfor-
mance improves 29.4% in the DRAM-based system and 45.3% in the PCM-based main
memory. Figure 2(b) shows the write energy dominates the PCM energy consumption,
and it consumes 65% of total dynamic energy consumption, although write requests
only account for 25.5% of all the memory accesses. Obviously, both the system perfor-
mance and the energy efficiency could benefit from reducing the number of writeback
requests.

2.3. Motivation

Dirty and clean cache blocks in the LLC have different properties. When dirty cache
blocks are evicted from the LLC, they will be written into main memory, incurring
performance and energy overhead, while clean cache blocks will not affect the system
when they are evicted.

Figure 3 shows an example demonstrating the disparity in LLC miss penalties for
dirty data and clean data on PCM throughput and energy. Assuming a request “read
A” missed in the LLC and is sent to PCM for service, servicing request “read A” takes
one time unit and A is brought into the LLC. Then a request “read B” missed in the
LLC and is serviced by PCM for one time unit. In the LLC, “block A” is accessed by a
write hit and the dirty bit is set. After “dirty block A” is evicted from the LLC, it will be
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Fig. 4. Region-based memory write access pattern in PCM for 483.xalancbmk for 500 million instructions.
One region contains 16 contiguous blocks. X-axis shows the number of region access times ([M N) means
the region is accessed by X times and M <= X < N). Very few regions are accessed frequently (e.g., only 12
regions are accessed more than 128 times).

written back to PCM. Assuming servicing write request “write A” takes four time units.
At time t4, a request “read C” is sent to PCM that targets the same device with “request
A.” Then C has to wait until the completion of servicing “A.” In this case, C is delayed
by servicing request “write A” for three units. Therefore, the LLC performance miss
penalty of “clean data B” takes one time unit while the LLC performance miss penalty
of “dirty data A” takes four units: one unit for reading “A” and three units for delaying
“C.” Assuming the PCM read/write energy is 2/8 pJ/bit, the energy miss penalty for
“A” and “B” is (64bytes × 8bits × 2pJ/bit) + (64bytes × 8bits × 8pJ/bit) = 5120pJ and
64bytes × 8bits × 2pJ/bit = 1024pJ, respectively. Therefore, the miss penalty for dirty
data is more significant than the clean data.

Based on this observation, we propose to adapt the cache management technique to
reduce the writeback requests. Since the performance and energy cost are more signifi-
cant for the dirty cache blocks, the system could benefit by keeping frequent writeback
cache blocks in the LLC. However, blindly allocating large cache capacity to frequent
writeback data can evict the more critical cache blocks that will be re-referenced soon.
This will result in performance degradation. Consequently, there are two questions
that need to be answered: (1) Are the frequent writeback blocks predictable? (2) What
is the optimal cache capacity that should be allocated to frequent writeback data? We
performed experiments and have the following two observations:

Observation 1: The writeback accesses have spatial and temporal locality. A small
percentage of regions account for a large percentage of writeback accesses. Within a
heavily accessed region, the writeback accesses are clustered.

Figure 4 shows access patterns for writeback requests to PCM for the benchmark
xalancbmk for 500 million instructions. We evaluate the access pattern at the region
level. One region includes 1/4 size of the memory page, which has 16 contiguous
blocks. The x-axis shows the number of region access times; for example, [32 64)
means the region is accessed no less than 32 times and less than 64 times. The y-axis
gives the number of regions that correspond to the access times on the x-axis. For
instance, the first bar shows there are 12 regions that have been accessed more than
128 times. The last bar shows the percentage of the number of accesses for each
type of region that account for all the writeback accesses. We can see the writeback
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Fig. 5. 3D view for write access pattern in PCM within seven hot regions for 483.xalancbmk. The x-axis
shows the 16 cache blocks within a region. The z-axis shows seven regions that the number of writeback
accesses larger than 64.

accesses have temporal locality. Less than 18% percent of regions account for 60%
writeback accesses. Figure 5 shows the 3D graph for writeback access pattern within
the frequent writeback regions. The x-axis shows the 16 cache blocks within a region.
The z-axis shows seven regions that the number of writeback accesses larger than 64.
The y-axis gives the percentage of total write accesses for each block within the region.
We can see the writeback accesses for blocks are clustered within the region.

