
Appears in the Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture

Low-Power, High-Performance Analog Neural Branch Prediction

Renée St. Amant
Department of Computer Sciences
The University of Texas at Austin

stamant@cs.utexas.edu

Daniel A. Jiménez
Department of Computer Science

The University of Texas at San Antonio
dj@cs.utsa.edu

Doug Burger
Microsoft Research

One Microsoft Way, Redmond, WA 98052
dburger@microsoft.com

Abstract

Shrinking transistor sizes and a trend toward low-power
processors have caused increased leakage, high per-device
variation and a larger number of hard and soft errors.
Maintaining precise digital behavior on these devices grows
more expensive with each technology generation. In some
cases, replacing digital units with analog equivalents allows
similar computation to be performed at higher speed and
lower power. The units that can most easily benefit from
this approach are those whose results do not have to be
precise, such as various types of predictors. We introduce the
Scaled Neural Predictor (SNP), a highly accurate prediction
algorithm that is infeasible in a purely digital implementation,
but can be implemented using analog circuitry. Our analog
implementation, the Scaled Neural Analog Predictor (SNAP),
uses current summation in place of the expensive digital
dot-product computation required in neural predictors. We
show that the analog predictor can outperform digital neural
predictors because of the reduced cost, in power and latency,
of the key computations. The SNAP circuit is able to produce
an accuracy nearly equivalent to an infeasible digital neural
predictor that requires 128 additions per prediction. The
analog version, however, can run at 3GHz, with the analog
portion of the prediction computation requiring approxi-
mately 7 milliwatts at a 45nm technology, which is small
compared to the power required for the table lookups in this
and conventional predictors.

1. Introduction

Branch prediction remains one of the key components of
high performance in processors that exploit single-threaded
performance. Modern branch predictors achieve high accu-
racies on many codes, but further developments are needed
if processors are to continue improving single-threaded per-
formance. Accurate branch prediction will remain important
in general-purpose processors, especially as the number of
available cores exceeds the number of available threads.

Neural branch predictors have shown promise in attaining
high prediction accuracies and until recently achieved the

highest accuracies. While the recently proposed L-TAGE [1]
predictor achieves slightly higher accuracy than the published
neural designs, it is unclear which class of predictor will
eventually reach the highest accuracies, since both classes
show continuing improvements.

Neural predictors, however, have traditionally shown sig-
nificantly worse power and energy characteristics than even
the complex L-TAGE predictor. The original perceptron pre-
dictor achieved high accuracy with untenable power and
latency characteristics. Subsequent designs reduced predictor
latency at the expense of some accuracy, but still remained
uncompetitive from a power perspective. The requirement of
computing a dot product for every prediction, with poten-
tially tens or even hundreds of elements, has limited neural
predictors to be an interesting research subject, not suitable
for industrial adoption in their current form.

This paper evaluates an aggressive neural predictor de-
sign that uses analog circuits to implement the power-
intensive portion of the prediction loop. The circuit employs
lightweight digital-to-analog converters (DACs) to convert
digitally stored weights into analog currents, which are then
combined using current summation. To compute the percep-
tron dot product, the circuit steers positive weights to one wire
and negative weights to another. A comparator determines
which wire has a higher current and produces a single-bit
digital prediction, effectively operating as an analog-to-digital
converter (ADC).

We introduce the Scaled Neural Predictor (SNP), a predic-
tion algorithm that employs two accuracy-improving features
that are infeasible to implement in a strictly digital design.
The first is the use of up-to-date information for generating
the weights’ index. Current neural predictors leverage a
technique called ahead pipelining [2] to reduce the prediction
latency, but which results in the path being hashed with
stale PC values, losing potential accuracy. The second feature
scales the weights by an inverse linear function, effectively
multiplying each weight by a constant. We show that an
analog implementation, the Scaled Neural Analog Predictor
(SNAP), achieves accuracy close to L-TAGE (5.18 mispredic-
tions per thousand instructions compared to 4.91), differing

1 -1 1 1 -1

PC Hash func.

Table
index 8 4 -10 3 -6 1

x

Weights vector and bias

Branch history register

=

3 (dot product) + 1 (bias) = 4

Perceptron output > 0, so branch predicted taken.
If branch was not taken, misprediction triggers training.
Weights with a “-1” in the corresponding history position
are incremented, weights with a “1” in the position are
decremented.

(a) The first time the branch is accessed

Updated weights vector and bias

7 5 -11 2 -5 0

x

1 -1 1 1 -1

Branch history register

= -2 + 0 = -2

Perceptron output < 0, so this time
the branch is predicted not taken.

(b) The next time the branch is accessed

Figure 1. Perceptron prediction and training

by .27 MPKI on average, and an improvement of .22 MPKI
over the piecewise linear branch predictor, one of the best
previously proposed neural predictor designs. We evaluate
SNAP using Cadence circuit simulation and show that this
mixed-signal neural design is able to issue predictions at
3GHz in a 45nm technology, consuming less than eight
milliwatts of power for the analog computation, and resulting
in only a .12 MPKI decrease in accuracy from an infeasible
digital SNP implementation.

2. Background on Neural Predictors

Most proposals for neural branch predictors derive from
the perceptron branch predictor [3], [4]. In this context,
a perceptron is a vector of h + 1 small integer weights,
where h is the history length of the predictor. A table of
n perceptrons is kept in a fast memory. A global history
shift register of the h most recent branch outcomes (1 for
taken, 0 not taken) is also kept. The shift register and table
of perceptrons are analogous to the shift register and table of
counters in traditional global two-level predictors [5], since
both the indexed counter and the indexed perceptron are used
to compute the prediction.

