
1Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Course	Overview

CSCE	312

Instructor:
Daniel	A.	Jiménez

2Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Overview

¢ Course	theme
¢ Five	realities
¢ How	the	course	fits	into	the	CS/ECE	curriculum
¢ Academic	integrity

3Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Course	Theme:
Abstraction	Is	Good	But	Don’t	Forget	Reality
¢ Most	CS	and	CE	courses	emphasize	abstraction
§ Abstract	data	types
§ Asymptotic	analysis

¢ These	abstractions	have	limits
§ Especially	in	the	presence	 of	bugs
§ Need	to	understand	 details	of	underlying	implementations

¢ Useful	outcomes	from	taking	312
§ Become	more	effective	 programmers

§ Able	to	find	and	eliminate	bugs	efficiently
§ Able	to	understand	 and	tune	for	program	performance

§ Prepare	 for	later	“systems”	classes	 in	CS	&	ECE
§ Compilers,	 Operating	Systems,	Networks,	Computer	 Architecture,	
Embedded	 Systems,	Storage	Systems,	etc.

4Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Great	Reality	#1:	
Ints are	not	Integers,	Floats	are	not	Reals

¢ Example	1:	Is	x2 ≥	0?

§ Float’s:	Yes!

§ Int’s:
§ 40000	*	40000		➙ 1600000000
§ 50000	*	50000		➙ ??

¢ Example	2:	Is	(x +	y)	+	z =		x +	(y +	z)?
§ Unsigned	&	Signed	Int’s:	Yes!
§ Float’s:

§ (1e20	+	-1e20)	+	3.14	-->	3.14
§ 1e20	+	(-1e20	+	3.14)	-->	??

Source:	xkcd.com/571

5Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Computer	Arithmetic

¢ Does	not	generate	random	values
§ Arithmetic	operations	 have	 important	mathematical	 properties

¢ Cannot	assume	all	“usual”	mathematical	properties
§ Due	to	finiteness	 of	representations
§ Integer	 operations	satisfy	“ring”	properties

§ Commutativity,	associativity,	 distributivity
§ Floating	point	operations	 satisfy	“ordering”	properties

§ Monotonicity,	values	of	signs

¢ Observation
§ Need	to	understand	 which	abstractions	 apply	in	which	contexts
§ Important	 issues	 for	compiler	writers	and	serious	application	programmers

6Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Great	Reality	#2:	
You’ve	Got	to	Know	Assembly
¢ Chances	are,	you’ll	never	write	programs	in	assembly
§ Compilers	are	much	better	&	more	patient	 than	you	are

¢ But:	Understanding	assembly	is	key	to	machine-level	execution	
model
§ Behavior	 of	programs	 in	presence	 of	bugs

§ High-level	 language	models	break	down
§ Tuning	program	performance

§ Understand	 optimizations	done	/	not	done	by	the	compiler
§ Understanding	 sources	of	program	inefficiency

§ Implementing	 system	software
§ Compiler	has	machine	code	as	target
§ Operating	systems	must	manage	process	 state

§ Creating	/	fighting	malware
§ x86	assembly	is	the	language	of	choice!

7Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Great	Reality	#3:	Memory	Matters
Random	Access	Memory	Is	an	Unphysical	Abstraction

¢ Memory	is	not	unbounded
§ It	must	be	allocated	and	managed
§ Many	applications	are	memory	dominated

¢ Memory	referencing	bugs	especially	pernicious
§ Effects	 are	distant	in	both	time	and	space

¢ Memory	performance	is	not	uniform
§ Cache	and	virtual	memory	effects	 can	greatly	affect	program	performance
§ Adapting	program	to	characteristics	 of	memory	system	can	lead	to	major	
speed	 improvements

8Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Memory	Referencing	Bug	Example

§ Result	 is	system	specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation	 fault

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

9Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Memory	Referencing	Bug	Example
typedef struct {

int a[2];
double d;

} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation	 fault

Location	accessed	 by	
fun(i)

Explanation:

Critical	State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Memory	Referencing	Errors

¢ C	and	C++	do	not	provide	any	memory	protection
§ Out	of	bounds	array	references
§ Invalid	pointer	values
§ Abuses	of	malloc/free

¢ Can	lead	to	nasty	bugs
§ Whether	or	not	bug	has	any	effect	 depends	 on	system	and	compiler
§ Action	at	a	distance

