
0

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning
Library

TIMOTHY A. DAVIS, Texas A&M University
WILLIAM W. HAGER, University of Florida
SCOTT P. KOLODZIEJ, Texas A&M University
S. NURI YERALAN, University of Florida

Partitioning graphs is a common and useful operation in many areas, from parallel computing to VLSI
design to sparse matrix algorithms. In this paper, we introduce Mongoose, a multilevel hybrid graph par-
titioning algorithm and library. Building on previous work in multilevel partitioning frameworks and com-
binatoric approaches, we introduce novel stall-reducing and stall-free coarsening strategies, as well as an
efficient hybrid algorithm leveraging 1) traditional combinatoric methods and 2) continuous quadratic pro-
gramming formulations. We demonstrate how this new hybrid algorithm outperforms either strategy in
isolation, and we also compare Mongoose to METIS and demonstrate its effectiveness on large and social
networking (power law) graphs.

CCS Concepts: rMathematics of computing→ Graph algorithms; Quadratic programming; Nonconvex
optimization; Mathematical software performance;

Additional Key Words and Phrases: Graph partitioning, vertex matching, graph coarsening

ACM Reference Format:
Timothy A. Davis, William W. Hager, Scott P. Kolodziej, and S. Nuri Yeralan, 2018. Algorithm XXX: Mon-
goose, A Graph Coarsening and Partitioning Library ACM Trans. Math. Softw. 0, 0, Article 0 (April 2018),
18 pages.
DOI: 0000001.0000001

1. INTRODUCTION
In this paper, we present a multilevel graph partitioning library and algorithm incor-
porating novel coarsening and optimization approaches. We outline the algorithm used
and its associated novel elements, its implementation details, and compare its perfor-
mance using several graph partitioning metrics. We also apply this library to partition
a large collection of graphs and sparse matrices and compare our results to METIS,
another graph partitioning library [Karypis and Kumar 1998].

A brief discussion of multilevel graph partitioning appears in Section 2. Related and
prior work in graph partitioning is discussed in Sections 3. The main components of the
proposed algorithm and their relationship with one another are given in Sections 4, 5,
and 6; computational results and comparisons are provided in Section 7. We conclude
with a summary of this work and highlight future research directions in Section 8.

This work is supported by the Office of Naval Research under grants N00014-11-1-0068, N00014-15-1-
2048, and N00014-18-1-2100, and by the National Science Foundation under grants CMMI-0620286, DMS-
1522629, and CNS-1514406.
Author’s addresses: S. N. Yeralan, (Current Address) Microsoft Research; S. P. Kolodziej and T. A. Davis,
Computer Science & Engineering Department, Texas A&M University; W. W. Hager, Mathematics Depart-
ment, University of Florida.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2018 ACM. 0098-3500/2018/04-ART0 $15.00
DOI: 0000001.0000001

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:2 Davis et al.

1.1. Definition
The Binary Graph Partitioning Problem is an NP-complete problem defined as taking
an undirected input graph, G(V,E), and removing edges until the graph breaks into
two disjoint subgraphs. The set of edges deleted in this manner is known as the “cut
set.” When partitioning a graph, we seek to minimize the number of edges in the cut
set while maintaining a target partitioning balance in the ratio of vertices in each
component.

When the input graph has weighted vertices and edges, we generalize the problem
definition by seeking to minimize the sum of edge weights for edges in the cut set
rather than simply the number of edges. Further, the partition balance ratio is de-
termined by considering the sum of vertex weights in each partition rather than the
number of vertices in each partition. If weights are absent from vertices or edges, we
assume a weight of 1.

In the k-way Graph Partitioning Problem, edges are deleted until there are k disjoint
subgraphs. When k is a power of two, the k-way Graph Partitioning Problem can be
solved recursively by solving the graph partitioning problem on each of the resulting
disjoint components, although this method is not always the best heuristic.

1.2. Applications
Graph partitioning arises in a variety of contexts including VLSI circuit design, dy-
namic scheduling algorithms, computational fluid dynamics (CFD), and fill-reducing
orderings for sparse direct methods for solving linear systems [Pothen 1997].

In VLSI circuit design, integrated circuit components must be arranged to allow
uniform power demands across each silicon layer while simultaneously reducing the
manufacturing costs by minimizing the required number of layers. Graph partitioning
is used to determine when conductive material needs to be cut through to the next
layer.

In the dynamic scheduling domain, task-based parallelism models dependencies us-
ing directed acyclic graphs. Graph partitioning is used to extract the maximum amount
of parallelism for a set of vertices while maintaining uniform workload, maximizing
high system utilization, and promoting high throughput.

Sparse matrix algorithms utilize graph partitioning when computing parallel sparse
matrix-vector multiplication, as well as when computing fill-reducing orderings for
sparse matrix factorizations.

2. MULTI-LEVEL GRAPH PARTITIONING
Multilevel graph partitioners seek to simplify the input graph in an effort to apply
expensive partitioning techniques on a smaller problem. The motivation for such a
strategy is due to limited memory and computational resources to apply a variety of
combinatorial analysis techniques on large input problems. By reducing the size of the
input, more advanced techniques can be applied and carried back up to the original
input problem.

2.1. Graph Coarsening
The process whereby an input graph is simplified is known as “graph coarsening.”
In graph coarsening, the original input graph is reduced through a series of vertex
matching operations to an acceptable size [Hendrickson and Leland 1995]. Vertices
are merged together using strategies that exploit geometric and topological features of
the problem.

High degree vertices that arise in irregular graphs, particularly social networks, im-
pede graph coarsening by reducing the maximum number of matches that can be made

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:3

Coarsening

Initial Partition

Refinement

Fig. 1. Multilevel graph partitioning

per coarsening phase. When the number of coarsening phases becomes proportional to
the degree of a vertex, we say that coarsening has “stalled.”