To predict a branch, a perceptron is selected using a hash
function of the branch PC, e.g. taking the PC mod n. The
output of the perceptron is computed as the dot product
of the perceptron and the history shift register, with the 0
(not-taken) values in the shift registers being interpreted as
-1. Added to the dot product is an extra bias weight in
the perceptron, which takes into account the tendency of
a branch to be taken or not taken without regard for its
correlation to other branches. If the dot-product result is at
least 0, then the branch is predicted taken; otherwise, it is
predicted not taken. Negative weight values denote inverse
correlations. For example, if a weight with a -10 value is
multiplied by -1 in the shift register (i.e. not taken), the value
−1∗−10 = 10 will be added to the dot-product result, biasing
the result toward a taken prediction since the weight indicates
a negative correlation with the not-taken branch represented
by the history bit. The magnitude of the weight indicates the

strength of the positive or negative correlation. As with other
predictors, the branch history shift register is speculatively
updated and rolled back on a misprediction.

When the branch outcome becomes known, the perceptron
that provided the prediction may be updated. The perceptron
is trained on a misprediction or when the magnitude of the
perceptron output is below a specified threshold value. Upon
training, both the bias weight and the h correlating weights
are updated. The bias weight is incremented or decremented if
the branch is taken or not taken, respectively. Each correlating
weight in the perceptron is incremented if the predicted
branch has the same outcome as the corresponding bit in
the history register (positive correlation) and decremented
otherwise (negative correlation) with saturating arithmetic.
If there is no correlation between the predicted branch and
a branch in the history register, the latter’s corresponding
weight will tend toward 0. If there is high positive or negative
correlation, the weight will have a large magnitude.

Figure 1 illustrates the concept of a perceptron producing
a prediction and being trained. A hash function, based on the
PC, accesses the weights table to obtain a perceptron weights
vector, which is then multiplied by the branch history, and
summed with the bias weight (1 in this case) to form the
perceptron output. In this example, the perceptron incorrectly
predicts that the branch is taken. The microarchitecture ad-
justs the weights when it discovers the misprediction. With
the adjusted weights, assuming that the history is the same
the next time this branch is predicted, the perceptron output
is negative, so the branch will be predicted not taken.

The accuracy of the perceptron predictor compared favor-
ably with other branch predictors of the time and a number
of optimizations put the perceptron predictor within reach
of an efficient digital implementation. For instance, the dot-
product computation can be done using an adder tree, since
multiplying by a bipolar value (i.e. 1 or -1) is the same as
adding or subtracting [4]. The increment/decrement opera-
tions in the training algorithm can be quickly performed by
n + 1 counters in parallel. Later research would significantly
improve both latency and accuracy [6], [7], [8].

2

2.1. Improvements to Neural Branch Predictors

Many improvements have been proposed for the perceptron
predictor. Seznec showed that accuracy can be improved by
using a redundant representation of the branch history [6].
Jiménez improved both latency and accuracy with the path-
based neural predictor [7] using ahead pipelining, which was
further refined and generalized as piecewise linear branch
prediction [8]. Ahead pipelining gradually computes a pre-
diction by adding weights ahead of time so that only the
bias weight must be added to the total for a prediction to
be made. While this technique reduces the latency required
for predictions to manageable levels, it does not address the
power required for the predictor; an equivalently large number
of weight additions must be made at each prediction, the
difference being that all but one of the additions are for
future predictions. In addition, since the future weights are
not indexed with the PC of the actual predicting branch, ahead
pipelining results in predictor accuracy losses, though the use
of path information improves accuracy beyond that of the
original perceptron predictor.

Subsequently, Seznec combined the summation and train-
ing approach of neural predictors with the idea of hashing
into several tables of counters to produce O-GEHL, a neural-
inspired predictor with high accuracy [9]. Neural and neural-
inspired predictors achieved the highest reported prediction
accuracy until recently, when Seznec introduced L-TAGE [1],
a predictor based on partial matching that took first prize
at the second Championship Branch Prediction competition
(CBP-2). L-TAGE is also more feasible to implement from a
power perspective than the digital neural and neural-inspired
predictors described to date.

2.2. Analog Circuits for Neural Networks

There has been an extensive amount of research on the use of
analog circuits to model neural networks [10], [11]. With the
resurgence of interest in neural networks in the late 1980s and
advancements made in computing hardware, parallels were
drawn between computation in the brain and the computing
capabilities of machines. Analog circuits were a natural
choice for implementation because the brain’s signals more
closely resemble analog electrical signals than digital ones.

Neural networks are often characterized by a compute-
intensive dot-product operation. This operation has been
implemented most efficiently with analog current-summing
techniques [12], [13]. In these techniques, weights are rep-
resented by currents and summed using Kirchhoff’s cur-
rent law. In [12], Kramer explores charge and conductance
summation in addition to current summation and describes
an efficient dot-product computation array. Schemmel et
al. present a mixed-mode VLSI design that stores weight
values in analog current memory cells. Current values are
summed on an excitatory or inhibitory input line based on
a sign bit for each weight and then compared to produce

0 50 100

i

0.0

0.2

0.4

0.6

0.8

1.0

f(
i) Correlation Coefficients

Fitted Inverse Linear Curve

Figure 2. Weight position and branch outcome correlation

an output. Although the analog predictor design described
in this paper uses similar current-steering and comparison
techniques, it differs in storage, analog/digital boundaries, and
application. Other researchers have concurrently developed a
voltage-mode mixed-signal design of the original perceptron
predictor[14].

3. Analog-Enabled Neural Prediction Algorithm
The analog circuit design described in the next section makes
two major improvements to a path-based neural predictor
feasible through power and latency reductions. The resulting
algorithm, the Scaled Neural Predictor, includes several other
improvements that are not restricted to analog implementa-
tions. The two primary improvements made possible by the
analog design are (1) the elimination of ahead pipelining
and (2) the scaling of individual weights by predetermined
coefficients, based on their history position. Both of these
improvements increase predictor accuracy.

