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Chapter 4: Cholesky factorization



One method: based on Lx=b

[
L11

lT12 l22

] [
LT
11 l12

l22

]
=

[
A11 a12
aT12 a22

]
,

• L11 and A11 are (n − 1)-by-(n − 1)

• L11LT
11 = A11,

• L11l12 = a12,

• lT12l12 + l222 = a22.



Cholesky factorization

• solve L11LT
11 = A11 for L11

• solve L11l12 = a12 for l12

• l22 =
√

a22 − lT12l12



MATLAB prototype



Pruning the directed graph



Elimination tree



Elimination tree theorems

Theorem
For a Cholesky factorization LLT = A, and neglecting numerical
cancellation, aij 6= 0⇒ lij 6= 0. That is, if aij is nonzero, then lij
will be nonzero as well.

Theorem (Parter)

For a Cholesky factorization LLT = A, and neglecting numerical
cancellation, i < j < k ∧ lji 6= 0 ∧ lki 6= 0⇒ lkj 6= 0. That is, if
both lji and lki are nonzero where i < j < k, then lkj will be
nonzero as well.



Elimination tree theorems

Theorem (Schreiber)

For a Cholesky factorization LLT = A, and neglecting numerical
cancellation, lki 6= 0 and k > i imply that i is a descendant of k in
the elimination tree T ; equivalently, i  k is a path in T .



Row subtree theorem

Theorem (Liu )

The nonzero pattern Lk of the kth row of L is given by

Lk = ReachGk−1
(Ak) = ReachTk−1

(Ak). (1)



Row subtrees



Row subtree theorems

Theorem (Liu )

Node j is a leaf of T k if and only if both ajk 6= 0 and aik = 0 for
every descendant i of j in the elimination tree T .

Corollary (Liu )

For a Cholesky factorization LLT = A, and neglecting numerical
cancellation, aki 6= 0 and k > i imply that i is a descendant of k in
the elimination tree T ; equivalently, i  k is a path in T .







Postordering a tree

Theorem (Liu )

The filled graphs of A and PAPT are isomorphic, if P is a
postordering of the elimination tree of A. Likewise, the elimination
trees of A and PAPT are isomorphic.









Row counts

Requires:

• least common ancestor

• path decomposition

• first descendant

• level

• skeleton matrix



First descendant



First descendant in a postordered tree



Skeleton matrix



Skeleton matrix

Lemma
Let fj ≤ j denote the first descendant of j in a postordered tree.
The descendants of j are all nodes fj , fj + 1, . . . , j − 1, j .

Theorem
Consider two nodes t < j in a postordered tree. Then either (1)
ft ≤ t < fj ≤ j and t is not a descendant of j , or (2)
fj ≤ ft ≤ t < j and t is a descendant of j .





Corollary

Consider a node j in a postordered tree, and any set of nodes S
where all nodes s ∈ S are numbered less than j. Let t be the node
in S with the largest first descendant ft . Node j has a descendant
in S if and only if ft ≥ fj .



Theorem
Assume that the elimination tree T is postordered. The least
common ancestor of two nodes a and b where a < b can be found
by traversing the path from a towards the root. The first node
q ≥ b found along this path is the least common ancestor of a and
b.







Column counts

Theorem (George and Liu )

If Lj denotes the nonzero pattern of the jth column of L, and Aj

denotes the nonzero pattern of the strictly lower triangular part of
the jth column of A, then

Lj = Aj ∪ {j} ∪

 ⋃
j=parent(s)

Ls \ {s}

 . (2)



Nonzero pattern of column j is union of its
children



Column counts

cj = |Âj |+

∣∣∣∣∣∣
⋃

j=parent(s)

Ls \ {s}

∣∣∣∣∣∣ = |Âj | − ej +

∣∣∣∣∣∣
⋃

j=parent(s)

Ls

∣∣∣∣∣∣
cj = |Âj | − ej − oj +

∑
j=parent(s)

cs .



1 If j /∈ T i , then i /∈ Lj and row i does not contribute to the
overlap oj .

2 If j is a leaf of T i , then by definition aij is in the skeleton
matrix. Row i does not contribute to the overlap oj , because
it appears in none of the children of j . Row i contributes
exactly one to cj , since i ∈ Âj .

3 If j is not a leaf of T i , let dij denote the number of children of
j that are in T i . These children are a subset of the children of
j in the elimination tree T . Row i is present in the nonzero
patterns of each of these dij children. Thus, row i contributes
dij − 1 to the overlap oj . If j has just one child, row i appears
only in that one child and there is no overlap.



Combining the correction terms

• If j is a leaf of the elimination tree, cj = ∆j = |Âj |+ 1.

• Otherwise, ∆j = |Âj | − ej − oj

• then cj = ∆j +
∑

j=parent(s) cs ,

• example for column 4, ∆4 = 0− 2− 2 and
c4 = −4 + c2 + c3 = −4 + 4 + 3 = 3.





Column count algorithm, part 1 of 3



Column count algorithm, part 2 of 3



Column count algorithm, part 3 of 3



Putting it all together: the symbolic
analysis

1 fill-reducing ordering, P

2 C = PAPT

3 find etree of C

4 postorder the etree

5 find column counts of L

6 find column pointers of L

7 (nonzero pattern of L not required)



Symbolic analysis



Symbolic analysis



Numerical factorization: Up-looking
Cholesky

[
L11

lT12 l22

] [
LT
11 l12

l22

]
=

[
A11 a12
aT12 a22

]
,

• L11 and A11 are (n − 1)-by-(n − 1)

• L11LT
11 = A11,

• L11l12 = a12,

• lT12l12 + l222 = a22.



Up-looking Cholesky

• solve L11LT
11 = A11 for L11

• solve L11l12 = a12 for l12

• l22 =
√

a22 − lT12l12











Left-looking Cholesky

 L11

lT12 l22
L31 l32 L33

 LT
11 l12 LT

31

l22 lT32
LT
33

 =

 A11 a12 AT
31

aT12 a22 aT32
A31 a32 A33



• l22 =
√

a22 − lT12l12

• l32 = (a32 − L31l12)/l22



Left-looking Cholesky



Supernodal Cholesky



Supernodal Cholesky

1 A symmetric update, A(k,k)-L(k,1:k1-1)*L(k,1:k1-1)’.
In the sparse case, A(k,k) is a dense matrix. L(k,1:k1-1)

represents the rows in a subset of the descendants of the jth
supernode. The update from each descendant can be done
with a single dense matrix multiplication.

2 A dense Cholesky factorization, chol.

3 A sparse matrix product,
A(k2:n,k)-L(k2:n,1:k1-1)*L(k,1:k1-1)’, where the two
L terms come from the descendants of the jth supernode.

4 A dense triangular solve (...)/L(k,k)’ using the kth
diagonal block of L.


