
Sparse Matrix Algorithms
combinatorics + numerical methods + applications

Math + X

Tim Davis
University of Florida

June 2013

contributions to the field
current work

vision for the future

Outline

Math+X

Math =
[

combinatorics + linear algebra + graph theory
]

X =

[
high-performance combinatorial scientific computing

+many applications enabled by my contributions

]
Roadmap: past, current, future work

Sparse matrix algorithms

Contributions to the field
from theory, to algorithms, to reliable software, to applications
sparse Cholesky update/downdate (CHOLMOD)
unsymmetric multifrontal LU (UMFPACK)
multifrontal QR (SuiteSparseQR)

Current work
highly concurrent methods (GPU or massive CPU core)
NVIDIA Academic Partner

Future vision

Math+X X = high-performance combinatorial
scientific computing + applications

Roadmap: past, current, future work

Applications using SuiteSparse

General toolboxes for computational science

Applications using SuiteSparse

Linux distros

Ubuntu

Finite-element methods and differential equations

Applications using SuiteSparse

Circuit / power / semiconductor simulation

Computer graphics / computer vision / robotics

Applications using SuiteSparse

Mathematical optimization

Geophysical modeling

Financial simulation Stellar evolution

Applications using SuiteSparse

University of Florida Sparse Matrix Collection (with Hu)
2500+ sparse matrices from real applications

Sparse matrix algorithms

Solve Lx = b with L unit lower triangular; L, x , b are sparse

x = b
for j = 0 to n − 1 do

if xj 6= 0
for each i > j for which lij 6= 0 do

xi = xi − lijxj

non-optimal time O(n + |b|+ f), where f = flop count

problem: outer loop and the test for xj 6= 0

solution: suppose we knew X , the nonzero pattern of x

optimal time O(|b|+ f), but how do we find X ?
(Gilbert/Peierls)

Sparse matrix algorithms

Solve Lx = b with L unit lower triangular; L, x , b are sparse

x = b
for j = 0 to n − 1 do

if xj 6= 0
for each i > j for which lij 6= 0 do

xi = xi − lijxj

if bi 6= 0 then xi 6= 0

if xj 6= 0 and ∃i(lij 6= 0)
then xi 6= 0

start with pattern B of b

graph L: edge (j , i) if lij 6= 0

X = ReachL(B)
(Gilbert/Peierls)

Sparse matrix algorithms

If B = {4, 6} then X = {6, 10, 11, 4, 9, 12, 13, 14}

Sparse Cholesky update/downdate

The update/downdate problem:

Given A = LLT

A undergoes a low-rank change

compute L L
T

= A± wwT

arises in optimization, crack propagation, robotics, new data
in least-squares, ...

Sparse Cholesky update/downdate

Rank-1 update, LLT + wwT (Carlson)

β = 1
for j = 1 to n

compute coefficients:
α = wj/ljj
β = β, β =

√
β2 + α2

γ = α/(ββ), δ = β/β
update diagonal:
ljj = δljj + γwj

wj = α
update below diagonal:
t = wj+1:n

wj+1:n = wj+1:n − αLj+1:n,j

Lj+1:n,j = δLj+1:n,j + γt
end

Key observations:

overwrites w with solution
to Lw = w

w=L\w in MATLAB
notation

jth column of L changes
only if w j = (L−1w)j 6= 0,

thus, need pattern of
triangular solve

... but the Cholesky L can
be pruned

Sparse Cholesky update/downdate

Key results

if L doesn’t change: columns in L that change = path from
minW to root of the etree

if L does change, follow the path in etree of L

Update/downdate in time proportional to the number of
entries in L that change

Sparse Cholesky update/downdate

Multiple rank, with dynamic supernodes

multiple rank: A±WW T , follow multiple paths in the tree

supernodes: adjacent columns of L with identical pattern;
break apart and merge in update/downdate

dynamic supernodes: find them as we go (cuts memory traffic)

Sparse Cholesky update/downdate

CHOLMOD update/downdate: key results / impact

update/downdate faster than a Lx = b solve for dense b

example application: LPDASA (Hager and Davis)

maintains Cholesky factorization of AFAT
F for basis set F

update/downdate as basis set changes

example: g2o (Kümmerle et al)

robotics, simultaneous localization and mapping
builds a map of its surroundings
update/downdate as new images arrive

example: crack propagation (Pais, Kim, Davis, Yeralan)

structural engineering problem: crack in aircraft fuselage
update/downdate as crack progresses through airframe

CHOLMOD: Supernodal Sparse Cholesky
update/downdate

CHOLMOD: key results / impact

sparse chol in MATLAB, and x=A\b
typical 10x speedup when incorporated into MATLAB

peak performance over 50% of CPU theoretical peak

example applications using CHOLMOD:

Google Street View, PhotoTours, and 3D Earth
Mentor Graphics: circuit simulation
Cadence: CAD design
VisionMap: satellite image processing
CVXOPT: convex optimization
...