Removal of Ahead Pipelining: The original path-based
neural predictor computes the dot product of a vector of
weights chosen according to the path leading up to the branch
to be predicted. That computation is necessarily ahead-
pipelined through an array of adders to keep the latency
tractably low. By adding the summands for the dot product
before the branch to be predicted is fetched, some accuracy
is lost because the weights chosen may not be optimal,
given that they were not chosen using the PC of the branch
to be predicted. Ahead pipelining thus increases destructive
aliasing, though the latency benefits were worth the loss
in accuracy. Because the analog design can sum all of the
weights quickly when the actual branch is being predicted, the
latency reduction afforded by ahead pipelining is unnecessary.

Scaling Weights by Coefficients: The vector of weights
represents the contribution of each branch in a given history
to predictability, but each branch does not contribute equally;
unsurprisingly, more recent weights tend to have a stronger
correlation with branch outcomes. Figure 2 quantifies this

3

Tables of
correlating
weights
(16 tables,
512 or 256 rows,
8 7-bit weights
per row)

Branch PC[8:0] XOR XORXOR

Hash of A[0..7] Hash of A[8..15] Hash of A[h−8..h−1]

Selected weights vector

...

Multiply by f(i)

Expanded branch history shift register (h =128 bits)

Dot product Add bias weight

{ Column of 2048
bias weights}

Prediction

...

Branch history shift register (H = 40 bits)

select_history function

Figure 3. Prediction data path

non-uniform correlation for a neural predictor with a history
length of 128. The x-axis represents the position of a weight
in the history (x = 0 represents the bias weight). The y-
axis gives the average correlation coefficient (Pearson’s r)
between actual branch outcome and the prediction obtained
by using only the weight in position x. The bias weight
has the highest correlation with branch outcome, and the
first weights have a much stronger correlation than the later
weights. The correlation coefficients were generated using the
publicly distributed traces for the CBP-2 competition; for the
function f(i), fitted to the correlation coefficients, the best
f for a weight in position i is f(i) = 1/(a + bi), where
a = 0.1111 and b = 0.037. By multiplying weights with
coefficients proportional to their correlation, the predictor
achieves higher accuracy. The analog design described in
the next section achieves the weight scaling by varying
transistor sizes, whereas a digital implementation would need
to perform a number of power-prohibitive multiplications for
each prediction.

3.1. Algorithm for the Scaled Neural Predictor

The neural prediction algorithm presented below achieves
higher accuracies than previously proposed neural algorithms.
The higher accuracies result from (1) accessing the weights
using a function of the PC and the path (with no ahead
pipelining), (2) breaking the weights into a number of in-
dependently accessible tables, (3) scaling the weights by
the coefficients as previously described, and (4) taking the
dot product of a modified global branch history vector and

the scaled weights. Figure 3 shows a high-level diagram of
the prediction algorithm and data path. This diagram does
not represent the actual circuit implementation, which is
described in the next section.

The two key parameters of the predictor are h, the length of
the vector with which the dot product is computed, and r, the
number of rows in each weights table. In this design, h = 128
and r = 256, 512, or 2048. Other inputs to the predictor are
A, a vector of the low-order bit of each of the past h branch
addresses (A is effectively a path vector), and H , the global
branch history register. This design uses a history register H
of 40 bits.

The two components of the dot-product computation are
the history vector and the weights vector. The history vector
consists of h = 128 bits, which is expanded from the 40 bits
of H with a function called select history, shown in Figure 4
for completeness. The use of redundant history can improve
prediction accuracy [6], so this predictor replicates the 40
branch history bits to obtain the required 128, which indeed
provides higher accuracy than simply using the history bits
of the most recent 128 branches.

The second component of the dot-product computation, the
weights vector, is obtained by reading eight weights from
each of 16 tables, as well as a single weight from a table
of bias weights. The first table, containing the weights for
the most recent history bits, has 512 entries because the most
recent weights are the most important. The bias weights table
has 2048 entries. The other tables each have 256 entries,
to keep the total predictor state under 32KB. The tables

4

Table 1. Predictor parameters

Parameter Value

Number of columns of W 129 (1 bias weight +
128 correlating weights)

Number of rows for W Bias: 2048, W[0..7]: 512,
W[8..127]: 256

Bits per weight 7 for columns 0..56,
6 for columns 57..128

are partitioned into 16, rather than just one large indexed
row of 128 weights, because the separation reduces aliasing
and achieves higher accuracy with low additional complexity.
The path-based neural and piecewise linear branch predictors
also separate the weights into tables, but this division was
necessary to support ahead-pipelining; accuracy is the sole
motivation for separate tables in the SNP design. To index
each table, an eight-bit fraction of the A vector is XORed
with the low-order eight bits of the branch PC, resulting in
an eight-bit index for one of the 256 rows. In the first table
with 512 entries, an extra bit of the branch PC is XORed
with a second address bit from the most recent branch to
produce a nine-bit index. The bias weight table is indexed
with 11 lower-order bits from the branch PC. Table 1 shows
the parameters for the weight tables, and Figure 5 shows the
pseudocode for the prediction algorithm.

3.2. Predictor Updates

Updating the predictor consists of three phases, some of
which can occur in parallel.

Updating histories: When the outcome of a branch be-
comes known, it is shifted into H . The lowest-order bit
of the branch’s address is shifted into A. A high-accuracy
implementation must keep speculative versions of H and A
that are restored on a misprediction.

Training the predictor: If the prediction was incorrect,
or if the magnitude of the predictor output was under a set
threshold, then the predictor invokes its training algorithm.
As in previous neural predictors, the weights responsible for
the output are incremented if the corresponding history out-
come matches the current branch outcome, and decremented
otherwise. The weights use saturating arithmetic.