Based on this observation, we propose a two-stage predictor for frequent writeback
cache blocks, at both coarse granularity and fine granularity: The region granularity
prediction predicts the hot region by capturing the spatial locality and temporal locality.
The cache line granularity prediction identifies the frequent writeback blocks within
the hot region.

Observation 2: The segment size of the frequent writeback list for the cache set
significantly affects the performance and energy consumption for workloads.

The last-level cache set is partitioned into frequent writeback list and nonfrequent
writeback list. The frequent writeback list consists of frequent writeback cache blocks,
while the nonfrequent writeback list consists of the remaining cache blocks in the
set. Figure 6 shows the performance and energy impact for various sizes of frequent
writeback lists for benchmark perlbench. For a 16-way LLC, the best segment size for
perlbench is 11, which generates the best performance and lowest energy cost. We can
see that the segment size of the frequent writeback list does significantly affect the
performance and energy consumption.

Based on this observation, we propose to segment the cache set into frequent write-
back list and nonfrequent writeback list. A segment predictor [Khan et al. 2012] is
used to dynamically learn an optimal size of each list in the set according to the miss
penalty for dirty and clean cache blocks.

3. WADE: WRITEBACK-AWARE DYNAMIC CACHE MANAGEMENT

The WADE technique improves system efficiency by reducing frequent writes to main
memory. Figure 7 shows the structure of WADE. It uses a Frequent Write Predictor
(FWP) to predict LLC blocks that are written back to main memory with high frequency
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Fig. 6. The impact on performance and energy for various sizes of writeback list for 400.perlbench. For a
16-way LLC, the optimal segmentation size for frequent writeback list is 11.

Fig. 7. System structure.

within a certain access interval. The insight of the technique is that frequent writeback
data is also highly reused dirty data in the LLC. If frequent writeback data can be stored
in the LLC, it can reduce write-induced interference as well as energy consumption of
PCM. However, blindly replacing LLC blocks with frequent writeback data can evict
more critical cache blocks that have a larger miss penalty, such as clean cache blocks
accessed more frequently than the predicted frequent writeback cache blocks. This can
lead to performance degradation. In the WADE technique, the LLC set is partitioned
into frequent writeback list and nonfrequent writeback list. A segment predictor [Khan
et al. 2012] is used to intelligently learn the best partition size of each list.

3.1. Frequent Write Prediction

A frequent write predictor is proposed to keep track of the frequent writeback data and
predict the frequent writeback block in the LLC. Figure 8 shows the structure of the
FWP, which is located on chip along with the LLC tag arrays. The FWP is organized
as a set-associative structure. Every m LLC set maps to n FWP set. Figure 9 shows the
address mapping scheme for the FWP. In our experiment, we set m = 16, n = 4. This
address mapping scheme allows the FWP to keep track of the frequent writeback data
in region granularity where each region consists of m cache blocks.

Each entry in the FWP set has a partial tag field (PTag), an LRU field, a frequency
counter field indicating how often the region data is being written back, and a set flag
field in which each flag bit corresponding to each LLC set maps to this FWP set. The set
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Fig. 8. Illustration of frequent write predictor. FWP is a set-associative structure, and each set has multiple
entries with multiple fields.

Fig. 9. FWP address mapping scheme. Every m LLC set maps to n FWP.

flag field allows the technique to keep track of frequent writeback data at the cache line
granularity. Thus, the FWP table keeps track of the frequent writeback data in both
coarse granularity and fine granularity: region granularity and cache line granularity,
respectively. Since applications often have spatial and temporal locality, tracking data
in coarse granularity (region granularity) can minimize the capacity overhead as well
as improve prediction accuracy.

