Sparse Matrix Algorithms

combinatorics + numerical methods + applications
Math + X

Tim Davis
University of Florida

June 2013

contributions to the field
current work
vision for the future

Outline

Math+X
e Math = [combinatorics + linear algebra + graph theory]
o X — high—performapce 'combinatorial scientific cgmputing
+many applications enabled by my contributions
Roadmap: past, current, future work

Sparse matrix algorithms
Contributions to the field
from theory, to algorithms, to reliable software, to applications
sparse Cholesky update/downdate (CHOLMOD)
unsymmetric multifrontal LU (UMFPACK)
o multifrontal QR (SuiteSparseQR)
Current work

e highly concurrent methods (GPU or massive CPU core)
o NVIDIA Academic Partner

Future vision

e 6 o

Math+ X X = high-performance combinatorial
scientific computing + applications

combinatorics,
graph theory,
NP-hard problems

I~ Azl = |Q7b - Ralls =

QFb— Ryx
Qib

2

linear algebra,
scientific computing

Ax=b

An Az
Ay Az

ATy AL Ag

COMBINATORIAL
SCIENTIFIC
COMPUTING

applications

SANVIDIA. GQ g[e cadence

completed

near now

future

Roadmap: past, current, future work

simplicial methods

Y

single core, BLAS-based
supernodal and multifrontal

Y

multi-core, BLAS based

multi-GPU (1000s of cores)
single shared memory cluster

Y

multi-GPU (10000s of cores)
dist. memory cluster

< 1 Gflop: sparse LU for circuit simulation,
for extremely sparse problems.

~3 Gflop: multifrontal or supernodal LU, QR,
and Cholesky (all in x=A\b in MATLAB)

~5 to 15 Gflop: multifrontal/supernodal LU, QR, Cholesky
x=A\b, large problems, 2D / 3D discretizations

~80 Gflop:
communication-avoiding multifrontal sparse QR.
Future: need GPU kernels for LU and Cholesky.

~1 Tflop goal: near horizon: multi-GPU sparse QR
~3 Tflop future: use all CPUs & GPUs in small cluster

~10 Tflop to ~1 Petaflop goal: farther in future.
Need distributed-memory algorithms across clusters,
each exploiting multiple CPUs and GPUs.

towards exascale performance in sparse direct solvers

Applications using SuiteSparse

General toolboxes for computational science

Wolfram
Mathematica

Applications using SuiteSparse

Linux distros

Fadaaaeh FINK
®Ubuntu ECEI fedoro

©

GRU-Darwin debi 9 s 46 *scientific Linux
distribution Ian RO

Finite-element methods and differential equations

ANSYS O Elmer
m &i we. NIST " @ stery

Applications using SuiteSparse

Circuit / power / semiconductor simulation

ATopTech cadence EnerNex teescale:
®)
LABORATORIES % & lumerical GMSR'&'-
Sandia ﬂ
N smetnx 4

Computer graphlcs / computer vision / robotics

Goxc ’Sle $#:ROS.org
OpenSLAM

TANDENT.

Applications using SuiteSparse

Mathematical optimization

CVXOPT

PYTHON SOFTWARE FOR CONVEX OPTIMIZATION

»
/ >«C}DX§EXQE for modeling convex ‘ Cvx
W optimization problems RESEARCH

Geophysical modeling

maosek

http://waw.mosek . com

CEOMO! DElI.l/N\ﬁ SOLUTIONS
=

o Mg

Financial simulation Stellar evolution

InTex MESA

Applications using SuiteSparse

@ University of Florida Sparse Matrix Collection (with Hu)
e 2500+ sparse matrices from real applications

Double as Works of Art

SPARSE MATRICES: A LOT PRETTIER THAN THEY SOUND

Sparse matrix algorithms

Solve Lx = b with L unit lower triangular; L, x, b are sparse
x=b5b
for j =0ton—1do
if x; #0
for each / > j for which /; # 0 do
xi = x; — lijx;

@ non-optimal time O(n + |b| + f), where f = flop count
@ problem: outer loop and the test for x; # 0
@ solution: suppose we knew X, the nonzero pattern of x

@ optimal time O(|b| + f), but how do we find X7
(Gilbert/Peierls)