Updating the training threshold: An adaptive threshold
training algorithm is used to dynamically adjust the threshold
at which training will be invoked for a correct prediction.
This algorithm is the same as the one used for O-GEHL [9]:
the threshold is increased after a certain number of incorrect
predictions, and decreased after a certain number of correct
predictions whose outputs were not as large as the current
threshold. Seznec observed that good accuracy is achieved
when the training algorithm is invoked equally many times
after correct and incorrect predictions [9]; this threshold
training strategy strives to achieve that balance.

function select history (H : array[1..h] of bipolar, i: integer) :
array[0..7] of bipolar

begin
if i/8 is odd then Use a different selection scheme

j := i mod 8 for odd- and even-numbered tables
else

j := i mod 8 + i/4
endif
select := H [j]..H [j + 7]

end

Figure 4. Select history bits based on weight position

function prediction (pc: integer) : { taken , not taken }
begin

sum := W [pc mod n, 0] Initialize to bias weight
for i in 1 .. h by 8 in parallel For all h/8 weight tables

k := (hash(A[i..i + 7]) xor pc) mod n Select a row in the table
for j in 0 .. 7 in parallel For all weights in the row

q := select history(H, i)[j] Select branch history
sum := sum + W [k, i + j + 1] × q Add to dot product

end for
end for
if sum >= 0 then Predict based on sum

prediction := taken
else

prediction := not taken
endif

end

Figure 5. SNP algorithm to predict branch at PC

3.3. Predictor Accuracy Results

The accuracy of the Scaled Neural Predictor was measured
using a trace-driven simulator, derived from the CBP-2 con-
test infrastructure [15], that simulates a branch predictor as a
C++ class. The CBP-2 contest allowed competing predictors
to use approximately 32KB of state to simulate imple-
mentable branch predictors. This predictor design restricts its
hardware budget similarly so that its results are comparable
to other published results.

As is common practice, the predictor was tuned using a
set of training traces, and accuracy experiments were run
on a different set of traces. The tuning traces, provided
in the CBP-2 infrastructure, were derived from the SPEC
CPU2000 and SPECjvm98 benchmark suites. Each trace file
represents a single SimPoint [16] of 100 million instructions
for the benchmark. A different set of traces, including SPEC
CPU2006, were simulated to evaluate predictor accuracy;
although some of the same benchmarks appear in the CBP-2
traces, there is no overlap in the traces in terms of portions
of program intervals simulated.

We compare the Scaled Neural Predictor against two other
predictors from the literature: the piecewise linear branch
predictor [8] and L-TAGE [1]. The piecewise linear branch
predictor is a neural predictor with high accuracy, but high
implementation cost. L-TAGE was the winner of the realistic

5

track of the CBP-2 contest and represents the most accurate
implementable predictor in the literature. For piecewise linear
branch prediction, the search space was exhaustively explored
to find the set of parameters that yielded the best accuracy
on the CBP-2 traces. L-TAGE includes a 256-entry loop
predictor that accurately predicts loops with long trip counts;
an identical loop predictor, included in the hardware budget,
was added to the Scaled Neural Predictor as well as the
piecewise linear branch predictor. The piecewise linear branch
predictor was also extended to exercise the adaptive threshold
training algorithm used in O-GEHL [9].

Figure 6 compares the accuracies of a range of neural pre-
dictors and L-TAGE. The leftmost three bars represent previ-
ously published neural predictors (perceptron, path-based, and
extended piecewise linear, as described above). The fourth bar
represents L-TAGE, showing the best prediction accuracy of
all predictors evaluated. The fifth bar shows the accuracy of
an idealized path-based predictor without ahead pipelining.
Note that with knowledge of the predicting branch PC, path-
based branch prediction is equivalent to piecewise linear
branch prediction, as the improvement of piecewise linear
prediction over path-based prediction is a technique to incor-
porate more branch PC bits into the final prediction. Thus, the
contributions in this paper can be seen as an improvement to
both predictors. Comparing the second and fifth bars shows
the benefits of removing ahead pipelining and adding the
loop predictor and adaptive thresholds. The sixth and final
bar shows the Scaled Neural Predictor, which includes the
coefficient scaling of weights. The accuracy is close to L-
TAGE (5.06 compared to 4.91), differing only by .15 MPKI
on average. The Scaled Neural Predictor outperforms L-
TAGE on five benchmarks, but on some benchmarks (such as
gcc), L-TAGE shows considerably lower misprediction rates.
Even with the aggressive tuning/updating of previous neural
predictors, the Scaled Neural Predictor shows that it is the
most accurate neural predictor measured to date, though it is
not competitive from a power perspective.

4. Analog Circuit Design

This section describes the implementation of the Scaled
Neural Analog Predictor (SNAP). Its primary function is to
efficiently compute the dot product of 129 signed integers,
represented in sign-magnitude form, and a binary vector to
produce a taken or not-taken prediction, as well as a train
/ don’t train output based on a threshold value. The design
utilizes analog current-steering and summation techniques to
execute the dot-product operation. The circuit design shown
in Figure 7 consists of four major components: current-
steering digital-to-analog converters (DACs), current splitters,
current to voltage converters, and comparators.

Binary Current-Steering DACs: With digital weight stor-
age, DACs are required to convert digital weight values to
analog values that can be combined efficiently. Although the

255.vortex

252.eon
253.perlbmk

462.libquantum

464.h264ref

483.xalancbmk

254.gap
471.omnetpp

400.perlbench

186.crafty

458.sjeng

Benchmark

0

5

10

15

M
is

pr
ed

ic
ti

on
s

pe
r

ki
lo

-i
ns

tr
uc

ti
on

Perceptron Predictor
Ahead-pipelined Path-based Neural Predictor
Ahead-pipelined Piecewise Linear Branch Predictor
L-TAGE
PC/path-based Neural Predictor
Scaled Neural Predictor

473.astar

403.gcc
197.parser

175.vpr
429.mcf

456.hmmer

164.gzip

401.bzip2

445.gobmk

300.twolf

Arithmetic

 Mean

Benchmark

0

5

10

15

M
is

pr
ed

ic
ti

on
s

pe
r

ki
lo

-i
ns

tr
uc

ti
on

Figure 6. Comparing neural predictors and L-TAGE accuracy

perceptron weights are 7 bits, 1 bit is used to represent the
sign of the weight and only 6-bit DACs are required. Current-
steering DACs were chosen because of their high speed and
simplicity. There is one DAC per weight, each consisting of
a current source and a bias transistor as well as one transistor
corresponding to each bit in the weight.