3.1.1. Making a Prediction. For each cache block in the LLC, one Fbit is added, indicating
that the block is a frequent writeback block. Once a write request accesses the LLC,
it will also access the FWP set for partial tag matching. Since correctness of matches
is not necessary in the tag array, only 16 bits of tag are stored in the FWP set entry
to conserve area and energy. If it is a partial tag hit and the corresponding set flag bit
is set, the Fbit for this cache block is set, indicating that the cache block is a frequent
write cache block. Otherwise, the Fbit of the cache block is unset.

3.1.2. Updating Predictor. Once a dirty cache block is evicted from the LLC, the FWP
is updated. The evicted dirty cache block accesses the FWP. The LRU recency in the
corresponding FWP set is updated for each access. On a partial tag hit, the frequency
counter value in the entry is increased by 1. The corresponding set flag bit is set to
1. On a miss, a new entry is allocated in the FWP set. The initial frequency counter
value is reset to 0. The corresponding set flag bit is set to 1, while all the other set flag
bits in the set flag fields for the newly allocated entry are reset to 0. The replacement
candidate is chosen by taking into account both recency and frequency information.
The frequency information is used to recognize the frequent writeback region. The
recency information can be used to remove the stale data in the FWP table. Assuming
the LRU recency value is R(i), where the highest value indicates MRU position and
the frequency counter value is F(i), then the replacement victim is chosen as follows:

Victim = arg min
i

{F(i) + γ R(i)}. (1)
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Fig. 10. The logical view of frequent writeback list segmentation mechanism. Each set is partitioned into
frequent writeback list and nonfrequent writeback list.

Fig. 11. The mechanism of segment predictor. It consists of six leader sets with segment size 0, 4, 8, 12, 16,
and segment size 16 with bypassing.

The parameter γ gives the weight of R(i). It determines the access interval for
computing the frequency for writeback data. The larger the value, the smaller the
access interval. If the access interval is too small, it could result in a local optimal
prediction result instead of a global optimal prediction result. If the access interval
is too large, the stale data stored in the FWP prevent the learning process. In our
experiment, we found γ = 4 gives the best performance.

3.2. Frequent Writeback List Cache Segmentation

The LLC set is logically segmented into frequent writeback and nonfrequent writeback
lists. The cache blocks with the Fbit set belong to the frequent writeback list; the
remaining cache blocks belong to the nonfrequent writeback list. The segment predictor
[Khan et al. 2012] is used to predict the optimal segment size of the frequent writeback
list for all sets. Figure 10 illustrates the mechanism of the technique. It tries to keep
the optimal segment size that minimizes the LLC miss penalties. The technique is
decoupled from the LLC replacement policy. Any replacement policy can be applied to
each list.

Once a request accesses the LLC, all the ways in the set are searched. On a miss,
the size of the frequent writeback list of the set is calculated. If it is larger than the
predicted optimal size, the replacement candidate will be chosen from the frequent
writeback list. Otherwise, it will be chosen from the nonfrequent writeback list.

3.2.1. Optimal Segment Size Prediction. The segment predictor [Khan et al. 2012] uses
set dueling to determine optimal segment size. It estimates the miss penalty for any
given segment size by always dedicating a few “leader sets” following that segment
size. As shown in Figure 11, we evaluate five segment sizes for a 16-way associative
set: 0, 4, 8, 12, 16. The leader sets use decision tree analysis to pairwise set a duel at
each level as proposed in Khan et al. [2012]. For instance, segment size 8 duels with
segment size 16 in the first level. The policy selection counter 1 (PSEL1) increases on
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a miss in leader sets following segment size 8 and decreases on a miss in leader sets
following segment size 16. The PSEL1 estimates which segment size is the winner size
in the first level. If size 8 is the winner size, the second-level duel will be between
segment size 0 and 8. Otherwise, the second-level duel will be between size 12 and 16.
The process will continue until the optimal segment size is found. In our experiment,
we use an out-of-cache segment predictor, which is a set-associative structure that is
added to simulate the sampled leader sets. The LLC sets follow the optimal segment
size predicted by the segment predictor.