Sparse matrix algorithms

Solve Lx = b with L unit lower triangular; L, x, b are sparse
x=b
forj =0ton—1do
if x; 20
for each / > j for which /; # 0 do
Xi = Xj — /,JXJ

ifb,-;éOthenx,-aéO

o if x; # 0 and Ji(l;; # 0) MRz
then x; # 0

@ start with pattern B of b

@ graph L: edge (j,i) if [; #0 - 0| 1,

X = Reach,(B) I
(Gilbert/Peierls)

Lower triangular matrix L

Sparse matrix algorithms

Graph G,

If B={4,6} then X = {6,10,11,4,9,12,13, 14}

Sparse Cholesky update/downdate

The update/downdate problem:
o Given A= LLT
@ A undergoes a low-rank change
o compute LL = A+ wwT
@ arises in optimization, crack propagation, robotics, new data
in least-squares, ...

Sparse Cholesky update/downdate

Rank-1 update, LLT +ww' (Carlson)

Key observations:

fﬁor_jlz 1ton @ overwrites w with solution
compute coefficients: tolw=w
a=w;/l; e w=L\w in MATLAB
B8=8, B= \/m notation
vy=af(BB), d=p5/8 @ jth column of L changes
update diagonal: only if w; = (L7tw); # 0,
lj = ol + yw; @ thus, need pattern of

Wi =«

triangular solve
update below diagonal:

@ ... but the Cholesky L can

t=Wjitin be pruned

Wjt1:n = Wjtlin — aLjJrl:n,j
Liy1nj = 0Ljr1nj +t
end

Key results

o if £ doesn't change: columns in L that change = path from

Sparse Cholesky update/downdate

L
2
3
4
5
° 6
e 7
oo o 8

min W to root of the etree

e if £ does change, follow the path in etree of L

@ Update/downdate in time proportional to the number of
entries in L that change

elimination tree

® 6 O ®

Sparse Cholesky update/downdate

A L elimination tree
_l o0] _l _ m
i; ° o0 33 (10)
5t e te s ®
: [] 67 ... : [) g o
[.. 89.. o0 .. 8 G
et o0 ettt @ ©® @ B

Multiple rank, with dynamic supernodes

e multiple rank: A+ WWT, follow multiple paths in the tree

@ supernodes: adjacent columns of L with identical pattern;
break apart and merge in update/downdate

@ dynamic supernodes: find them as we go (cuts memory traffic)

v

Sparse Cholesky update/downdate

CHOLMOD update/downdate: key results / impact

update/downdate faster than a Lx = b solve for dense b

example application: LPDASA (Hager and Davis)

o maintains Cholesky factorization of ArA[for basis set F
e update/downdate as basis set changes

example: g2o (Kimmerle et al)
e robotics, simultaneous localization and mapping
o builds a map of its surroundings
e update/downdate as new images arrive

example: crack propagation (Pais, Kim, Davis, Yeralan)
o structural engineering problem: crack in aircraft fuselage
e update/downdate as crack progresses through airframe

CHOLMOD: Supernodal Sparse Cholesky
update/downdate

CHOLMOD: key results / impact

@ sparse chol in MATLAB, and x=A\Db
@ typical 10x speedup when incorporated into MATLAB

@ peak performance over 50% of CPU theoretical peak
@ example applications using CHOLMOD:

o Google Street View, PhotoTours, and 3D Earth
Mentor Graphics: circuit simulation

Cadence: CAD design

VisionMap: satellite image processing
CVXOPT: convex optimization

®© 6 6 o o

Multifrontal method

@ Classic symmetric multifrontal method (Duff, Reid, others)
@ Cliques + elimination tree = sequence of frontal matrices
@ Dense factorization within a front; assemble data into parent

1 o0
2@ [
3 e oo nlee
4 @ [1H|ee®
5 [] [] \
° e o eo
° o7 eeo 71 o0 0@
oo o s ee s o0 @ jeeee
ee o 0o 10| ®(0 O 10/® @0 O
o o000 O 11|®0 O 11|® @00
e o o600 1
) jjee0e0e@ 6|00 00
I J(eReNe) 7/@(00O0
) 10| ® 0 OO0 9/@00O0
11|®0 00 w|elooe
® N
0 @ 200 @ 5|0 @ oo @ 1000
3| @00 3| @0 O 6| ®0 O 6.[..
G) (6) 3| @0 O 11 ®0 O 7/@00] 10|e|® @
@ & O @