2.2. Initial Guess Partitioning
Once the input graph is coarsened to a size suitable for more aggressive algorithms,
an initial guess partitioning algorithm is used. Initial partitioning strategies accumu-
late a number of vertices into one partition such that the desired partition balance is
satisfied. Karypis and Kumar demonstrated that region-growing techniques, such as
applying a breadth-first search from random start vertices, tend to find higher quality
initial partitions than random guesses or first/last half guesses.

2.3. Graph Refinement
Once a satisfactory guess partition is achieved at the coarsest level, projecting the par-
tition back to the original input graph requires the inverse operation of graph coarsen-
ing, known as graph refinement. In graph refinement, vertices expand back into their
original representations at the finer level. The partition choice for each coarse vertex
is applied to all of the vertices that participated in the matching used during graph
coarsening.

Because a partition at a coarse level is not generally guaranteed to be optimal when
projected to the refined level, traditional graph partitioning strategies (e.g. methods
described in Section 3.1) are used to improve the projected partition as the graph is
refined back to its original size.

3. RELATED WORK
3.1. Combinatorial Methods
Kernighan and Lin at Bell Labs developed the first graph partitioning package for
use at Bell Systems [Kernighan and Lin 1970]. Their algorithm considers all pairs of

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:4 Davis et al.

vertices and swaps vertices from one part to the other when a net gain in edge weights
is detected.

Fiduccia and Mattheyses improved upon the Kernighan-Lin swapping strategy by
ranking vertices by using a metric called the “gain” of a vertex [Fiduccia and Matthey-
ses 1982]. The Fiduccia-Mattheyses algorithm constrains edge weights to integers and
computes gains in linear time. The algorithm swaps the partitions of vertices in or-
der from greatest to least gain while updating the gains of its neighbors. Vertices are
allowed to swap partitions once per application of the algorithm.

Many variations of these two algorithms exist, but their fundamental strategy of
swapping discrete vertices has remained largely intact. As an example of more recent
extensions, Karypis and Kumar considered constraining swap candidates to those ver-
tices lying in the partition boundary [Karypis and Kumar 1998], a strategy we have
also adopted in Mongoose.

3.2. Coarsening, Matchings, and Multilevel Frameworks
Most graph partitioning heuristics scale at least quadratically, and therefore become
intractable for large graphs. However, many heuristics can perform well if given a
sufficiently good initial partition to start from. Multilevel frameworks were introduced
to address this issue by coarsening (or contracting) large graphs into a hierarchy of
smaller graphs [Hendrickson and Leland 1995].

During coarsening, vertex matchings are computed that ideally retain the topology
of the original graph. These matchings can be computed in a variety of ways. Karypis
and Kumar considered “Heavy Edge Matching” (HEM), “Sorted Heavy Edge Matching”
(SHEM), and “Heavy Clique Matching” (HCM) [Karypis and Kumar 1998], as well as
“Light Edge Matching” (LEM) and “Heavy Clique Matching” (HCM) [Karypis and Ku-
mar 1995]. Gupta considered “Heavy Triangle Matching,” (HTM) [Gupta 1997]. Gen-
erally, some consideration is given to edge weights, and recently methods have been
proposed to avoid stalling during coarsening, where matchings result in far fewer than
the ideal n/2 vertex matches in each iteration, such as 2-hop matching [LaSalle et al.
2015].

Our extensions to these coarsening and matching methods are explained in detail in
Section 4.

3.3. Recent Optimization Approaches
While the traditional approaches to graph partitioning are combinatorial in nature,
swapping discrete vertices from one part to another, a variety of novel optimization
formulations for partitioning problems have been introduced recently in the literature.
While using optimization in graph partitioning is not uncommon using strategies such
as simulated annealing [Johnson et al. 1989] and mixed-integer programming [John-
son et al. 1993], these discrete methods have many of the same scaling issues as the
combinatorial methods that do not (explicitly) use optimization. As such, continuous
optimization formulations have been proposed by Hager and Krylyuk [Hager and Kry-
lyuk 1999], who showed that the discrete graph partitioning problem is equivalent to
the continuous quadratic programming problem

min
x∈Rn

(1− x)T(A+ I)x (1)

subject to 0 ≤ x ≤ 1, ` ≤ 1Tx ≤ u,

where ` and u are lower and upper bounds on the desired size of one partition, and
A is the adjacency matrix of the graph. They show that this continuous quadratic

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:5

programming problem has a binary solution; moreover, the partitions

{i : xi = 0} and {i : xi = 1}

are optimal solutions of the graph partitioning problem if the quadratic program is
solved to optimality. This is the formulation that we utilize in Mongoose to form one
part of our hybrid algorithm, described in more detail in Sections 5 and 6.

3.4. Graph Partitioning Libraries
A variety of graph partitioning libraries and algorithms have been developed over the
past several decades. Perhaps most well-known is METIS [Karypis and Kumar 1998],
an early multi-level framework partitioner that has since been refined and expanded
to include parallel [Karypis et al. 1997], hypergraph [Karypis et al. 1999], and multi-
threaded [LaSalle and Karypis 2013] versions. We use METIS as our primary compar-
ison in Section 7, and build on their work on coarsening and refinement.

Other graph partitioning libraries include the following:

— Chaco, a multilevel partitioner that uses combinatorial methods (e.g. Kernighan-
Lin and Fiduccia-Mattheyses), as well as spectral methods [Hendrickson and Leland
1993].

— KaHIP, short for Karlsruhe High Quality Partitioning, which employs flow-based
and evolutionary partitioning methods [Sanders and Schulz 2013].

— PARTY, which uses a combination of local and global partitioning methods, as well
as meta-heuristics using interfaces to other partitioners [Preis and Diekmann 1997].

— SCOTCH, a partitioning library with a variety of functions and methods, includ-
ing a multi-level framework, combinatorial and greedy refinement methods, and a
diffusion optimization. SCOTCH is also capable of static mapping, clustering, and
hypergraph partitioning, and is available in both sequential and parallel versions
[Pellegrini and Roman 1996].