3.2.2. Bypass Incoming Read Blocks. If a block to be placed in a set will not be reused
before it is evicted from the set, it should bypass the cache. Bypassing can improve
cache efficiency by allocating the capacity to other reused blocks in the cache. Our
segment predictor also considers bypassing the read requests. If the predicted optimal
segment size is 16, the leader sets bypassing the read requests duel with the leader
sets of segment size 16 without bypassing. The LLC sets will follow the winner policy
indicated by PSEL3.

3.2.3. Determining Miss Penalty. The traditional cache replacement policy assumes the
absolute number of cache misses is fully correlated with memory-related stall cycles
[Qureshi et al. 2006]. It assumes the same miss penalty for dirty and clean cache blocks.
In the traditional set dueling technique, for each leader cache set miss, whether the
data is dirty or clean, the PSEL is increased/decreased by 1. Our technique is different
from previous work in that it is aware of the write inefficiency problem and assigns
miss penalty according to the type of cache blocks. If a clean cache block is evicted from
the leader set, the PSEL is increased/decreased by 1. If a dirty cache block is evicted
from the leader set, the PSEL is increased/decreased by p, defined as follows:

p = 1.5 + 0.5 × l. (2)

l is defined as:

l = W/R. (3)

In the formula, W is the write latency, while R is the read latency. For a certain
memory system, l is a constant. Then l is quantized into 2 bits value divided by 8. The
larger the value of l, the larger the write latency p. p is measured in steps of 0.5. For
each leader set, we add a one-bit even-write flag. If p is not an integer, such as p = 1.5,
then for every two write misses, the PSEL is increased by three.

4. EVALUATION

In this section, we first outline the experimental methodology used in this study. We
then discuss results of our experiments.

4.1. Methodology

We use the MARSSx86 [Patel et al. 2011], a cycle-accurate simulator for the x86-64
architecture. We modify the DRAMSim2 [Rosenfeld et al. 2011] simulator to simulate
PCM memory and incorporate it into MARSSx86. The system configuration is shown
in Table I. We use the SPEC CPU 2006 [Henning 2006] benchmarks for the evaluation.
Each benchmark is run with the first ref input provided by the runspec command.

Single-Thread Workloads. We use 15 memory-intensive benchmarks for this study.
A 2MB LLC is simulated for the single-thread workloads. For each workload, we made
a checkpoint by running the benchmark to a typical phase identified by SimPoint
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Table I. System Configuration
Memory timing and energies are adapted from Lee et al. [2009]

Execution core 4.8GHZ, 1-core/4-core CMP, out-of-order
256 entry reorder buffer, 4 width issue/decode
15 stages, 256 physical registers

Caches L1 I/D-cache: 64KB, 2-way, private
64 bytes block, 2-cycle, LRU,
L2 Cache: 2MB/1-core, 8MB/4-core
16-way, shared, 64 bytes block, 14-cycle

PCM 1 channel/1-core, 2 channels/4-core CMP
8 banks per channel, 8K bytes row buffer
32-entry write buffer per channel
read prioritize write scheduling policy

PCM Timing row hit (clean miss, dirty miss) =
200 (450, 5000) cycles

PCM Energy array read (write) = 2.47 (16.82) pJ/bit
row buffer read (write) = 0.93 (1.02) pJ/bit

Table II. Workloads

Name Benchmarks

Mix 1 milc gcc xalancbmk tonto
Mix 2 GemsFDTD namd bzip2 gamess
Mix 3 gamess soplex libquantum perlbench
Mix 4 zeusmp lbm xalancbmk calculix
Mix 5 gamess milc namd soplex
Mix 6 astar lbm gobmk calculix
Mix 7 soplex calculix tonto lbm
Mix 8 lbm mcf cactusADM GemsFDTD
Mix 9 mcf soplex zeusmp bwaves
Mix 10 lbm milc astar libquantum
Mix 11 xalancbmk lbm perlbench tonto

[Sherwood et al. 2002]. Then we run the experiment; starting from the checkpoint, the
infrastructure simulates 200 million instructions from the checkpoint.