The source and gate nodes of all of the DAC transistors are
tied together so that they share the same gate voltage, VG, and
source voltage, VS . A current source fixes the current through
the bias transistor and because all transistors share the same
VGS (VG − VS) value, the current through the bias transistor
is “mirrored” in the other transistors according to the equation
ID = µCox

2
W
L (VGS − Vt)2 [17]. This configuration, known

as a current mirror, is a common building block in analog
circuit design. Notice that the mirrored current is proportional
to W/L, where W is the width and L is the length of the
transistor. By holding L constant and setting W differently
for each bit, each transistor draws a current approximately
proportional to W.

This approach supports near-linear digital-to-analog con-
version. For example, for a 4-bit base-2 digital magnitude,
the DAC transistor widths would be set to 1, 2, 4, and 8 and
draw currents I, 2I, 4I, and 8I, respectively. A switch is used

6

SRAM
Weight Table

SRAM
Weight Table

Weight127:Weight120 (56 bits)

Weight127 (7 bits)

 Bias Weight
Current Steering DAC

 Weight 0
Current Steering DAC

 Weight 127
Current Steering DAC

Prediction

Positive Line

Negative Line

Train (Taken)

Vdd Vdd

Weight7:Weight0 (56 bits)

Weight0 (7 bits)

uIW 0

positive linenegative line

magnitude line

outputoutput

 Threshold
Current Steering DAC

 Threshold
Current Steering DAC

P

T

N
Train (Not Taken)

SRAM
 Bias

Weight Table

Expanded branch history regsiter

Weight0 h bitWeight127 h bit

BiasWeight (7 bits)

uIW 1 uIW 2 uIW 3 uIW 4 uIW 5 uI

b3b5

b6 XOR h

b4 b1 b0b2

Figure 7. Top-level diagram of a Scaled Neural Analog Predictor (SNAP)

to steer each transistor current according to its corresponding
weight bit, where a weight bit of 1 steers the current to the
magnitude line and a weight bit of 0 steers it to ground. In
the example above, if the digital magnitude to be converted
is 5, or 0101, currents I and 4I would be steered to the
magnitude line, where 2I and 8I would be steered to ground.
By the properties of Kirchhoff’s current law, the magnitude
line contains the sum of the currents whose weights bits are
1 and thus approximates the digitally stored weight.

The magnitude value is then steered to a positive line or
negative line based on the XOR of the sign bit for that
weight and the appropriate history bit, effectively multiplying

the signed weight value by the history bit. The positive and
negative lines are shared across all weights, and again by
Kirchhoff’s current law, all positive values are added together
and all negative values are added together.

Current Splitter: The currents on the positive line and the
negative line are split roughly equally by three transistors to
allow for three circuit outputs: a one-bit prediction and two
bits that are used to determine whether training should occur.
Splitting the current, rather than duplicating it through addi-
tional current mirrors, maintains the relative relationship of
positive and negative weights without increasing total current
draw, thereby avoiding an increase in power consumption.

7

Current to Voltage Converter: The currents from the
splitters pass through resistors, creating voltages that are used
as input to the preamplifier and voltage comparators.

Preamplifier and Comparator: Preamplifiers are com-
monly used in conjunction with comparators in traditional
analog circuit design. The preamplifier amplifies the voltage
difference between the lines, producing new voltages that
will be used as input to the comparator, which improves
comparator speed and accuracy; it also acts as a buffer that
prevents undesirable kickback effects [17]. The preamplifier
requires only a small amount of circuitry, namely a bias
current, two transistors, and two resistors. A track-and-latch
comparator design [17] was chosen based on its high-speed
capability and simplicity. It compares a voltage associated
with the magnitude of the positive weights and one associated
with the magnitude of the negative weights. The comparator
functions as a one-bit analog to digital converter (ADC) and
uses positive feedback to regenerate the analog signal into
a digital one. The comparator outputs a 1 if the voltage
corresponding to the positive line outweighs the negative line
and a 0 otherwise. For comparator output P, a 1 corresponds
to a taken prediction and a 0 corresponds to a not-taken
prediction.

Training: In addition to a one-bit taken or not-taken pre-
diction, the circuit latches two signals that will be used when
the branch is resolved to indicate whether the weights must be
updated. Training occurs if the prediction was incorrect or if
the absolute value of the difference between the positive and
negative weights is less than the threshold value. Rather than
actually computing the difference between the positive and
negative lines, which would require more complex circuitry,
the absolute value comparison is split into two separate
cases: one case for the positive weights being larger than
the negative weights and the other for the negative weights
being larger than the positive ones. Instead of waiting for the
prediction output P to be produced, which would increase the
total circuit delay, all three comparisons are done in parallel.
T is the relevant training bit if the prediction is taken and
N is the relevant training bit if the prediction is not taken.
To produce T, the threshold value is added to the current
on the negative line. If the prediction P is 1 (taken) and
the T output is 0, which means the negative line with the
threshold value added is larger than the positive line, then
the difference between the positive and negative weights is
less than the threshold value and the predictor should train.
Similarly, to produce N, the threshold value is added to the
current on the positive line. If the prediction P is 0 (not taken)
and the N output is 1, which means the positive line with the
threshold value added is larger than the negative line, then the
difference between the negative and positive weights is less
than the threshold value. If C is the direction of the branch
on commit, the following logic formula indicates training:
(C ⊕ P) + PT + PN .