— Zoltan, a diverse toolkit of parallel graph partitioning and other algorithms, is also
available as a serial build [Boman et al. 2012].

4. COARSENING AND MATCHING STRATEGIES
To coarsen a graph as described in Section 2.1, a matching of which vertices are merged
together must be computed. More precisely, a mapping of vertices to super-vertices (i.e.
fine to coarse) must be created. A variety of matching strategies exist, including heavy
edge matching, where vertices are matched with the neighbor with the incident edge of
largest weight [Karypis and Kumar 1998]. One disadvantage of heavy edge matching
is that it can be prone to stalling. If matching is limited to neighbors, a high-degree
vertex may prevent matching more than two vertices at a time. We present a variety of
additional strategies to avoid such stalling, including an approach that can guarantee
that the number of vertices in each phase of coarsening decreases by at least half.

4.1. Brotherly Matching
In brotherly matching, two vertices that are not neighbors can be matched if they share
a neighbor (see Figure 2. This can help prevent stalling in cases such has star graphs,
where a single high-degree vertex can only be matched with a single neighbor in each
pass. Using brotherly matching, many vertices can be matched together because they
share a neighbor (the central high-degree vertex).

Note that brotherly matching is already implemented in METIS 5 as “2-hop” match-
ing [Karypis and Kumar 1998]. The next two methods, adoption and community
matching, are new.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:6 Davis et al.

4.2. Adoption Matching
Related to brotherly matching is adoption matching, which allows a three-way match-
ing between adjacent vertices. Given an odd number of vertices, the remaining vertex
that is not matched with any other vertex is added (i.e. adopted) by an existing two-way
match.

Heavy Edge
Match

Brotherly Matches

Adoption Match
(3-Way)

Coarsen

Fig. 2. Brotherly and Adoption Matching

4.3. Community Matching
Community matching occurs when two neighboring vertices are both in a 3-way match
formed by adoption matching. Since two neighboring vertices each have a vertex
matched via adoption, those adopted vertices can instead be matched with each other
(see Figure 3).

Brotherly Matches

Community Match

Heavy-Edge
Match

Coarsen

Fig. 3. Community Matching

5. QUADRATIC PROGRAMMING REFINEMENT
As mentioned earlier, Hager and Krylyuk [Hager and Krylyuk 1999] introduced a con-
tinuous quadratic programming formulation of the binary graph partitioning problem:

min
x∈Rn

(1− x)T(A+ I)x subject to 0 ≤ x ≤ 1, ` ≤ 1Tx ≤ u, (1)

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:7

where ` and u are lower and upper bounds on the desired size of one partition, and
A is the adjacency matrix of the graph. They show that this continuous quadratic
programming problem has a binary solution; moreover, the partitions

{i : xi = 0} and {i : xi = 1}

are optimal solutions of the graph partitioning problem.
During refinement, we complement our implementation of the Fiduccia-Mattheyses

algorithm with the quadratic programming approach. Because we use both traditional
combinatoric methods as well as quadratic programming at the refinement stage in an
effort to yield better quality results, we call this a hybrid graph partitioning method.

To actually solve the quadratic programming formulation, we first use the discrete
partition choices for each vertex as a starting guess for a solution to the quadratic pro-
gramming problem (1). We then perform iterations of gradient projection until reach-
ing a stationary point of (1); often convergence takes just a few iterations. Although the
stationary point may not be binary, the analysis in [Hager and Krylyuk 1999] shows
how to move to a binary feasible point while possibly further improving the objective
value.

Note that each iteration of the gradient projection algorithm takes a step along the
negative gradient followed by projection onto the feasible set of (1). Since the con-
straints of (1) consist of a single linear constraint coupled with bound constraints,
computing this projection amounts to solving a quadratic knapsack problem. An ex-
tremely efficient algorithm for computing this projection is given in [Davis et al. 2016].
Because the quadratic programming formulation ignores the combinatorial notion of
boundary, it is capable of identifying vertices to swap which do not lie on the boundary
of the cut. Gradient projection also adheres to strict balancing, and its local minimizers
result in cuts with better balance than our Fiduccia-Mattheyses implementation.

6. ALGORITHM DESCRIPTION
In this section, we describe in detail our implementation of our Hybrid Combinatorial-
Quadratic Programming Approach to graph partitioning. We use a multilevel approach
that blends combinatorial methods with continuous graph partitioning strategies. Our
algorithm for the graph partitioning problem is as follows:

(1) Preprocessing. The algorithm verifies that the input graph is undirected, free
from self-edges, and that vertex and edge weights (if provided) are positive. The
algorithm then traverses the graph to compute the sum of edge weights, sum of
vertex weights, and average degree of the vertices.

(2) Coarsening. Mongoose’s coarsening phase uses a novel matching algorithm to
prevent the coarsening operation from stalling. The details of this operation follow:
(a) Heavy Edge Matching. To quickly compute an initial matching, a standard

iteration of heavy edge matching is computed, pairing vertices with their neigh-
bor with whom they share an edge with largest weight (i.e. the heaviest edge).
In rare cases, this matches all vertices in the graph, but in most cases, at least
some vertices are left over.