Multicore Workloads. Table II shows 11 mixes of SPEC CPU 2006 benchmarks cho-
sen four at a time with a variety of memory behaviors. We use these mixes for quad-core
simulations. Each benchmark runs simultaneously with the others. For each mix, we
made a checkpoint by running one of the memory-intensive benchmarks to a typi-
cal phase. Then we run the experiment for 1 billion instructions total for all four
cores starting from the checkpoint. We simulate an 8MB shared LLC for the multicore
workloads.

4.2. Evaluation Results for Single-Core Workloads

4.2.1. Performance Evaluation. We evaluate three cache replacement polices: the LRU,
WADE with LRU, and Memory Level Parallelism (MLP) aware cache replacement tech-
niques [Qureshi et al. 2006]. The MLP technique takes into account the memory-level
parallelism-dependent cost differential between different misses. The replacement de-
cision is made by considering the MLP-based cost for each cache miss as well as
the recency information. The baseline technique is the LRU replacement policy. Our
technique segments the cache set into two lists. Within the list, any replacement poli-
cies could be applied. So it is decoupled with LLC replacement policies. We use the
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Fig. 12. The comparison of IPC for single-core applications (normalized to LRU).

Fig. 13. The number of writeback requests to PCM for single-core applications (normalized to LRU).

LRU replacement policy with our techniques for simplicity. Figure 12 shows the per-
formance evaluation results for single-core applications. MLP provides a speedup on
some benchmarks and a slowdown on others, resulting in a geometric mean speedup
of approximately 0.6%. The long write latency in the PCM system makes it hard to
learn the memory-level parallelism cost; therefore, the MLP replacement policy does
not perform well in the context of the PCM system. The WADE technique delivers a
geometric mean speedup of 5.1%. The technique significantly improves system perfor-
mance for benchmarks 450.soplex, 482.sphinx3, and 483.xalancbmk by 22%, 39%, and
18%, respectively. Because of this, the writeback requests for these three benchmarks
are highly reused. For benchmarks that do not benefit from our techniques, there
are two categories: first, they do not have significantly highly reused access requests,
such as for streaming benchmarks libquantum and milc, so the writeback requests
are not rewritten frequently. Second, the frequent writeback requests are hard to pre-
dict mainly because they do not have good spatial and temporal locality, such as 436.
cactusADM.

4.2.2. Reduced Write Request Evaluation. The WADE technique takes into account the
disparity in miss penalty of clean data and dirty data. It keeps an optimal size of the
frequent writeback list in the LLC. Therefore, it can reduce the writeback requests
to the PCM. Figure 13 shows the writeback requests normalized to the LRU policy.
The MLP technique only reduces 0.05% writeback requests compared with the LRU
policy. The WADE technique reduces 16.5% writeback requests on average. This large
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Fig. 14. The comparison of energy consumption in PCM for single-core applications (normalized to LRU).

Fig. 15. Runtime-predicted best frequent writeback list size.

percentage of writeback request reduction leads to performance improvement and
energy reduction. It can also improve the endurance of the PCM-based main memory.
Compared with Figure 12, we can see that the benchmarks that have a large percentage
of reduced writeback requests also have significant performance improvements.

4.2.3. Energy Evaluation. The obvious reduction in the writeback requests can lead to
reduced energy consumption in PCM-based main memory. Figure 14 shows the energy
evaluation results for various techniques. The figure shows the energy consumption
normalized to the LRU policy. It also gives the percentage of read energy and write
energy consumption for each workload. In PCM-based main memory, the write energy
consumption dominates the main memory energy consumption. It accounts for about
65% of all main memory consumption in the LRU policy. The WADE technique achieves
an energy reduction of 8.1%, on average. The MLP technique only reduces the energy by
0.01%. We can see that most of the energy reduction of our techniques comes from the
write energy reduction. The average read energy consumption for the WADE technique
is similar to LRU.