Table 2. Excerpts from the list of DAC transistor widths

Col. # Transistor Widths

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5
0 (bias) 1 2 4 8 16 32
1 1 2 4 8 15 30
2 1 2 3 7 13 26
3 1 1 3 5 11 21
10 - 1 2 3 7 14
20 - 1 1 2 5 9
128 - 1 1 2 4 8

4.1. Circuit Evaluation Methodology

We composed a transistor-level implementation of SNAP in
the Cadence Analog Design Environment using Predictive
Technology Models (PTMs) at 45nm [18]. These models are
the standard for research and circuit design with immature
technologies and they take into account numerous non-
idealities that become important as transistor sizes shrink.
They include basic effects such as drain-induced barrier
lowering, non-uniform doping, and short and narrow chan-
nel length effects on threshold voltage, as well as various
leakage currents including subthreshold leakage and high-
speed models consisting of a substrate resistance network,
an intrinsic input resistance model, and a transient non-
quasi-static model. All transistors in the design utilize 45nm
bulk CMOS model cards that can be found on the PTM
website [18]; a description of the BSIM4 model parameters
can be found in the user’s guide [19].

Spectre transient analyses were used for all circuit simu-
lations. A 1V power supply and a 10% rise/fall time were
assumed for each clock speed. Analog power is measured
by multiplying the supply voltage by the average current
drawn from the power supply. Analog accuracy numbers were
generated by characterizing the analog circuit behavior as a
statistical error model and mapping it back to the CBP-2
simulation infrastructure.

4.2. Tuning the Predictor Circuit

The SNAP implementation accepts a number of parameters
including history length, number of bits per weight, and
transistor widths for each weight. We use the inverse linear
function defined as f(i) in Section 3, scaled appropriately, to
determine the widths of the transistors in each DAC. Table 2
shows the results of this sizing for some of the DACs; a
complete listing is omitted for lack of space.

4.3. Analog Power, Speed, and Accuracy

The SNAP design presents a trade-off between power, speed,
and accuracy. The principle factor determining circuit delay is
the size of the currents produced in the DACs. Larger currents
drive outputs to stabilize sooner, thereby decreasing delay

8

0 1 2 3

Time (ns)

-50

0

50

100

150

200

C
ur

re
nt

 (
uA

)

Positive
Negative

100 ps 200 ps

Figure 8. Time required for current differentiation

through the circuit; however, large currents increase power
consumption by increasing the total current draw.

The relative difference between the positive and negative
weights also determines when the correct output can be
latched. Figure 8 demonstrates the current behavior for two
different sets of input weights: one where the positive and
negative sums vary greatly in magnitude and one where the
sums are similar. In this example, the weights change at 1ns
such that the negative sum greatly outweighs the positive, and
the two currents quickly diverge. At 2ns the weights change
such that the negative sum is only slightly larger than the
positive; in this case, the currents require more time stabilize
before a winner can be determined.

Figure 9 shows prediction errors for various posi-
tive/negative sum combinations; unsurprisingly, errors arise
when the two sums are closest in magnitude. These errors
occur because the currents were not given sufficient time to
stabilize before the output was latched or because the currents
produced by the DACs resulted in the wrong line having the
larger value, since similar sums allow less room for errors in
current values. Incorrect currents can result from non-linearity
in the DACs as well as process variation and noise.

Fortunately, similar sums correspond to low prediction con-
fidence, since the dot-product result is close to zero and does
not signify a strongly taken or not-taken prediction; errors on
low-confidence predictions mitigate the impact of errors on
overall prediction accuracy. In addition, this case occurs on
a small percentage of the total number of predictions. The
simulations run to generate Figure 9 focused on this small
space, even though these points are less common, to clearly
illustrate the diagonal error band.

The width of the error band shown in Figure 9 increases as
clock speed increases or power decreases, causing a decrease
in predictor accuracy. Figure 10 shows the relationship be-

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

E
xp

ec
te

d
S

um
 o

f N
eg

at
iv

e
W

ei
gh

ts

Expected Sum of Positive Weights

correct
incorrect

Figure 9. Prediction errors for sum combinations

0 2 4 6 8

Power (milliwatts)

5

6

7

8

A
cc

ur
ac

y
(M

P
K

I)

1 GHz SNAP
2 GHz SNAP
3 GHz SNAP
SNP (infeasible)

leakage current

Figure 10. Tradeoff between power and accuracy

tween power, speed, and accuracy. The DAC bias currents
were adjusted to generate the multiple power levels, and
the lowest power shown (0.4mW) corresponds to the DACs
running strictly on leakage currents. At 1GHz, high accuracy
is maintained over the range of power levels simulated, where
leakage current alone achieves an MPKI of 5.13. The drop
in accuracy from 4.9mW to 7.4mW at 2GHz is a function of
inaccuracy in the DAC currents coupled with the particular
behavior of the traces simulated. At 3GHz, increasing power
from 1.9mW to 7.4mW shows an improvement of .32 MPKI.

9

255.vortex

252.eon
253.perlbmk

462.libquantum

464.h264ref

483.xalancbmk

254.gap
471.omnetpp

400.perlbench

186.crafty

458.sjeng

473.astar

403.gcc
197.parser

175.vpr
429.mcf

456.hmmer

164.gzip

401.bzip2

445.gobmk

300.twolf

Arithmetic Mean

Benchmark

0

5

10

15

M
is

pr
ed

ic
ti

on
s

pe
r

ki
lo

-i
ns

tr
uc

ti
on Piecewise Linear

L-TAGE
SNP
SNAP

Figure 11. Accuracy of digital vs. analog versions of the Scaled Neural Predictor

4.4. Comparison to Digital Accuracy

To illustrate the loss in potential prediction accuracy due to
the use of non-ideal analog circuits, Figure 11 shows the
accuracy of the Scaled Neural Analog Predictor compared to
an infeasible digital Scaled Neural Predictor. The figure also
shows L-TAGE and piecewise linear branch prediction for
comparison. The analog version achieves an average accuracy
of 5.18 MPKI compared to 5.06 for the digital version;
thus, the imprecision of the analog circuit results in only
a .12 MPKI decrease in accuracy. Piecewise linear branch
prediction, which is less feasible than SNAP but still arguably
implementable, results in 5.4 MPKI.