(b) Stall-Free Matching. After an initial heavy edge matching iteration, the al-
gorithm considers vertices which remain unmatched. When the algorithm finds
an unmatched vertex, vunmatched, it does the following:
i. Find a suitable pivot neighbor. The unmatched vertex scans its ad-

jacency list to find the neighboring matched vertex with maximum edge
weight. We call this neighbor vpivot.

ii. Resolve unmatched neighbors of vpivot pairwise. Since vpivot has at least
one unmatched neighbor, namely vunmatched, the algorithm shifts its focus to

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:8 Davis et al.

resolve all the unmatched neighbors of vpivot with the hopes that vunmatched

is not its only unmatched neighbor. The algorithm matches the unmatched
neighbors of vpivot pairwise. Although the vertices matched in this manner
do not share an edge, they are topologically close in the graph. This is a
brotherly matching.

iii. Adopt any remaining unmatched neighbor. If there were an odd num-
ber of unmatched neighbors of vpivot then the pairwise matching strategy
leaves one neighbor unmatched. Instead, vpivot includes this unmatched
neighbor to its matching, in an 3-way match.

iv. Community matching to prevent 4-way matches. The first time vpivot’s
matching adopts a leftover unmatched vertex, it creates a 3-way adoption
matching. However, vpivot is not the only participant in its matching. Its
match partner may have already adopted a vertex from an earlier stall-free
matching. In this case, by performing the adoption, vpivot would create a 4-
way matching. Instead, vpivot creates a new community match consisting of
its would-be adoptee and the vertex its match previously adopted. This strat-
egy prevents 4-way matches from occurring while guaranteeing coarsening
progress.

We call this matching strategy Stall-Free Matching because it guarantees that
in a single pass over the unmatched vertices after an initial matching that
every vertex in the graph participates in a topologically relevant matching of
at most 3 vertices. Stall-free matching also guarantees that the coarse graph
has at most half the number of vertices as its predecessor.

Note that computing a stall-free matching is computationally more expensive
than heavy edge matching alone. As such, the algorithm includes an option
to limit these additional matching strategies to vertices with degree at least
some multiple of the average degree of the graph. As high-degree vertices are
generally responsible for stalls during coarsening, this focuses these addi-
tional strategies on only areas of the graph that are likely to benefit from them.

This strategy is guaranteed to be stall-free only if no degree threshold is
used, and all three matching strategies (brotherly, adoption, and community)
are used. The options in the code allow for one or all of these strategies to
be disabled. If just brotherly and adoption matchings are used, for example,
we obtain a stall-reducing method, which typically avoids a stall but is not
guaranteed to do so.

(c) Singleton matching. During coarsening, if a graph has multiple connected
components, these components may be contracted into a singleton vertex. At
this point, singleton vertices are matched with each other preferentially with
at most one singleton remaining unmatched per iteration. This is a simple
and efficient method for handling multiple connected components without
computationally expensive methods such as bin-packing.

(3) Initial Partitioning. Mongoose contains several methods for computing an initial
partitioning after coarsening has completed. By default, a random partitioning is
computed, but partitions computed from the quadratic programming formulation
as well as the natural order of the vertices are available.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:9

The algorithm then performs a round of Fiduccia-Mattheyses but considers only
those vertices in the boundary set. As swaps are made, vertices enter and leave the
boundary set when swaps place them near or far from the boundary respectively.

These partition choices for vertices are then used as an initializer for gradient
projection. Because gradient projection is a continuous method, it computes the
affinity of a vertex as a floating point value between 0 and 1. Our algorithm dis-
cretizes this result and interprets values of x ≤ 0.5 as the first partition and values
x > 0.5 as the second partition.

(4) Refinement. Partition refinement for our algorithm consists of two parts working
in tandem:

(a) Boundary Fiduccia-Mattheyses. Our algorithm uses a variation of the
Fiduccia-Mattheyses algorithm that exploits the boundary optimization first
used with the Boundary Kernighan-Lin strategy. This implementation of
Fiduccia-Mattheyses maintains one heap per partition for boundary vertices.
Vertices contained in these heaps represent swap candidates. Vertices in
the heap are keyed by a sequential vertex identifier and are backed by the
Fiduccia-Mattheyses gain value. The top three entries of the heap are consid-
ered, and their heuristic values are computed. The vertex with the maximum
heuristic gain swaps partitions.

We also introduce a balance-aware heuristic that considers the effect of per-
forming a swap with respect to the target balance constraints. This heuristic
value is derived from the following formulation:

We define the gain of a vertex Va as the sum of edge weights in the adjacency
of Va that lie in the cut set subtracted by the sum of the edge weights in the
adjacency of Va that does not lie in the cut set. These quantities are effectively
the sum of edge weights from Va to vertices in its adjacency that lie in the
other partition minus those in the same partition.

Without loss of generality, suppose Va currently lies in P0 and a flip operation
would transfer Va to P1. The definitions follow from this construction.

gaina =
∑
i∈P1

Ea,i −
∑
j∈P0

Ea,j

We then define a scalar imbalance resulting in a swap of vertex Va as the ratio
of sum of vertex weights in the left partition after the move divided by the total
sum of vertex weights W subtracted by the user’s desired target balance ratio.

Imbalancea =
∑

i∈Pleft

⋃
Va

Vi/W

We finally define a heuristic value that compares the derived values consider-
ing the vertex gains as well as the impact to partition balance ratio should the
vertex be swapped. In a way, this heuristic value considers both edge weights
and vertex weights with one value.

Heuristica = Gaina +

{
2W ∗ Imbalancea : Imbalancea ≥ τ
0 : otherwise

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:10 Davis et al.

If the current cut is balanced, the penalty term contributes nothing to the
heuristic value. If the current cut is imbalanced, then we impose a balance
penalty of the measure of imbalance times twice the sum of vertex weights.

The algorithm explores suboptimal moves after all obvious moves have been
made. Our implementation of Fiduccia-Mattheyses may make several net-zero
moves, which shift the partition boundary in an attempt to locate vertices
with positive heuristic gains. Because the algorithm is balance-aware, such
exploratory moves do not significantly disrupt the target balance partition.

By combining the boundary optimization with a balance-aware heuristic, the
algorithm is able to consider moves which imbalance the problem. However it
only commits to such moves if it discovers that doing so results in an extraor-
dinary reduction in the weight of the cut set.

