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Summary	
  

For more than two decades, the number of data and model parameters in seismic tomography problems 

has exceeded the available computational resources required for application of direct computational 

methods, leaving iterative solvers the only option. One disadvantage of the iterative techniques is that the 

inverse of the matrix that defines the system is not explicitly formed, and as a consequence, the model 

resolution and covariance matrices cannot be computed. Despite the significant effort in finding 

computationally affordable approximations of these matrices, challenges remain, and methods such as the 

checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms 

and high performance computing resources, we show that direct methods are becoming feasible for large 

seismic tomography problems. We demonstrate the application of QR factorization in solving the regional 

P-wave structure and computing the full resolution matrix with 267,520 model parameters. 

 

 

Introduction  

Seismic tomography is the most powerful tool for imaging the interior of the Earth, and many geophysical 

problems, including seismic tomography, are typically reduced to solving a linear system of equations 

(e.g., Aster et al. 2005; Nolet 2008; Rawlinson et al. 2010). It is desirable to use accurate and robust direct 

methods or direct solvers (e.g., Demmel 1997) to obtain solutions. However, when the size of these 

inverse problems is large, the application of the direct solvers becomes computationally difficult.  Over 

the last decade, advances in theory and methodology of forward and inverse problems, as well as increase 

in computational power and the number of available data, enabled the exploration of massive 

tomographic problems. For example, data availability has been accelerated with the introduction of dense 

networks such as the EarthScope USArray project (e.g., Meltzer	
   et	
   al.	
   1999), High Sensitivity 



3	
  
	
  

Seismograph Network in Japan (Okada et al. 2004), and WOMBAT Seismic Array in Australia 

(Rawlinson et al. 2008). These data allow finer spatial resolution of the tomographic models, yielding 

inverse problems with 𝑂 10! −   𝑂(10!) observations and 𝑂 10! −   𝑂(10!) unknown parameters (e.g., 

Nolet 2008; Rawlinson et al. 2010, 2014).  

As an alternative, iterative solvers such as the LSQR method (Paige & Saunders 1982a,b), are used to 

avoid significant memory or computational run time. A disadvantage of the iterative techniques is that the 

inverse of the matrix that defines the system is not explicitly formed, hence measures of the robustness 

and the quality of the solution, such as the model resolution and covariance matrices, cannot be obtained. 

Consequently, a paradoxical situation arises.  Although modern tomographic studies with large numbers 

of data and model parameters produce potentially better images in terms of spatial resolution, robustness 

and uncertainty of these models become obscured.  In other words, improvements cannot be accurately 

assessed or confirmed.  

Different solutions have been proposed to overcome this challenge. Attempts have been made to assess 

the spatial resolution of the model by means of synthetic reconstruction using checkerboard models or the 

results of the inversion as inputs (e.g., Rawlinson et al. 2014). However, such tests are misleading as they 

consider only the linear combinations of the columns of the resolution matrix (Lévêque et al. 1993; 

Rawlinson et al. 2014). Alternatively, methods based on LSQR can produce an effective resolution matrix 

(Zhang & McMechan 1995, 1996; Yao et al. 1999; Berryman 2000a,b; Zhang & Thurber 2007), but this 

matrix may differ significantly from the true resolution matrix (Deal & Nolet, 1996; Berryman 2000a,b; 

Zhang & Thurber 2007). Nolet et al. (1999) present another option of a one-step back-projection method, 

based upon the Moore-Penrose conditions (Jackson 1972), to obtain an explicit expression of the 

approximate inverse matrix to compute the full resolution matrix. For this approach, the accuracy of the 

resulting resolution matrix depends upon certain assumptions about the sensitivity matrix (Nolet et al. 

1999; Yao et al. 2001). On the other hand, Soldati et al. (2006) use parallel Cholesky factorization on the 

normal equations in shared memory systems, explicitly forming the product of the matrix and its 
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transpose. One issue with such product is that it acquires a high condition number (square of the condition 

number of the initial matrix which is ill-conditioned), implying that the rounding errors can cause loss of 

information. 