UMFPACK: unsymmetric multifrontal method

@ Frontal matrices become rectangular
@ Assemble data into ancestors, not just parents

78
70 ®
o o o s ee®
) ° / \
oo 47 8
* o b 4lol®
*e 7 0@
oo o .
() () 4 h
oeoo 3478 .
- N0 Tz
70 ® 9
e 5678
147 2378) 5ee®
1[e[e @ 200 @ clee o
400 @ 7000 see @

UMFPACK: unsymmetric multifrontal method

Key results / impact
@ high-performance via dense matrix kernels within each front

@ symbolic preordering and analysis, followed by revised local
pivot search with approximate unsymmetric degree update

@ could extend to handle threshold rook pivoting

@ widely used

sparse LU and x=A\b in MATLAB

Mathematica

IBM circuit simulation

finite-element solvers: NASTRAN, ANSYS, FEniCS, ...
CVXOPT

[

®© 6 6 o6 o

SuiteSparseQR: multifrontal sparse QR factorization

Key results / impact

rectangular fronts like UMFPACK, but simpler frontal matrix
assembly

multicore parallelism

amenable to GPU implementation (in progress)
on multicore CPU: up to 14 Gflops

sparse gqr in MATLAB, and x=A\b

SuiteSparseQR

@ Least squares problem: 2 million by 110 thousand

Method ordering procs time

prior x=A\Db COLMMD 1 ?

prior x=A\Db AMD 1 11 days
MA49 AMD 1 3.5 hours
SuiteSparseQR AMD 1 1.5 hours
SuiteSparseQR METIS 1 45 minutes
SuiteSparseQR METIS 16 7.3 minutes

@ Algorithmic speedup vs prior x=A\b: 375x

@ Parallel speedup: 5.75x on 16 cores

o Total: 2,155x (14 Gflops on machine w/ 70 Gflops peak)
@ Single core: 2.5 Gflop peak, same as LAPACK dense QR

Highly-concurrent heterogeneous computing

GPU computing: bulk synchronous model
@ multiple Streaming Multiprocessors (SMs) on a GPU
@ each SM with multiple SIMD threads
@ one kernel launch: set of independent tasks
GPU-based sparse multifrontal QR
@ symbolic ordering and analysis on the CPU (irregular)
@ numerical factorization on the GPU (regular—+irregular)
Multifrontal factorization and assembly

@ Prior methods

e one front at a time on the GPU

e assembly on CPU

o panel factorization on the CPU, applied on GPU
@ Our multifrontal QR

e many fronts on the GPU (entire subtree)

e assembly on GPU

o entire dense QR of each front on the GPU

o ~N O O A~ W N

Highly-concurrent heterogeneous computing

Initial matrix:

- each tile a square

submatrix

- panelsize: 3-by-1 tiles

- exploits initial staircase

o ~N O O A~ W N

Highly-concurrent heterogeneous computing

Householder bundles:

= e
(S8 e

Highly-concurrent heterogeneous computing

1 2

1 N

Householder bundles:

applied, and
pipelined to (2,3)

3 4 5
-applied, and
pipelined to ||
(7.8) applied

N

(1,4) new

o ~N O O A~ W N

o ~N O O A~ W N

Highly-concurrent heterogeneous computing

‘ Householder bundles:

(2,3) applied

-applied, and
pipelined to [[EHNEI

(1,4) applied, and
pipelined to

parallel tasks in each launch

flops in each launch

200

150

100

50

kernel launches

— full algorithm

no lookahead
no pipeline
1o bundle grow

launch

o Tlops in kemel launches

launch

full pipelining

no pipelining

..I‘ ..-II“

pipelining but no bundle growth

Y
5
L8
3

no pipelining, no lookahead

Highly-concurrent heterogeneous computing

@ Peak performance results on the GPU

Fermi Kepler
GPU kernels:
apply block Householder 183 Gflops 260 Gflops
factorize 3 tiles 27 Gflops 20 Gflops
dense QR for large front 107 Gflops 120 Gflops
sparse QR on GPU 80 Gflops (in progress)

speedup over CPU 9x (in progress)