4.5. Power Comparison

Total power consumed by the prediction step of the SNAP
design includes table lookups in addition to the analog
computation. Running at 3GHz with a 1V supply voltage,
the average analog power required to obtain high prediction
accuracy is 7.4mW. At slower clock speeds, however, high
accuracy can be achieved at lower power levels; for example,
at 1GHz, the 0.4mW power configuration achieves an accu-
racy of 5.13 MPKI. Note that the same current is drawn from
the power supply regardless of the weight inputs. Also, for a
given bias current configuration, average power consumption
remains constant over a range of frequencies because the
average current draw remains constant.

We use CACTI 4.2 [20] with 45nm technology files to
measure the dynamic power of the digital portion of the de-
sign. The 16 weight tables were modeled as tagless memories
with 8-byte lines; the total dynamic read power at maximum

frequency is estimated to be 117mW. For comparison, the
power consumed by the various memory structures of L-
TAGE is estimated at 112mW. Thus, the memory components
of the two predictors have comparable dynamic power, and
the analog computation of the dot product is a small fraction
of the total power consumed by the predictor.

4.6. Frequency of Training

The predictor update requires the use of an array of narrow
up/down counters, potentially requiring significant dynamic
power. On the various benchmarks simulated, including SPEC
CPU2006, the weights need to be adjusted 10% of the time
on average; the other 90% of the time the adders are idle. This
observation supports the possibility of multiplexing fewer
up/down counters over time.

5. Implementation Issues

This section addresses issues related to mixed-signal design,
in particular, process variation, substrate noise, and testing.

5.1. Process Variation

As technology scales, process variation becomes an in-
creasing concern. Process variation appears in several forms
including transistor length, transistor width, and threshold
voltage variation. SRAM cells that hold predictor state in tra-
ditional table-based predictors and weights vectors in neural
predictors are subject to increased access delay due to process
variations. In a traditional predictor design, increased access
delay can result in incorrect table reads, thereby producing
incorrect branch predictions.

10

A neural predictor with a feedback-training algorithm,
however, is well suited to tolerate inaccuracies caused by
process variation. In an analog neural predictor, unexpected
currents may be produced as a result of an incorrect table
read or due to variations in the DAC transistors. The training
algorithm described in Section 3 will correct for unexpected
currents by adjusting the weights vector appropriately. For
example, if a weight produces a current value that is smaller
than the expected value, causing the prediction to be wrong
or the sum to be less than the threshold value, the weight
will be increased; additionally, the non-faulting weights will
be adjusted, thereby quickly correcting for the inaccuracy of
the faulting weight. Analog neural predictors that adjust a
weights vector based on a current summation are therefore
more robust against the negative effects of process variation
than table-based designs that predict based on the sign bit of
a digital counter value.

5.2. Noise Tolerance

On-chip analog circuits are susceptible to substrate noise
caused by digital switching. When a large number of digital
circuits are switching, they discharge currents into the sub-
strate that cause the substrate voltage to bounce. Traditional
techniques, such as guard rings, can be used to mitigate
the affects of substrate noise [21]. A guard ring separates
analog and digital circuits and creates a large capacitance
that provides noise currents a low impedance path to ground.

5.3. Testing

Manufacturing testing contributes significantly to production
cost and time-to-market. In the last few decades, design-for-
test research has focused mainly on digital ICs; consequently,
digital techniques used to reduce reliance on external testing
equipment, such as scan chains, automatic test pattern gen-
eration (ATPG), and built-in self-tests (BISTs), have become
sophisticated and cost effective [22]. The SNAP design can
utilize existing digital testing techniques because it includes
a digital to analog converter and a one-bit analog to digital
converter with only a small amount of analog circuitry in
between. Scan chains are used to gain access to internal
circuit components; testing data is scanned into a chain of
registers from chip input pins, the clock is pulsed, and the
results are captured in registers and scanned to chip output
pins. For SNAP, various input weights can be scanned in and a
one-bit prediction can be scanned out. The circuit component
is determined to be “good” if its predictions are consistent
with the expected prediction an acceptable percentage of the
time. Weight inputs and expected outputs could also be stored
in memory and a pass/fail signal could be routed off chip.

For finer grain failure detection, internal analog nodes
can be accessed using analog scan chains. In [23] and
[24], currents are shifted through scan chains using current
mirrors and switches. In [25], a BIST circuit is proposed to

detect unexpected changes in the power supply current. This
technique could be used to detect unexpected currents through
the transistors in the SNAP design.

6. Conclusion

Branch predictors continue to evolve and improve, and it is
still an open question whether conventional, multi-table based
predictors (such as L-TAGE) or neural predictors will even-
tually prove the most accurate. This paper described a highly
accurate Scaled Neural Predictor algorithm, made feasible by
a mixed-signal design that uses analog current summation
and comparison techniques to compute the computationally
expensive part of the prediction step.

The 45nm analog design can operate over a range of
power and clock-speed configurations, and at 3GHz and
7.4mW, shows an increase of only .12 MPKI over an ideal
digital implementation. This design is the first neural pre-
dictor whose prediction step is competitive from a power
perspective, requiring only a small amount of power for the
dot-product computation compared to the 117mW required
for the digital table lookups in this design. The table lookups
for a comparably-sized L-TAGE predictor consume 112mW,
not counting L-TAGE’s more complex hashing computations.

The SNAP design is the second most accurate predictor
design published to date (using the union of the SPEC
CPU2000 and 2006 benchmarks); the L-TAGE predictor first
published in December, 2006 is the most accurate, showing
4.91 MPKI as opposed to 5.18 for the the Scaled Neural
Analog Predictor. Piecewise linear branch prediction achieves
an MPKI of 5.4 on the same benchmarks.