Recently, stochastic matrix probing techniques (Hutchinson 1990; Bekas et al. 2007) have been 

introduced to estimate the main diagonal elements of the resolution matrix (MacCarthy et al. 2011; An 

2012; Trampert & Fichtner 2013). This method provides accurate assessment of the diagonal elements, 

but it does not calculate the off-diagonal elements that are useful in assessing the coupling between 

different model parameters, i.e., in identifying artifacts such as leakage between different parts of the 

model space. Furthermore, depending upon the structure of the resolution matrix, these methods require a 

large number of iterations to yield satisfactory approximations (Bekas et al. 2007). Another approach 

available for adjoint tomography applications is to utilize the second-order adjoints for extracting 

resolution information (Fichtner & Trampert 2011). This approach can be considered a generalization of 

the ray density tensor (Kissling 1988) that quantifies the space-dependent azimuthal coverage, and 

therefore serves only as a proxy for resolution. It is more efficient than other techniques, but is still costly, 

and the output is a direction-dependent resolution length, not the full resolution matrix with trade-offs 

between model parameters. 

In this work, we revisit the application of direct methods in solving tomographic problems in view of 

significant developments in computer science and hardware in the last decade. For example, efficient 

rank-revealing algorithms based upon QR factorization that takes advantage of new architectures such as 

memory hierarchy and parallelism now exist (e.g., Davis 2011). Furthermore, new fill-reducing ordering 

algorithms effectively propagate sparsity throughout common factorizations (e.g., Karypis & Kumar 

1998; Davis et al. 2004a,b; Amestoy et al. 2004). These advances are beginning to make direct methods 

feasible for problems with large matrices such as seismic tomography. We demonstrate that they can be 

used to solve a teleseismic tomography problem, and to compute the full resolution matrix. We also show 

that error propagation and the covariance matrix can be calculated with minimum additional cost. 
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Method 

Seismic tomography is a non-linear and high-dimensional optimization problem where a set of model 

parameters is sought to satisfy observations and additional a priori constraints. In many cases, the 

problem is locally approximated in the vicinity of an optimal Earth model, and perturbation-based 

methods are used to acquire successive linear updates to the starting model until a convergence criterion 

is met (e.g., Rawlinson et al. 2014). The linearized problem in each iteration is constructed using the 

forward operator 𝐆 such that 

 𝐆 ∙ 𝐱 = 𝐝, (1) 

where 𝐱 is a model vector with 𝑚 unknown parameters, 𝐝 is the data vector containing 𝑛 observations or 

the residuals between observations and synthetics, and 𝐆  is an 𝑛×𝑚  matrix that, in most seismic 

tomography approaches, is sparse. A solution 𝐱 can be obtained by applying a linear matrix inverse 

operator, 𝐆!, i.e., 

 𝐱 = 𝐆! ∙ 𝐝. (2) 

The true model parameters 𝐱 and the estimated parameters 𝐱, are related through the model resolution 

matrix 𝓡 as (Jackson 1972; Menke 1989), 

 𝐱 = 𝓡 ∙ 𝐱, (3) 

and 

 𝓡 ≡ 𝐆! ∙ 𝐆. (4) 
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Eq. (3) suggests that the retrieved solution can be considered as a projection of the true model. The 

diagonal elements of 𝓡 describe the independent resolvability of each parameter, and the off-diagonal 

entries show the trade-offs between model parameters. In the ideal case, 𝓡 = 𝐈 and 𝐱 = 𝐱, but in real 

tomographic applications, the resolution matrix deviates from the identity matrix with non-zero off-

diagonal elements. Τhe exact form of 𝓡 is related with the geometry of the tomographic problem (e.g., 

locations of sources and stations), the theory and assumption used for the forward operator (e.g., rays, 

sensitivity kernels), and the number and type of observations (e.g., arrival time measurements). 