Multifrontal method

Classic symmetric multifrontal method (Duff, Reid, others)
Cliques + elimination tree = sequence of frontal matrices
Dense factorization within a front; assemble data into parent

UMFPACK: unsymmetric multifrontal method

Frontal matrices become rectangular

Assemble data into ancestors, not just parents

UMFPACK: unsymmetric multifrontal method

Key results / impact

high-performance via dense matrix kernels within each front

symbolic preordering and analysis, followed by revised local
pivot search with approximate unsymmetric degree update

could extend to handle threshold rook pivoting

widely used

sparse LU and x=A\b in MATLAB
Mathematica
IBM circuit simulation
finite-element solvers: NASTRAN, ANSYS, FEniCS, ...
CVXOPT
...

SuiteSparseQR: multifrontal sparse QR factorization

Key results / impact

rectangular fronts like UMFPACK, but simpler frontal matrix
assembly

multicore parallelism

amenable to GPU implementation (in progress)

on multicore CPU: up to 14 Gflops

sparse qr in MATLAB, and x=A\b

SuiteSparseQR

Least squares problem: 2 million by 110 thousand

Method ordering procs time

prior x=A\b COLMMD 1 ?
prior x=A\b AMD 1 11 days
MA49 AMD 1 3.5 hours
SuiteSparseQR AMD 1 1.5 hours
SuiteSparseQR METIS 1 45 minutes
SuiteSparseQR METIS 16 7.3 minutes

Algorithmic speedup vs prior x=A\b: 375x

Parallel speedup: 5.75x on 16 cores

Total: 2,155x (14 Gflops on machine w/ 70 Gflops peak)

Single core: 2.5 Gflop peak, same as LAPACK dense QR

Highly-concurrent heterogeneous computing

GPU computing: bulk synchronous model

multiple Streaming Multiprocessors (SMs) on a GPU

each SM with multiple SIMD threads

one kernel launch: set of independent tasks

GPU-based sparse multifrontal QR

symbolic ordering and analysis on the CPU (irregular)

numerical factorization on the GPU (regular+irregular)

Multifrontal factorization and assembly

Prior methods
one front at a time on the GPU
assembly on CPU
panel factorization on the CPU, applied on GPU

Our multifrontal QR
many fronts on the GPU (entire subtree)
assembly on GPU
entire dense QR of each front on the GPU

Highly-concurrent heterogeneous computing

Highly-concurrent heterogeneous computing

Highly-concurrent heterogeneous computing

Highly-concurrent heterogeneous computing

Highly-concurrent heterogeneous computing

Peak performance results on the GPU
Fermi Kepler

GPU kernels:
apply block Householder 183 Gflops 260 Gflops
factorize 3 tiles 27 Gflops 20 Gflops

dense QR for large front 107 Gflops 120 Gflops

sparse QR on GPU 80 Gflops (in progress)
speedup over CPU 9x (in progress)

Highly-concurrent heterogeneous computing

Future vision

Math + X

Math =
[

combinatorics + linear algebra + graph theory
]

X =

[
high-performance combinatorial scientific computing

+applications enabled by my contributions

]
computational mathematics: the future is heterogeneous

driven by power constraints, need for parallelism

high impact – getting it out the door:

novel algorithms: delivered in widely used robust software
Collected Algorithms of the ACM
enabling academic projects: Julia, R, Octave, FEnICS, ...
growing impact on industry, and industrial collaborations:
Google, NVIDIA, Mentor Graphics, Cadence, MSC Software,
Berkeley Design Automation, ...
applications: optimization, robotics, circuit simulation,
computer graphics, computer vision, finite-element methods,
geophysics, stellar evolution, financial simulation, ...

Roadmap: past, current, future work

In Summary

Math+X
Math =

[
combinatorics + linear algebra + graph theory

]
X =

[
high-performance combinatorial scientific computing

+many applications enabled by my contributions

]
Roadmap: past, current, future work

Sparse matrix algorithms
Contributions to the field

from theory, to algorithms, to reliable software, to applications
sparse Cholesky update/downdate (CHOLMOD)
unsymmetric multifrontal LU (UMFPACK)
multifrontal QR (SuiteSparseQR)

Current work
highly concurrent methods (GPU or massive CPU core)
NVIDIA Academic Partner

Future vision : individual and collaborative
GPU / CPU heterogeneous parallel computing
towards exascale
continue creating algorithms with deep impact

Math + X, where X = [Poetry + Art]

Sea Fever, by Masefield (1902)
I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by,
And the wheel’s kick and the wind’s song

and the white sail’s shaking,
And a grey mist on the sea’s face and a grey dawn breaking.

C Fever, by T.D. (2010)
I must go code in both C and M, not only C and VI,
And all I ask is a Linux box and a mouse to steer her by,
And the while’s break and the if then

and the valgrind’s shaking,
And a dash O so the C’s fast and a switch case break-ing.