4.2.4. Dynamic Segment Size. Figure 15 shows the runtime-predicted best frequent
writeback list size for each of the benchmarks. Benchmarks 483.sphinx3 and
483.xalancbmk are thrashing workloads that benefit from bypassing incoming read
blocks. Segment size 16 dominates the running phase of benchmarks 403.gcc, 429.mcf ,
434.zeusmp, 435.gromacs, and 473.astar. The runtime-predicted best segment size of
benchmarks 462.libquantum and 470.lbm is 4. The running phases of other bench-
marks go through various segment sizes.
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Fig. 16. The comparison of IPC for multicore applications (normalized to LRU).

Fig. 17. The number of writeback requests to PCM for multicore applications (normalized to LRU).

4.3. Evaluation Results for Multicore Workloads

The write problem is worse in multicore systems since the performance of an application
is affected not only by its own write requests but also by write requests from other
applications.

Figure 16 shows the speedup achieved by various techniques on the multicore work-
loads with an 8MB last-level cache. The speedups are still normalized to a default
LRU cache. The normalized speedup for the WADE technique over all 11 workloads
ranges from 2.2% to 13.1%, with a geometric mean speedup of 7.6%. The technique
significantly improves the system performance for five workloads by more than 10%.
The MLP technique only yields a geometric mean speedup of 0.3%.

Figure 17 shows the normalized writeback request evaluation results for multicore
applications. The WADE technique achieves a writeback request reduction of 10.9% on
average. Figure 18 shows the energy evaluation results normalized to the LRU policy.
The WADE technique reduces energy by 7.6%, on average.

We also evaluate the Misses Per 1,000 Instructions (MPKI) for multicore workloads.
Figure 19 shows the MPKI for various techniques normalized to the LRU policy. The
average normalized MPKIs are 1.00 for WADE and 0.99 for MLP. We can see that
the WADE technique does not reduce the miss rate. In the WADE technique, the
performance benefits actually come from the reduced write requests, which generate a
large write-induced interference.

4.4. Sensitivity Study

4.4.1. Miss Penalty Sensitivity Study. An LLC miss for a dirty cache block is more harmful
than for a clean cache block. Our technique assigns different miss penalties according
to the type of data. The miss penalty for clean data is set to 1, while the miss penalty for
dirty data is p. In our experiment setting, we get p = 2 calculated by Equation (2). We
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Fig. 18. The comparison of energy consumption in PCM for multicore applications (normalized to LRU).

Fig. 19. LLC misses per kilo-instruction (MPKI) for multicore applications (normalized to LRU).

Fig. 20. The impact on performance and energy for parameter p.

also did an experiment to test the change in performance and energy when p ranges
from 1 to 6. Figure 20 shows the performance speedup and energy consumption for
various values of p in multicore workloads using the WADE technique. We can see the
performance and energy consumption varies significantly with different values of p.
The best performance is achieved when p = 2, and the lowest energy consumption when
p = 1.5. Generally, the p value that gives better performance is also the value that
yields lower energy, because the reduced write requests could lead to both performance
improvement and energy reduction. In our experiment, we choose p = 2.
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Fig. 21. Performance evaluation with various cache sizes (normalized to LRU with 2M LLC size).

Fig. 22. The number of writeback requests to PCM with various cache sizes (normalized to LRU with 2M
LLC size).

4.4.2. Cache Size Sensitivity Study. Figures 21 and 22 show the performance and write-
back reduction evaluation results with various cache sizes. We evaluate LRU and
WADE LLC replacement policies with cache sizes 2M, 4M, and 8M. Compared with
the LRU replacement policy with the same capacity 2M, 4M, and 8M cache sizes,
the WADE technique improves the system performance by 5.1%, 5.4%, and 6.9% and
reduces the writeback requests to PCM by 16.5%, 11.4%, and 9.9%, respectively.