 

  

Computational	
  aspect	
  

Commonly, 𝐆!  is chosen such that 𝐱 is a least squares solution to eq. (1), i.e., it is obtained by 

minimizing 𝐆 ∙ 𝐱 − 𝐝 !,where   ∙  is the Euclidian norm (e.g., Menke 1989; Aster et al. 2005; Nolet 

2008). This yields the normal equations 

 𝐆! ∙ 𝐆 ∙ 𝐱 = 𝐆! ∙ 𝐝. (5) 

 In most seismic tomography problems, the forward operator 𝐆 is rank deficient or nearly rank deficient 

even when 𝑛 > 𝑚, since some rows are either exactly linearly dependent or nearly-linearly dependent in 

the presence of round-off errors and modeling uncertainties. Consequently, additional conditions are 

imposed such as some form of Tikhonov regularization operator 𝐋  of size 𝑘×𝑚  with 𝑛 + 𝑘 ≥ 𝑚 

(Tikhonov & Arsenin 1977). The regularized least squares problem is the same as eq. (1) except that 𝐆 is 

replaced by its regularized version 𝐀 and vector d by b where 

 
𝐀 = 𝐆

𝑎𝐋  and 𝐛 = 𝐝
𝟎 , (6) 

and 𝑎 is a scalar that controls the weight of the regularization term. The corresponding regularized normal 

equations are 
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 𝐆! ∙ 𝐆 + 𝑎!𝐋! ∙ 𝐋 ∙ 𝐱 = 𝐆! ∙ 𝐝. (7) 

A potential problem in normal equations approach is that it yields less accurate solutions than direct 

methods when the initial problem is ill-conditioned, because the accuracy depends on the condition 

number of 𝐆! ∙ 𝐆, which is the square of the condition number of 𝐆. Additionally, although 𝐆 is typically 

a sparse matrix, 𝐆! ∙ 𝐆 is significantly denser and requires additional memory for storage. The most 

accurate approach in solving both eq. (1) or its regularized version is through singular value 

decomposition (SVD) (Lanczos 1961; Demmel 1997; Snieder & Trampert 1999; Aster et al. 2005) or 

generalized singular value decomposition (e.g., Hansen 1990, 1992, 1998, 2007; Aster et al. 2005). 

However, as data and model spaces become larger, the computational cost of SVD in floating point 

operations, and in particular, memory requirements, makes it intractable.  This arises because the 

sparseness of the numerical null space of 𝐆 is not exploited.  

 

 

Sparse	
  QR	
  factorization	
  

In this study, we select QR factorization since it avoids the explicit formation of 𝐆! ∙ 𝐆. Although modern 

QR algorithms can be used to solve rank-deficient problems (Davis 2011; Foster & Davis 2013), we 

consider the regularized least-squares problem to be consistent with conventional seismic tomography 

modeling such as that presented in MacCarthy et al. (2011).  The forward operator 𝐀  is therefore a full-

rank, rectangular matrix with more rows than columns, i.e., 𝑛 + 𝑘 > 𝑚. The QR factorization of 𝐀 

decomposes the matrix into a product 𝐀 = 𝐐 ⋅ 𝐑 consisting of an orthogonal, square matrix 𝐐 and a 

trapezoidal matrix 𝐑. The trapezoidal matrix 𝐑 has the form 𝐑 = 𝐑 !         𝟎  !       
!

, where 𝐑 is an 𝑚×𝑚 

upper triangular matrix. The square orthogonal matrix 𝐐 = [𝐐     𝐐! ], consists of the “economy” QR 

factor 𝐐 of size 𝑚×𝑚 that corresponds to 𝐑, and 𝐐! that contains the remaining 𝑛 + 𝑘 −𝑚 columns of 
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𝐐. QR factorization solves the least-squares problem through minimization of an equivalent problem 

(e.g., Björck 1996; Gander et al. 2014), i.e., 

 𝐐! ∙ 𝚨 ∙ 𝐱 − 𝐐! ∙ 𝐛 = 𝐑
𝟎 ∙ 𝐱 − 𝐐!