Highly-concurrent heterogeneous computing

Fermi GPU speedup over GPU

-
.
.
. .
-
T .
. -
. .
M 1 .
]
ac.a“-}.af . -
TatHE 2
IR R
' . -
y hei) L1
+ v ¥ -
‘. .a.q.ﬁi&a B
a.fﬁat «aa -
L Te gl e B ..
. . e e .
LI ERET I . -
-, T e *h .
. P c‘..an .
] L
LR I - P b
e T e
" * -]
- LA N . "
-
L RS AR T L B b
v e
m‘_a‘_o EI amaaaa -
wita Voo,
LRt -
AU . 1) .
LR LIRS i
. . b AR]
- oW e . R 1
o, 7
)
. + .
v
] . . ., p
.
LR
.
1y 2
=] T
=} o =]

sul NdL /8wl NdD

10

10

flops / memory usage {in bytes)

Future vision

Math + X
e Math = [combinatorics + linear algebra + graph theory]

o X =

®© 6 6 o

high-performance combinatorial scientific computing
+applications enabled by my contributions

computational mathematics: the future is heterogeneous

driven by power constraints, need for parallelism
high impact — getting it out the door:

novel algorithms: delivered in widely used robust software
Collected Algorithms of the ACM

enabling academic projects: Julia, R, Octave, FEnICS, ...
growing impact on industry, and industrial collaborations:
Google, NVIDIA, Mentor Graphics, Cadence, MSC Software,
Berkeley Design Automation, ...

applications: optimization, robotics, circuit simulation,
computer graphics, computer vision, finite-element methods,
geophysics, stellar evolution, financial simulation, ...

completed

near now

future

Roadmap: past, current, future work

simplicial methods

Y

single core, BLAS-based
supernodal and multifrontal

Y

multi-core, BLAS based

multi-GPU (1000s of cores)
single shared memory cluster

Y

multi-GPU (10000s of cores)
dist. memory cluster

< 1 Gflop: sparse LU for circuit simulation,
for extremely sparse problems.

~3 Gflop: multifrontal or supernodal LU, QR,
and Cholesky (all in x=A\b in MATLAB)

~5 to 15 Gflop: multifrontal/supernodal LU, QR, Cholesky
x=A\b, large problems, 2D / 3D discretizations

~80 Gflop:
communication-avoiding multifrontal sparse QR.
Future: need GPU kernels for LU and Cholesky.

~1 Tflop goal: near horizon: multi-GPU sparse QR
~3 Tflop future: use all CPUs & GPUs in small cluster

~10 Tflop to ~1 Petaflop goal: farther in future.
Need distributed-memory algorithms across clusters,
each exploiting multiple CPUs and GPUs.

towards exascale performance in sparse direct solvers

In Summary

Math+X
e Math = [combinatorics + linear algebra + graph theory]
high-performance combinatorial scientific computing
+many applications enabled by my contributions
Roadmap: past, current, future work

e X =

Sparse matrix algorithms
Contributions to the field
from theory, to algorithms, to reliable software, to applications
sparse Cholesky update/downdate (CHOLMOD)
unsymmetric multifrontal LU (UMFPACK)
o multifrontal QR (SuiteSparseQR)
Current work
o highly concurrent methods (GPU or massive CPU core)
o NVIDIA Academic Partner
Future vision : individual and collaborative
o GPU / CPU heterogeneous parallel computing
e towards exascale
e continue creating algorithms with deep impact

Math + X, where X = [Poetry + Art]

Sea Fever, by Masefield (1902)
| must go down to the seas again, to the lonely sea and the sky,
And all | ask is a tall ship and a star to steer her by,
And the wheel's kick and the wind's song
and the white sail’s shaking,
And a grey mist on the sea's face and a grey dawn breaking.

C Fever, by T.D. (2010)
| must go code in both C and M, not only C and VI,
And all | ask is a Linux box and a mouse to steer her by,
And the while's break and the if then
and the valgrind’s shaking,
And a dash 0 so the C's fast and a switch case break-ing.