While this study showed how to build an accurate neural
predictor with a low-power prediction computation, both
the table lookups and the training steps (which occur after
10% of the predictions, on average) require conventional
amounts of power. Compared to conventional predictors such
as L-TAGE, the SNAP design will require comparable table
lookup power, and its update power will be higher. Future
implementations may reduce the lookup and update power by
pushing these functions into the analog portion of the design
as well, using multi-level memory cells to adjust the weighted
currents directly, rather than performing a lightweight D-
to-A conversion. In this case, one cell would be associated
with each weight, allowing for a compact representation of a
large number of weights and reduced power by avoiding table
reads and updates. Flash and phase-change memory cells are
candidates for storing the analog values.

By making more aggressive computation functions feasible
in the prediction loop, analog techniques may open the door
to more aggressive neural prediction algorithms, for instance
the use of back propagation to compute non-linear functions
of correlation. It remains to be seen whether this capability
will appreciably reduce mispredictions in a power-efficient
manner, but it is a promising direction.

11

In future process technologies, it is likely that CMOS de-
vices will behave much more like analog devices than digital
ones, with more leakage, noise, variation, and unreliability.
We expect to see more applications of analog techniques
assisting the digital designs to reduce computation power,
particularly for computations that can be approximate, such
as predictions or data that do not affect the control path
of a program. In the long term, maintaining a firm digital
abstraction over much of the computation may prove too
expensive, leaving only the ability to accelerate workloads
that can exploit low-power analog computation. This capabil-
ity will only be possible if the computations are insensitive
to accreted noise and errors (such as convergent numerical
algorithms, human/computer interfaces, and media), or if
the noise can be periodically reduced through feedback and
correction, such as with the digital adjustment of neural
predictor weights upon branch mispredictions.

Acknowledgments
Renée St. Amant is supported by an NSF GRF and Daniel
A. Jiménez by NSF grants 0751138 and 0545898.

References

[1] A. Seznec, “A 256 kbits l-tage branch predictor,” Journal of
Instruction-Level Parallelism (JILP) Special Issue: The Second
Championship Branch Prediction Competition (CBP-2), vol. 9,
May 2007.

[2] A. Seznec and A. Fraboulet, “Effective ahead pipelining of
instruction block address generation,” in Proceedings of the
30th International Symposium on Computer Architecture, San
Diego, California, June 2003.

[3] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in Proceedings of the 7th International Sympo-
sium on High Performance Computer Architecture (HPCA-7),
January 2001, pp. 197–206.

[4] ——, “Neural methods for dynamic branch prediction,” ACM
Transactions on Computer Systems, vol. 20, no. 4, pp. 369–
397, November 2002.

[5] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive branch pre-
diction,” in Proceedings of the 24th ACM/IEEE International
Symposium on Microarchitecture, Nov. 1991, pp. 51–61.

[6] A. Seznec, “Redundant history skewed perceptron predictors:
Pushing limits on global history branch predictors,” IRISA,
Tech. Rep. 1554, September 2003.

[7] D. A. Jiménez, “Fast path-based neural branch prediction,” in
Proceedings of the 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-36). IEEE Computer
Society, December 2003, pp. 243–252.

[8] ——, “Piecewise linear branch prediction,” in Proceedings
of the 32nd Annual International Symposium on Computer
Architecture (ISCA-32), June 2005.

[9] A. Seznec, “Analysis of the o-geometric history length branch
predictor,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA’05), June 2005.

[10] C. Mead, Analog VLSI and Neural Systems. Addison-Wesley
Longman Publishing Co., Inc., 1989.

[11] S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “A recon-
figurable vlsi neural network,” IEEE Journal of Solid-State
Circuits, vol. 27, no. 1, pp. 67–81, January 1992.

[12] A. H. Kramer, “Array-based analog computation,” IEEE Micro,
vol. 16, no. 5, pp. 20–29, October 1996.

[13] J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann,
“A mixed-mode analog neural network using current-steering
synapses,” Analog Integrated Circuits and Signal Processing,
vol. 38, no. 2-3, pp. 233–244, February-March 2004.

[14] O. Kirby, S. Mirabbasi, and T. M. Aamodt, “Mixed-signal
neural network branch prediction,” unpublished manuscript.

[15] D. A. Jiménez, “Guest editor’s introduction,” Journal of
Instruction-Level Parallelism (JILP) Special Issue: The Second
Championship Branch Prediction Competition (CBP-2), vol. 9,
May 2007.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically characterizing large scale program behavior,” in Pro-
ceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,
October 2002.

[17] D. A. Johns and K. Martin, Analog Integrated Circuit Design.
John Wiley and Sons, Inc., 1997.

[18] Nanoscale Integration and Modeling Group at ASU, Predictive
Technology Models (PTMs), http://www.eas.asu.edu/∼ptm/.

[19] Bsim Research Group at UC Berkeley, BSIM4.6.1 mosfet
manual user’s guide, 2007, http://www-device.eecs.berkeley.
edu/∼bsim3/BSIM4/BSIM461/doc/.

[20] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “Cacti 4.0,” HP
Laboratories Palo-Alto, Tech. Rep. HPL-2006-86, June 2006.

[21] D. K. Su, M. J. Loinaz, S. Masui, and B. A. Wooley, “Exper-
imental results and modeling techniques for substrate noise in
mixed-signal integrated circuits,” IEEE Journal of Solid-State
Circuits, vol. 28, no. 4, pp. 420–430, April 1993.

[22] L. S. Milor, “A tutorial introduction on research on analog and
mixed-signal circuit testing,” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, vol. 45,
no. 10, pp. 1389–1407, October 1998.

[23] S. Wey, C.-L.; Krishman, “Built-in self-test (bist) structures
for analog circuit fault diagnosis with current test data,” IEEE
Transactions on Instrumentation and Measurement, vol. 41,
no. 4, pp. 535–539, August 1992.

[24] M. Soma, “Structure and concepts for current-based analog
scan,” Proceedings of the IEEE Custom Integrated Circuits
Conference, pp. 517–520, 1995.

[25] Y. Miura, “Real-time current testing for a/d converters,” IEEE
Design Test, vol. 13, no. 2, pp. 34–41, 1996.

12