4.5. Storage and Power Overhead

4.5.1. Storage Overhead. The technique uses an FWP and an optimal segment predictor.
For the FWP, every 16 LLC sets map to four FWP sets. Each FWP set has six entries.
Each entry in the set has a 16-bit partial tag field, a 3-bit LRU field, a 6-bit frequent
counter field, and a 16-bit set flag field. For each cache block in the LLC, we add 1 bit to
represent whether it is a frequent writeback block. The FWP consumes an extra state
equivalent to about 0.95% of LLC capacity. We use an out-of-cache segment predictor.
This set-associative structure is added to simulate sampled leader sets. It uses four
types of leader sets, as shown in Figure 11. For each type of leader set, one set is
sampled for every 128 LLC sets. Each leader set has a one-bit even-write counter. Each
entry in the leader set has a 16-bit partial tag field, a 1 Fbit field, and 3-bit LRU
fields. The segment predictor uses three 12-bit PSEL counters. Thus, it consumes less
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than 0.13% of LLC capacity. Altogether, the WADE technique takes about 1% of LLC
capacity.

4.5.2. Power Overhead. We use CACTI [HP-Laboratories 2008] to measure the potential
impact of the segment predictor and frequent write predictor on power. The segment
predictor is modeled as a tag array of extra LLC sets. We model the LLC both with
and without the extra cache sets and report the difference of the tag power between
the two. We model the frequent write predictor as a tag array of a cache, with only
the tag power being reported. A 2MB LLC in a single-core configuration consumes
1.99W power. The segment predictor consumes only 0.0025W dynamic power, which
is only 0.13% of LLC power consumption. The power for the frequent write predictor
is 0.024W . The total power for structures required by the WADE technique is about
1.3% of LLC power. An 8M LLC in a multicore configuration consumes 3.73W . The
structures needed by the WADE technique take 0.035W, which is 0.93% of LLC power.
Although the segment predictor and frequent write predictor consume extra power,
the WADE technique reduces the execution cycles of applications, thus reducing the
leakage energy of the LLC.

5. RELATED WORK

In this section, we summarize related prior works, which can be classified into three
categories.

5.1. Related Work on Mitigating PCM Write Overhead

Many researchers propose techniques to mitigate PCM write latency and energy over-
head. For example, Lee et al. [2009] propose to use narrow PCM buffers to mitigate
high-energy PCM writes. Write cancellation and write pausing [Qureshi et al. 2010]
have been proposed to prioritize read requests over write requests by adaptively cancel-
ing or pausing the service of write requests when read requests are waiting for service.
Qureshi et al. [2012] exploit asymmetry in write times for SET and PRESET operations
of PCM devices and propose to initiate a PreSET request for a memory line as soon as
data is written into the LLC, thereby incurring low write-induced interference.

Hybrid main memory architecture has been proposed to leverage the benefits of both
DRAM and PCM technologies. Qureshi et al. [2009] propose a main memory system
consisting of PCM storage coupled with a DRAM write buffer so that it has the latency
benefits of DRAM and the capacity benefits of PCM. Yoon et al. [2012] propose to
improve the hybrid performance by caching the frequent row buffer miss requests in
DRAM. Ramos et al. [2011] propose a page-ranking and migration policy for the hybrid
PCM- and DRAM-based main memory.

Write endurance poses another severe challenge in PCM memory design. The cells
suffering from more frequent write operations will fail far sooner than the rest. A read-
before-write operation [Joo et al. 2010] can help identify such redundant bits and cancel
those redundant write operations to save energy and reduce impact on performance. A
range of wear-leveling techniques [Qureshi et al. 2009; Zhou et al. 2009; Lee et al. 2009]
for PCM have been examined to increase the lifetime of PCM-based main memory
architectures.