𝐐!!
∙ 𝐛 . (8) 

Since 𝐑 is full rank, the least-squares solution of eq. (8) is the same as the solution to the linear system 

𝐑𝐱 = 𝐐!𝐛, and the objective function is at its minimum when 𝐐!!𝐛 = 𝐛 ! − 𝐐!𝐛 ! !/!
. Similar 

to SVD, the 2-norm is preserved in QR factorization since 𝐐 is orthogonal. Norm preservation implies no 

amplification of numerical error, ensuring that inaccuracies in 𝐀 or 𝐆 are not amplified (e.g., Demmel 

1997).  

Various direct solvers exist that take advantage of the sparsity of the 𝐀 matrix (e.g., Davis 2006), but they 

are considerably more complicated and difficult to implement than their generic counterparts. Among the 

complications is the need for efficient handling of the fill-in (i.e., non-zero entries) in the factors during 

the factorization, and to ensure that the sparseness propagates throughout the procedure. For example, 

appropriate permutation of rows and columns of the input matrix results in the 𝐑 matrix with vast 

difference in its sparseness. An example shown in Fig. (1) considers a matrix that is formed from an 

upper rectangular block and a lower diagonal matrix, a typical structure of a tomographic problem with 

0th order Tikhonov regularization. Only 0.9% of the entries of this matrix are non-zero, but QR 

factorization of this matrix yields an upper triangular 𝐑 matrix that consists of 46% non-zero entries.  A 

different ordering of the columns of the initial matrix, on the other hand, produces significantly sparser 𝐑 

factor with only 9.4% of the factors being non-zero (Fig. 1). 

In this study, we use the SPQR algorithm from the SuiteSparseQR package (Davis 2011), a high-

performance, parallel algorithm based on the multifrontal method (Duff & Reid 1983). The factorization 

of large sparse matrices is broken into multiple factorizations of smaller dense submatrices, and the 

structure of the algorithm has a dendritic organization, suitable for parallel computing. Each node in the 
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tree is assigned to the factorization of a dense submatrix, a frontal matrix. The results of lower order 

nodes are gathered to assemble frontal matrices of higher order nodes through irregular, one-way data 

communication that occurs only from the lower to higher order nodes (Davis 2011).  

The SPQR algorithm includes the ability to represent and store the orthogonal matrix 𝐐 in an 

efficient sparse format using the Householder transformations (Householder 1958; Davis 2011). 

Nevertheless, a more efficient alternative is to directly compute the product 𝐐! ∙ 𝐛 during the calculation 

of 𝐐 to avoid storing 𝐐, which is an option in the SuiteSparseQR package. We can obtain both the 

solution vector and the resolution matrix 𝓡 of the regularized problem by using 

 𝐀 ⋅ 𝐱 = 𝐁, where 𝐁 = 𝐝!×!
𝟎!×!

    𝐆!×!𝟎!×!
   ,  (9) 

as the right-hand side of the regularized version of eq. (1). This formulation has the advantage that both 

the analysis and the factorization are performed only once. The QR factors are used for retrieving the 

model estimation that corresponds to the first column of 𝐁, and the resolution matrix is obtained, in a 

column-wise manner, from the remaining columns of 𝐁.  