§ Corrupted	 object	logically	unrelated	 to	one	being	accessed
§ Effect	of	bug	may	be	first	observed	 long	after	 it	is	generated

¢ How	can	I	deal	with	this?
§ Program	 in	Java,	Ruby,	Python,	ML,	…
§ Understand	 what	possible	 interactions	may	occur
§ Use	or	develop	 tools	to	detect	 referencing	 errors	 (e.g.	Valgrind)

11Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Great	Reality	#4:	There’s	more	to	
performance	than	asymptotic	complexity

¢ Constant	factors	matter	too!
¢ And	even	exact	op	count	does	not	predict	performance

§ Easily	see	10:1	performance	 range	depending	on	how	code	written
§ Must	optimize	at	multiple	levels:	algorithm,	data	representations,	
procedures,	 and	loops

¢ Must	understand	system	to	optimize	performance
§ How	programs	compiled	and	executed
§ How	to	measure	 program	performance	 and	identify	bottlenecks
§ How	to	improve	performance	 without	destroying	code	modularity	and	
generality

12Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Memory	System	Performance	Example

¢ Hierarchical	memory	organization
¢ Performance	depends	on	access	patterns

§ Including	how	step	through	multi-dimensional	 array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];
}

81.8ms4.3ms 2.0	GHz	Intel	Core	i7	Haswell

13Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Why	The	Performance	Differs

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

copyij

copyji

14Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Great	Reality	#5:
Computers	do	more	than	execute	programs

¢ They	need	to	get	data	in	and	out
§ I/O	system	critical	to	program	reliability	and	performance

¢ They	communicate	with	each	other	over	networks
§ Many	system-level	 issues	arise	 in	presence	 of	network

§ Concurrent	 operations	 by	autonomous	processes
§ Coping	with	unreliable	media
§ Cross	platform	compatibility
§ Complex	performance	 issues

15Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Course	Perspective

¢ Most	Systems	Courses	are	Builder-Centric
§ Computer	Architecture

§ Design	pipelined	processor	 in	Verilog
§ Operating	Systems

§ Implement	sample	portions	of	operating	system
§ Compilers

§ Write	compiler	 for	simple	language
§ Networking

§ Implement	and	simulate	network	protocols

16Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Course	Perspective	(Cont.)

¢ Our	Course	is	Programmer-Centric
§ Purpose	 is	to	show	that	by	knowing	more	about	the	underlying	system,	
one	can	be	more	effective	 as	a	programmer

§ Enable	you	to
§ Write	programs	 that	are	more	 reliable	and	efficient
§ Incorporate	 features	 that	require	hooks	into	OS

– E.g.,	concurrency,	 signal	handlers
§ Cover	material	 in	this	course	 that	you	won’t	see	elsewhere
§ Not	just	a	course	 for	dedicated	hackers

§ We	bring	out	the	hidden	hacker	 in	everyone!

17Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Textbook

¢ Randal	E.	Bryant	and	David	R.	O’Hallaron,	
§ Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition	 (CS:APP3e),	
Pearson,	 2016

§ http://csapp.cs.cmu.edu
§ This	book	really	matters	 for	the	course!

§ How	to	solve	 labs
§ Practice	problems	 typical	of	exam	problems

18Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Course	Components

¢ Lectures
§ Higher	 level	concepts

¢ Recitations
§ Applied	concepts,	 important	 tools	and	skills	for	labs,	clarification	 of	
lectures,	 exam	coverage

¢ Homeworks (Labs)
§ The	heart	of	the	course
§ 1-2	weeks	each
§ Provide	 in-depth	understanding	 of	an	aspect	of	systems
§ Programming	and	measurement

¢ Exams	(midterm	+	final)
§ Test	your	understanding	 of	concepts	&	mathematical	principles

19Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Getting	Help

¢ Class	Web page:	http://faculty.cse.tamu.edu/djimenez/312
§ “Complete”	schedule	 of	lectures,	 exams,	and	assignments
§ Copies	of	lectures,	 assignments,	 exams,	 solutions
§ Clarifications	 to	assignments

¢ Teaching	Assistants
¢ Peer	Teachers	
¢ Office	Hours
¢ Ask	Questions	in	Class!

20Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Rules	of	the	Lecture	Hall

¢ Laptops:	permitted

¢ Electronic	communications:	forbidden
§ No	email,	instant	messaging,	 cell	phone	calls,	etc

¢ Presence	in	lectures,	recitations:	voluntary,	recommended

21Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Welcome	
and	Enjoy!	