(b) Gradient Projection. Following an application of our Balance-Aware Bound-
ary Fiduccia-Mattheyses, discussed above, we use the discrete partition choices
for each vertex as starting guess for a solution of the quadratic programming
problem (1). We then perform iterations of the gradient projection algorithm
until reaching a stationary point of (1); often convergence takes just a few
iterations. Since the quadratic program is an exact reformulation of the graph
partitioning problem, each iteration strictly improves the partition. Although
the limit point may not be binary, the analysis in [Hager and Krylyuk 1999]
shows how to move to a binary feasible point while possibly further improving
the objective value.

Note that each iteration of the gradient projection algorithm takes a step along
the negative gradient followed by projection onto the feasible set of (1). Since
the constraints of (1) consist of a single linear constraint coupled with bound
constraints, computing this projection amounts to solving a quadratic knap-
sack problem. An extremely efficient algorithms for computing this projection
is given in [Davis et al. 2016]. Because the quadratic programming formulation
ignores the combinatorial notion of boundary, it is capable of identifying ver-
tices to swap which do not lie on the boundary. Gradient projection also adheres
to strict balancing, and its local minimizers result in cuts with better balance
than our Fiduccia-Mattheyses implementation.

7. RESULTS
In this section, we explore the computation performance of Mongoose compared to
METIS, a popular graph partitioning library, on a variety of graph sizes and types. All
experiments were run on a 24-core dual-socket 2.40 GHz Intel Xeon E5-2695 v2 system
with 768 GB of memory. Note that only one thread was utilized, as both libraries are
serial in nature. All comparisons were conducted with METIS 5.1.0 and compiled with
GCC 4.8.5 on CentOS 7.

For consistency, each partitioner was run five times for each problem. The high-
est and lowest times are removed, and the remaining three are averaged (i.e. a 40%
trimmed mean). Default options were used, and a target split of 50%/50% was used
with a tolerance of ±0.1%. All results shown satisfy this balance tolerance.

7.1. Overall Performance
Mongoose and METIS were run on the entire SuiteSparse Matrix Collection [Davis
and Hu 2011] with only modest filtering. First, complex matrices were removed. Of the

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:11

0.1

1

10

0 0.2 0.4 0.6 0.8 1

W
al

l T
im

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Test Graphs

(a)

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

C
ut

 S
iz

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Test Graphs

(b)
Fig. 4. (a) Overall timing and (b) overall cut quality performance of Mongoose relative to METIS 5. Note the
logarithmic vertical scale. Points below the center line represent cases where Mongoose outperforms METIS
(relative performance less than one), while points above the center line indicate cases where METIS outper-
forms Mongoose (relative performance greater than one). In general, Mongoose performs competitively with
METIS 5.

Table I. Performance comparison between Mongoose and
METIS on all 2,685 graphs from (or formed from) the Suite-
Sparse Collection.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 759 527 1286

Tie 113 173 286

Mongoose 542 571 1113

1414 1271 2685

remaining matrices, any unsymmetric matrices A were treated as the biadjacency ma-

trix of a bipartite graph adjacency matrix B =

[
0m,m A
AT 0n,n

]
; symmetric matrices were

unmodified and treated as undirected graphs. A final preprocessing step removed any
nonzero diagonal elements (i.e. ignoring/eliminating self edges) and reduced the ma-
trix to a binary pattern (i.e. nonzero elements were replaced with 1). This yielded 2,685
symmetric matrices which were then treated as undirected graphs to be partitioned.

The relative timing (a) and relative cut quality (b) performance are shown in Fig-
ure 4, and a tabular comparison is shown in Table I. Of the 2,685 graphs, Mongoose
found a smaller cut on 1,113 (∼41%), and took less time to compute its cut on 1,271
(∼47%). Mongoose outperformed METIS in both time and cut quality on 571 graphs
(∼21% of cases), while METIS outperformed Mongoose in both time and cut quality
on 759 graphs (∼28%). Thus, Mongoose is generally competitive with METIS, with
METIS having a slight edge.

Figures 4, 5, and 8 are created by first computing the computational metrics (either
cut quality or wall time) relative to METIS: less than 1 being better than METIS,
and greater than 1 being worse. The results are then ordered from smaller (better
than METIS) to larger (worse than METIS) and plotted on a logarithmic scale. Along
the horizontal axis, graph numbers are normalized to the interval [0, 1], with the first
graph corresponding to 0, and the last graph corresponding to 1.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:12 Davis et al.

0.1

1

10

0 0.2 0.4 0.6 0.8 1

W
al

l T
im

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Large Graphs

(a)

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

C
ut

 S
iz

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Large Graphs

(b)
Fig. 5. (a) Timing and (b) cut quality performance profiles [Dolan and Moré 2002] of Mongoose on large
graphs (1,000,000+ edges) relative to METIS 5. Note the logarithmic vertical scale. Points below the center
line represent cases where Mongoose outperforms METIS (relative performance less than one), while points
above the center line indicate cases where METIS outperforms Mongoose (relative performance greater than
one).

Table II. Performance comparison between Mongoose and
METIS on the 601 largest graphs (1,000,000+ edges) in the
SuiteSparse Collection.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 99 215 314

Tie 2 11 13

Mongoose 57 217 274

158 443 601

7.2. Performance on Large Graphs
When limited to graphs with at least 1,000,000 edges, Mongoose performs significantly
better. Of the 601 graphs that meet this size criterion, Mongoose computed smaller
edge cuts in 274 cases (∼46%), and terminated faster in 443 cases (∼74%). Mongoose
outperformed METIS in both time and cut quality on 217 graphs (∼36%), while METIS
outperformed Mongoose in both time and cut quality on only 99 of the large graphs
(∼16%). Thus, Mongoose provides comparable cut quality, but much faster execution
when partitioning large graphs compared to METIS. The relative timing (a) and rel-
ative cut quality (b) performance are shown in Figure 5, and a tabular comparison is
shown in Table II.