Following this approach, the error propagation can also be performed with minor additional cost. In real 

applications, the data vector 𝐝 is contaminated with errors due to noise and other uncertainties, and eq. (1) 

is written as 

 𝐆 ∙ 𝐱 = 𝐝 + 𝒆, (10) 

where 𝒆 is the vector containing the errors. The error propagates to the model estimation as 

 𝐱 = 𝐆! ∙ 𝐝 + 𝐆! ∙ 𝒆. (11) 

The overall departure of the true model 𝐱 from the estimated model 𝐱 is the result of both limited 

resolution and error propagation (e.g., Snieder & Trampert 1999), i.e., 
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 𝑒 𝐱 = 𝐱 − 𝐱 = 𝐈 −𝓡 ∙ 𝐱 − 𝐆! ∙ 𝒆. (12) 

The error propagation can be calculated with minimum cost by incorporating the vector 𝒆 as an additional 

column of 𝐁 (eqn. 9).  In addition to the error propagation, the model covariance matrix, defined as 

𝑪 = 𝐀! ∙ 𝐀! ! provides a measure of model uncertainty (e.g., Nolet et al. 1999). In QR factorization, 

due to orthogonality, 𝑪 can be rewritten as, 𝑪 = 𝐑! ∙ 𝐑! ! = 𝐑! ∙ 𝐑 !
 (e.g., Björck 1996; Gander et al. 

2014), and using its symmetry, only the upper triangular part needs to be computed. There are several 

algorithms that efficiently compute 𝑪 or certain elements of it such as the diagonal elements (e.g., Björck 

1996; Gander et al. 2014). 

 

Application 

To demonstrate the features and applicability of the sparse QR approach, we use the teleseismic data set 

from CREST (Colorado Rockies Experiment and Seismic Transects) (Aster et al. 2009; MacCarthy 2010) 

and obtain P-wave structure beneath Colorado.  This data set has been used to estimate the diagonal 

elements of the resolution matrix using the matrix probing techniques (MacCarthy et al. 2011) and 

provides a good comparison basis. The model space is parameterized in the same manner as in 

MacCarthy et al. (2011) using 267,520 constant velocity blocks of 0.25°  ×  0.25°  ×  25   km in size. We 

further follow MacCarthy et al. (2011), and regularize the least-squares problem, utilizing the Tikhonov 

regularization (Tikhonov & Arsenin 1977).  The data vector 𝐝  consists of 19,608 mean-removed 

teleseismic P-wave travel-time residuals from 167 stations (Fig. 2), and the forward operator 𝐆 has the 

dimensions of 19,608×267,520. The regularization kernel 𝐋!×!, with 𝑘 = 570,232, is a combination of 

damping and Laplacian-smoothing in equal amounts, both scaled by the Lagrangian multiplier 𝑎 that is 

set to 0.5 (MacCarthy 2010; MacCarthy et al. 2011). The sizes of the matrices are large, and using 
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conventional seismic tomography techniques and algorithms, this problem is considered unfeasible to 

solve directly. 

Our setup is based on SuiteSparse 4.4.0 (Davis, 2009, 2011; available online at 

http://faculty.cse.tamu.edu/davis/suitesparse.html) with MATLAB interface compiled with METIS 4.0.1 

(Karypis & Kumar 1998) and Intel’s Threading Building Blocks 4.3 (Reinders 2007). Various algorithms 

in the SuiteSparse package are tested for the best permutation of the input matrix for sparseness 

preservation, and we find that METIS algorithm (Karypis & Kumar 1998) yields the best result for the 

QR factors. All computations are performed in one node at Harvard’s Odyssey Cluster, using 32 CPU 

cores, and total shared memory of about 250 GB. The parameters for SPQR algorithm are selected such 

that the “nthreads” parameter is set to the number of cores and the “grain” parameter is set to 2 times the 

number of cores. Both these parameters control the multitasking performance of Intel’s Threading 

Building Blocks, and their values comply with the recommended configuration of the algorithm (Davis 

2009). The tolerance for treating a column as zero is set to have a 2-norm less or equal with 0.1. The 

matrix 𝐀 is then successfully factorized, and the factors 𝐑 and 𝐐 are stored, the latter in the economic 

form of Householder reflections. The resulting 𝐑 factor is sparse with only 2.2% of elements being non-

zero (Fig. 3a).  