Most of these proposed techniques mitigate the write overhead of PCM by doing
optimizations at the main memory level. They either use new memory architectures
or add a new operation to PCM. However, write requests sent from the LLC remain
unchanged. Our techniques can be combined with these techniques to achieve further
improvement.
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5.2. Related Work in LLC Writeback Techniques

LLC writeback techniques [Lee et al. 2000; Stuecheli et al. 2010; Wang et al. 2012]
have been proposed in the literature. These techniques coordinate the LLC with main
memory. They aim to increase the visibility of the memory controller by the LLC,
thereby making an optimal writeback scheduling decision. The virtual write queue
(VWQ) [Stuecheli et al. 2010] technique takes a fraction of the LRU positions in the
LLC as the virtual write queue. Dirty cache blocks in the VWQ that target the same row
buffer when mapping to the memory resource will be written back in a batch, therefore
reducing write-induced interference. Wang et al. [2012] propose a last-write prediction-
driven LLC writeback technique. The technique predicts the last write cache blocks
in the LLC. The row buffer hitting the last-write cache blocks are sent to memory for
service to improve the memory efficiency. This group of work allows memory to service
write requests efficiently; it also does not reduce the write requests serviced by main
memory.

5.3. Related Work in Cache Management Policy

Most of the previously proposed cache management policies improve cache efficiency
by learning the access pattern, selecting the management policy, or partitioning the
cache capacity.

LRU replacement predicts that a block will be referenced in the near future. Re-
Reference Interval Prediction (RRIP) [Jaleel et al. 2010] predicts the re-reference in-
terval of the cache block. It prevents blocks with distant re-reference intervals from
evicting blocks that have a near re-reference interval. Dynamic Insertion Policy (DIP)
[Qureshi et al. 2007] uses set dueling to adaptively select the replacement candidate in
either the MRU or LRU position depending on which policy gives better performance.

The MLP [Qureshi et al. 2006] aware cache replacement technique is aware of the
MLP-dependent cost differential between different misses. The replacement decision
is made by taking into account the MLP-based cost for each cache miss. The Dynamic
Cache Segmentation (DCS) [Khan et al. 2012] work segments the cache set into a reused
list and a nonreused list and dynamically learns the best size of the segmentation
size. Zhou et al. [2012] propose to partition the LLC among multiple applications by
considering both LLC misses and writebacks. However, their technique only can be
applied to the LRU replacement policy.

Many previous works [Jiang et al. 2011; Cantin et al. 2006; Wu et al. 2011; Cantin
et al. 2006; Sudan et al. 2010] propose a cache management policy by using coarse
granularity. Cantin et al. [2006] use regions to avoid broadcasts for nonshared regions
to reduce bandwidth for a snoop-based cache coherence policy. Wu et al. [2011] propose
to use memory region information to learn the cache access behavior in the cache
replacement policy.

Our technique is orthogonal to most previous works that either mitigate the write
overhead by exploring the PCM property in the main memory level [Qureshi et al.
2009; Zhou et al. 2009; Lee et al. 2009] or optimize the write scheduling policy, such as
virtual write queue and last-write prediction. It can be combined with others to further
achieve better performance and energy efficiency.

6. CONCLUSION

In this article, we propose a dynamic cache management policy in the context of NVM-
based main memory. The technique improves system performance and energy efficiency
by reducing the writeback requests to PCM. It keeps highly reused dirty cache blocks
in the LLC. A frequent write predictor is proposed to predict the frequent writeback
cache blocks. The cache set is partitioned into frequent writeback and nonfrequent
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writeback lists. It dynamically determines the optimal size of each list according to the
miss penalty. Our evaluation shows that the proposed techniques reduce the writeback
requests, which could result in improved performance as well as reduced energy con-
sumption. Most prior work focuses on optimization techniques for NVM-based main
memory itself. Our technique is orthogonal to those previous techniques. It can be
combined with others to further achieve better results.
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