7.3. Hybrid Performance
Figures 6 and 7 compare the hybrid graph partitioning method to the combinatorial
method and quadratic programming methods in isolation. While the combinatorial
Fiduccia-Mattheyses algorithm is very fast, its resulting cut quality is inferior to that
of the hybrid approach (markedly so with large graphs). In isolation, the quadratic
programming approach is less performant in both speed and cut quality when com-
pared to the Fiduccia-Mattheyses and hybrid methods, highlighting the algorithmic
cooperation of the two approaches that make the hybrid approach so effective.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:13

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 A

ll
G

ra
ph

s

Relative Wall Time

Hybrid

QP Only

FM Only

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 A

ll
G

ra
ph

s

Relative Cut Size

Hybrid

QP Only

FM Only

(a) (b)

Fig. 6. (a) Relative timing and (b) Relative cut size performance profiles [Dolan and Moré 2002] on the 2,685
graphs formed from the SuiteSparse Matrix Collection. In the figure, the following methods appear: Hybrid
(black), Quadratic Programming only (red), and Fiduccia-Mattheyses only (blue). Note that the horizontal
axis is logarithmic.

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ar
ge

 G
ra

ph
s

Relative Wall Time

Hybrid

QP Only

FM Only

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 L
ar

ge
 G

ra
ph

s

Relative Cut Size

Hybrid

QP Only

FM Only

(a) (b)

Fig. 7. (a) Relative timing and (b) relative cut size performance profiles [Dolan and Moré 2002] on the
largest 601 graphs in the SuiteSparse Matrix Collection (1,000,000+ edges). In the figure, the following
methods appear: Hybrid (black), Quadratic Programming only (red), and Fiduccia-Mattheyses only (blue).
Note that the horizontal axis is logarithmic. The hybrid approach provides better cuts than either standalone
approach while taking less time than the quadratic programming method alone.

Figures 6, 7, and 9 are generated by calculating performance for each option relative
to the fastest time or smallest cut size (with the best result being 1, and all other re-
sults being greater than or equal to 1). The graphs are ordered from best to worst along
the vertical axis and normalized on the interval [0, 1], with the first graph (best result)
at 0 and the last (worst result) at 1. These plots are generally known as performance
profiles [Dolan and Moré 2002].

7.4. Power Law and Social Networking Graphs
We examined our hybrid combinatorial quadratic programming algorithm on power
law graphs that arise in social networking and Internet hyperlink networks. The prob-
lem set of 41 social networking graphs was formed by filtering the SuiteSparse Matrix

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:14 Davis et al.

0.1

1

10

0 0.2 0.4 0.6 0.8 1

W
al

l T
im

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Social Networking Graphs

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

C
ut

 S
iz

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Social Networking Graphs

Fig. 8. Performance of Mongoose on social networking graphs relative to METIS 5. Note the logarithmic
vertical scale. Points below the center line represent cases where Mongoose outperforms METIS (relative
performance less than one), while points above the center line indicate cases where METIS outperforms
Mongoose (relative performance greater than one).

Table III. Performance comparison between Mongoose
and METIS on 41 social networking (power law) graphs
in the SuiteSparse Collection. There were no ties in cut
quality.

Better Time

METIS Mongoose

B
et

te
r

C
ut METIS 1 2 3

Mongoose 14 24 38

15 26 41

Collection using the words “wiki,” “email,” “soc-*,” and all matrices in the Laboratory
for Web Algorithmics (LAW) collection [Boldi and Vigna 2004] [Boldi et al. 2011].

Figure 8 and Table III suggest that the hybrid approach is both significantly faster
and nearly always computes a higher quality cut than METIS for this class of graph.
We speculate that this is due to the following factors:

— Our Coarsening Strategy is able to prevent stalling during coarsening while pre-
serving topological features. In mesh-like and regular graphs, stalling is generally
not a problem, but in social networking graphs, high-degree (or “celebrity”) vertices
can lead to time-consuming coarsening phases. With our brotherly/adoption match-
ing methods, Mongoose is able to efficiently coarsen these social networking graphs.

— Algorithmic Cooperation. The combinatorial algorithm provides the quadratic
programming formulation a guess partition that gradient projection can improve on.
Conversely, the quadratic programming formulation exchanges vertices that are not
necessarily on the partition boundary, overcoming a limitation of our combinatorial
partitioning method.

Table IV, which contains the largest 15 social networking graphs from the problem
set of 41, further suggests that our hybrid approach may result in significant improve-
ment in cut quality for large social networks. Of these largest 15 such networks, Mon-
goose found a better cut in all but one case when compared to METIS, and did so faster
in 8 out of the 14 cases.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:15

Table IV. Performance comparison between Mongoose and METIS on the 15 largest (by edges) social networking graphs in the
SuiteSparse Collection. Note that the bipartite graph is formed for unsymmetric (directed) graphs, which is all graphs listed except
LAW/hollywood-2009. All results had zero imbalance (i.e. the target balance of 50% was achieved in all cases).

Problem Wall Time (s) Cut Size (# of Edges)

Graph Name Vertices Edges METIS Mongoose Speedup METIS Mongoose Relative
Cut Size