The model vector 𝐱 and the full resolution matrix 𝓡 should be attainable from these factors, or more 

efficiently, by using the SPQR_SOLVE algorithm (Davis 2011) where 𝐐 is not stored at all (eq. 9). If the 

resolution matrix is sparse enough, this procedure is carried out efficiently with one call of the 

SPQR_SOLVE algorithm. However, the resolution matrix in this case is not sufficiently sparse and 

exceeds the available memory. To circumvent this problem, the 𝐁 matrix is broken into 10 equally 

divided columnar strips. If a strip fails to produce results due to a lack of memory, the strip is further 

divided in half. The model parameters and the full resolution matrix (Fig. 3b) are obtained using this 

approach. The resolution matrix with 267,520×267,520 elements contain ~40% of non-zero entries and 

requires over 200GB of storage space.  Reduction in storage can be achieved by eliminating entries with 
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absolute values smaller than 10-3. These elements are practically zero, and the application of the threshold 

leads to significant gains in hard disk space, decreasing the “non-zero” entries to ~0.5% and required 

storage to about 3GB. This thresholded version of 𝓡 is considered for the remainder of this manuscript.   

Both the estimated model and diagonal elements of the resolution matrix are compatible with the results 

from MacCarthy et al. (2011). The relative difference 𝜀𝒙  between the estimated models following 

MacCarthy et al. (2011) approach that utilizes the LSQR algorithm,  𝒙!"#$ ,  and the QR approach 

described here, 𝒙!" , calculated as 𝜀𝒙 = 𝒙!"#$ − 𝒙!" / 𝒙!"#$ , is 0.03% (Fig. 4; Supplementary 

Figure 1). Furthermore, the relative difference 𝜀!"#$, of the diagonal elements of the resolution matrix 

between the stochastic approximation of MacCarthy et al. (2011), 𝓡!"#
!"#$, and the QR approach,  𝓡!"

!"#$, 

calculated as, 𝜀!"#$ = 𝓡!"#
!"#$ −𝓡!"

!"#$ / 𝓡!"#
!"#$ , is 5.40%. This result does not change, up to the 

second decimal place, if we omit values smaller than 10-3 from 𝓡!"#
!"#$. The relative difference between 

the initial version of 𝓡!"#
!"#$ and that after the application of the 10-3 threshold is 0.27%, confirming that 

these small entries, even for the diagonal elements, do not contribute significantly to the structure of the 

resolution matrix.	
    

The availability of the full resolution matrix allows the evaluation of the trade-off between model 

parameters. This can be visualized by plotting the specific rows of the resolution matrix (Fig. 5). The 

example in Fig. 5(a) and 5(b) illustrates that trade-offs extent over large distances, well exceeding the 

region where the diagonal element of the resolution matrix is relevant. Even if the absolute values of 

individual off-diagonal elements are relatively small, the cumulative effect of these values associated with 

large number of model parameters can be significant.  This implies that estimations of uncertainty are 

inaccurate, especially when the diagonal elements of the resolution matrix have small values. 

Conclusions 
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Advances in computational science and hardware infrastructure are at a stage where large tomographic 

problems can be efficiently solved using direct methods. In addition, most seismic tomography matrices 

are sparse, and this feature can be used to further accommodate the analysis. Depending upon the 

algorithm and the implementation, the users can adjust some parameters of the algorithms such as the 

column 2-norm tolerance to determine when a column is ignored, but many are hard-wired. For example, 