LAW/sk-2005 101,272,308 3,898,825,202 554.1 255.2 2.17 7,380,768 4,518,734 0.61
LAW/it-2004 82,583,188 2,301,450,872 226.1 128.6 1.76 2,486,866 693,068 0.28
LAW/webbase-2001 236,284,310 2,039,806,380 488.0 253.1 1.93 2,709,752 616,101 0.23
LAW/uk-2005 78,919,850 1,872,728,564 194.7 121.2 1.61 1,810,378 821,430 0.45
LAW/arabic-2005 45,488,160 1,279,998,916 109.6 64.6 1.70 805,443 189,641 0.24
LAW/uk-2002 37,040,972 596,227,524 82.3 44.3 1.86 613,916 192,917 0.31
LAW/indochina-2004 14,829,732 388,218,622 26.9 18.0 1.49 46,350 18,522 0.40
LAW/ljournal-2008 10,726,520 158,046,284 61.6 66.4 0.93 3,962,147 3,015,059 0.76
SNAP/soc-LiveJournal1 9,695,142 137,987,546 58.8 69.4 0.85 3,740,193 3,093,681 0.83
LAW/hollywood-2009 1,139,905 112,751,422 10.8 11.8 0.92 2,388,505 1,872,190 0.78
Gleich/wikipedia-20070206 7,133,814 90,060,778 43.2 59.7 0.72 5,536,148 2,833,749 0.51
Gleich/wikipedia-20061104 6,296,880 78,766,470 41.9 50.2 0.84 4,763,514 2,544,141 0.53
Gleich/wikipedia-20060925 5,966,988 74,538,192 35.4 56.1 0.63 4,653,238 2,455,991 0.53
Gleich/wikipedia-20051105 3,269,978 39,506,156 20.2 19.9 1.02 1,780,359 1,352,360 0.76
LAW/eu-2005 1,725,328 38,470,280 2.9 2.3 1.26 40,188 42,670 1.06

One social networking graph of particular note is SNAP/email-EuAll, as it highlights
Mongoose’s singleton handling during coarsening. This graph has a single connected
component that makes up nearly 50% of the vertices in the graph. Since Mongoose
preferentially matches singletons with other singletons during coarsening, vertices in
the largest components are internally matched with one another while the components
making up the other half of the graph are matched with each other. This results in at
least two large connected components at the coarsest level, leading to an edge cut of
size zero.

7.5. Sensitivity Analysis of Options
Mongoose has a variety of options that can significantly impact performance (both time
and cut quality). To investigate the tradeoffs of each set of options, four options were
varied as described below, and each combination was used to compute an edge cut.

— Matching Strategy. During the coarsening phase, vertices are matched with other
vertices to be contracted together to form a smaller (but structurally similar) graph.
Mongoose contains four such methods of computing this matching:
— Random matching matches a given unmatched vertex to a randomly selected

unmatched neighbor.
— Heavy Edge Matching (HEM) matches an unmatched vertex with a neighbor-

ing unmatched vertex with whom it shares the edge with the largest weight.
— Heavy Edge Matching with Stall-Free or Stall-Reducing Matching

(HEMSR) first conducts a heavy edge matching pass, but follows with a second
matching pass to further match leftover unmatched vertices in brotherly, adop-
tion, and community matches.

— Heavy Edge Matching with Stall-Reducing Matching, subject to a degree
threshold (HEMSRdeg). Like HEMSR above, but the second matching pass is
only conducted on unmatched vertices with degree above a certain threshold (in
these experiments, twice the average degree).

— Initial Cut Strategy. After coarsening is complete, an initial partition is computed
using one of three approaches:
— Random. Randomly assigns vertices into an initial part.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:16 Davis et al.

1 2 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Matching Strategy

Relative Wall Time
(Logarithmic)

F
ra

c
ti
o
n
 o

f
T
e
s
t
G

ra
p
h
s

HEMSR
HEMSRdeg
Random
HEM

1 2 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Initial Cut Strategy

Relative Wall Time
(Logarithmic)

Random
QP
Natural Order

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Coarsen Limit

Relative Wall Time
(Logarithmic)

1024
256
64

1.0 1.2 1.4 1.6 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Community Matching

Relative Wall Time
(Logarithmic)

Disabled
Enabled

1 2 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Relative Cut Weight

F
ra

c
ti
o
n
 o

f
T
e
s
t
G

ra
p
h
s

HEMSR
HEMSRdeg
Random
HEM

1 2 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Relative Cut Weight

Random
QP
Natural Order

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Relative Cut Weight

1024
256
64

1.0 1.2 1.4 1.6 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Relative Cut Weight

Disabled
Enabled

Fig. 9. Relative timing (top row) and cut quality (bottom row) performance profiles of each set of options.
Each column corresponds to an available option in Mongoose. Note that the horizontal axis is logarithmic,
and the vertical axis corresponds to the fraction of the 2,685 graphs used for testing. Runs that exceeded
7200 seconds were terminated (as was the case for much of the HEM and Random matching strategy data).

— QP (Quadratic Programming). Runs a single iteration of the quadratic pro-
gramming formulation of the edge cut problem, with an initial guess of x = 0.5
for all vertices.

— Natural Order. Assigns the first bn/2c vertices to one part, and the next dn/2e
vertices to the other.

— Coarsening Limit. Coarsening terminates when a specified threshold number of
coarsened vertices is reached. In these experiments, values of 1024, 256, and 64
were tested.

— Community Matching. When using stall-reducing matching, vertices can be op-
tionally aggressively matched in community matches (two vertices are matched if
their neighbors are matched together). This can be enabled to further maximize the
number of matched vertices, or disabled to potentially save time.

The results of this sensitivity analysis in both time and cut quality are shown in
Figure 9. For each option, the best result (in both time and cut quality) is chosen, and
relative metrics are computed relative to this best result. The relative metrics are then
sorted and plotted as a performance profile, with the best results being the ones that
stay at or near 1.0 for the largest percentage of problems.

7.5.1. Matching Strategy. Heavy edge matching and random matching are competitive
only with small graphs, but quickly become intractable for large problems. Of the two
options that use stall-reducing matching, the one that is not subject to the degree
threshold appears to perform slightly faster with no noticeable decrease in cut quality.

7.5.2. Initial Cut Strategy. While the natural ordering approach can sometimes be effec-
tive for meshes and other regular graphs, it is generally outperformed by both the QP
and random initial cuts. Interestingly, the random initial cut yields a comparable final
cut weight despite being more efficient to compute.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0:17

7.5.3. Coarsening Limit. There is a tradeoff between speed and cut quality in determin-
ing the coarsening limit. If coarsening is terminated early (1024 vertices), less com-
putational time is spent on coarsening, but the final cut weight is generally worse.
Inversely, if coarsening continues to 64 vertices, more time is spent on the coarsening
phases, but the resulting cut quality is generally better. This is unsurprising, as the
heuristics used to find the initial cut and to progressively refine the cut are generally
more effective with smaller graphs.

7.5.4. Community Matching. In the majority of cases, community matching has no sig-
nificant effect on cut quality. However, for a sizable minority of graphs, community
matching does have a detrimental effect on timing. In short, community matching
does not appear to offer a significant improvement, but can be mildly helpful in coars-
ening graphs that are prone to stalling. For most graphs, the reduced stalling during
coarsening does not justify the computational cost of computing the matching.

8. CONCLUSION
We have demonstrated a novel graph partitioning library utilizing new stall-free coars-
ening strategies and a hybrid refinement strategy utilizing quadratic programming in
tandem with combinatoric methods to construct edge cuts in arbitrary graphs.

8.1. Future Work
Moving forward, we plan to extend this edge partitioning library to compute vertex
separators, and to ultimately incorporate this work into a nested dissection frame-
work for computing fill-reducing orderings. Hypergraph partitioning, k-way partition-
ing, and parallelization of the library are also planned extensions.

Further investigation is also warranted in other mathematical programming formu-
lations of graph partitioning problems. While a variety of formulations of the edge cut
and vertex separator problems exist, formulations of other related problems require
further development.

REFERENCES
P. Boldi, M. Rosa, M. Santini, and S. Vigna. 2011. Layered Label Propagation: A MultiResolution Coordinate-

Free Ordering for Compressing Social Networks. In Proceedings of the 20th International Conference on
World Wide Web. ACM Press.

P. Boldi and S. Vigna. 2004. The WebGraph Framework I: Compression Techniques. In Proc. of the Thirteenth
International World Wide Web Conference (WWW 2004). ACM Press, 595–601.

E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. 2012. The Zoltan and Isorropia Parallel
Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering, and Coloring. Scientific Pro-
gramming 20, 2 (2012), 129–150.

T. A. Davis, W. W. Hager, and J. T. Hungerford. 2016. An Efficient Hybrid Algorithm for the Separable
Convex Quadratic Knapsack Problem. ACM Trans. Math. Softw. 42, 3, Article 22 (May 2016), 25 pages.

T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw.
38, 1, Article 1 (Dec. 2011), 25 pages.

E. D. Dolan and J. J. Moré. 2002. Benchmarking optimization software with performance profiles. Math.
Program. 91 (2002), 201–213.

C. M. Fiduccia and R. M. Mattheyses. 1982. A Linear-Time Heuristic for Improv-
ing Network Partitions. In 19th Conference on Design Automation, 1982. 175–181.
DOI:http://dx.doi.org/10.1109/DAC.1982.1585498

A. Gupta. 1997. Fast and effective algorithms for graph partitioning and sparse-matrix ordering. IBM Jour-
nal of Research and Development 41, 1.2 (Jan 1997), 171–183. DOI:http://dx.doi.org/10.1147/rd.411.0171

W. W. Hager and Y. Krylyuk. 1999. Graph Partitioning and Continuous Quadratic Programming. SIAM
Journal on Discrete Mathematics 12, 4 (1999), 500–523.

B. Hendrickson and R. Leland. 1993. The Chaco users guide. Version 1.0. Technical Report. Sandia National
Labs., Albuquerque, NM (United States).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

0:18 Davis et al.

B. Hendrickson and R. Leland. 1995. A Multi-Level Algorithm For Partitioning Graphs. SuperComputing
Conference (1995), 28. DOI:http://dx.doi.org/10.1109/SUPERC.1995.3

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. 1989. Optimization by simulated annealing:
an experimental evaluation; part I, graph partitioning. Operations research 37, 6 (1989), 865–892.

E. L. Johnson, A. Mehrotra, and G. L Nemhauser. 1993. Min-cut clustering. Mathematical programming 62,
1-3 (1993), 133–151.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. 1999. Multilevel hypergraph partitioning: applications
in VLSI domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7, 1 (1999), 69–79.

G. Karypis and V. Kumar. 1995. Multilevel graph partitioning schemes. In Proc. 1995 Intl. Conf. Parallel
Processing. CRC Press, 113–122.

G. Karypis and V. Kumar. 1998. A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. SIAM Journal on Scientific Computing 20, 1 (1998), 359–392.

G. Karypis, K. Schloegel, and V. Kumar. 1997. ParMETIS: Parallel graph partitioning and sparse matrix
ordering library. Version 1.0, Dept. of Computer Science, University of Minnesota (1997), 22.

B. W. Kernighan and S. Lin. 1970. An Efficient Heuristic Procedure for Partitioning Graphs. Bell System
Technical Journal 49, 2 (1970), 291–307. DOI:http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x

D. LaSalle and G. Karypis. 2013. Multi-threaded graph partitioning. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 225–236.

D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and G. Karypis. 2015. Improving graph
partitioning for modern graphs and architectures. In Proceedings of the 5th Workshop on Irregular Ap-
plications: Architectures and Algorithms. ACM, 14.

F. Pellegrini and J. Roman. 1996. Scotch: A software package for static mapping by dual recursive biparti-
tioning of process and architecture graphs. In International Conference on High-Performance Computing
and Networking. Springer, 493–498.

A. Pothen. 1997. Graph partitioning algorithms with applications to scientific computing. In Parallel Nu-
merical Algorithms. Springer, 323–368.

R. Preis and R. Diekmann. 1997. PARTY-a software library for graph partitioning. Advances in Computa-
tional Mechanics with Parallel and Distributed Processing (1997), 63–71.

P. Sanders and C. Schulz. 2013. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Pro-
ceedings of the 12th International Symposium on Experimental Algorithms (SEA’13) (LNCS), Vol. 7933.
Springer, 164–175.

Received ???; revised ???; accepted ???

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: April 2018.