“zero threshold” is typically defined as the tolerance threshold below which an element is considered zero 

and dropped during numerical operations. Software (including Sparse QR) and hardware that complies 

with IEEE-754 format for the floating point numbers use the smallest denormalized number as the zero 

threshold, which is 4.9407e-324 for double precision calculations. This means that any element of a 

matrix above this value would be considered nonzero, and therefore stored in memory, even if it becomes 

as small as 1e-323. This threshold is unrealistically small for many numerical applications, including 

seismic tomography, and results in pseudo-dense matrices, for example, during the computation of the 

resolution matrix. Introducing modifications to existing solvers based upon the particular needs and 

properties of seismic tomography problems, such as an option to change the “zero threshold”, can 

significantly increase the computational efficiency. For example, as mentioned previously, the 

requirement to break 𝐁 into smaller strips to fit the memory, and therefore to repeat the factorization 

procedure, is necessary, because the product of 𝐐! with 𝐁 is dense, or pseudo-dense. Changing the “zero 

threshold” parameter would allow small values to be dropped as they are computed individually, instead 

of storing the dense result and removing entries using the 10-3 threshold. This would accelerate the 

procedure dramatically, since it would allow the computation of both the inversion solution and the full 

resolution matrix with only one factorization, requiring total computation time slightly more than one 

factorization time (~12 hours).  Furthermore, it would significantly reduce the total required memory, 

allowing the computations to be carried out on a desktop computer. 

 One of the main advantages of direct sparse methods is the assessment of the model resolution through 

accurate calculation of the full resolution matrix, including both diagonal and off-diagonal elements. The 



14	
  
	
  

large number of parameters (i.e., columns), however, poses challenges in efficient examination and 

exploration of this matrix. One possible future direction is using algorithms similar to those applied to 

large networks and graphs (e.g., Batagelj & Mrvar 2003; Bullmore & Sporns 2009; Cohen & Havlin 

2010; Davis & Hu 2011; Kenett & Havlin 2015). The resolution matrix can be considered as a graph 

where each element ℛ!" describes the trade-off relationship between the parameters 𝑖 and 𝑗.  
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Figure 1: Effect of ordering on the sparseness. (a) An example matrix that contains 0.9% of non-zero 
elements.  The colors show the size, i.e., median(log(|value|)), of the entries with white being zero and 
dark blue colors indicating large absolute values. (b) The same matrix as in (a) with different ordering of 
its columns. (c) The upper triangular matrix 𝐑 obtained from QR factorization of the matrix shown in (a). 
(d) Same as in (c) except for the input matrix shown in (b).  Note that the matrices are much larger than 
the pixel resolution (e.g., matrices in c and d are 267,520x267,520), hence the figures show only an 
impression of the structure of the matrix. 
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Figure 2: Map of stations from the teleseismic tomography experiment of MacCarthy et al. (2011). 

CREST stations are shown as orange triangles, and USArray stations are shown as blue circles.  The 

background elevation is given in grey scale (Amante & Eakins 2009).  The grey lines depict state 

boundaries. 
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Figure 3: (a) Sparseness structure of the 𝐑 factor from QR decomposition. Zero elements are colored 
white while darker colors represent larger absolute values. (b) The full resolution matrix. The color 
scheme is same as in (a) except that white color includes all entries with absolute value smaller than 
0.001. 
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Figure 4: A comparison of P-wave perturbation models at 90 km depth obtained by using (a) the 
approach presented here, and (b) LSQR algorithm of the MacCarthy et al. (2011). The map area shown 
here corresponds to the area displayed in Figure 2.  Additional comparisons at 20 and 400 km depths are 
presented in Supplementary Figure 1. 
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Figure 5: (a) Three-dimensional visualization of the 30,136th row of the resolution matrix, showing the 

isosurfaces at 0.003 (red) and -0.003 (black). In the topographic map, the rectangle with the thick grey 

border shows the region of the model displayed in (b) and (c) corresponding to the region interpreted by 

MacCarthy (2010) and MacCarthy et al. (2011). (b) Cross sections of the diagonal elements of the 

resolution matrix for the grey-boxed region in (a) and to a depth of 800 km. (c) Similar to (b) but for the 

30,136th row of the resolution matrix. The location of the corresponding model parameter is shown by the 

red circle at the depth of ~100 km emphasized by the black arrow. 

 


