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Abstract. Given a sparse, symmetric positive definite matrix C and an associated sparse
Cholesky factorization LDLT, we develop sparse techniques for updating the factorization after a
symmetric modification of a row and column of C. We show how the modification in the Cholesky
factorization associated with this rank-2 modification of C can be computed efficiently using a sparse
rank-1 technique developed in [T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl., 20 (1999),
pp. 606–627]. We also determine how the solution of a linear system Lx = b changes after changing
a row and column of C or after a rank-r change in C.
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1. Introduction. The problem of updating a Cholesky factorization after a
small rank change in the matrix is a fundamental problem with many applications,
including optimization algorithms, least-squares problems in statistics, the analysis
of electrical circuits and power systems, structural mechanics, boundary condition
changes in partial differential equations, domain decomposition methods, and bound-
ary element methods (see [12]). Some specific examples follow.

1. A linear programming problem has the form

min cTx subject to Ax = b, x ≥ 0,(1.1)

where A is m-by-n, typically n is much larger than m, and all vectors are of compatible
size. In this formulation, the vector x is called the primal variable. The dual approach
utilizes a multiplier λ corresponding to the linear equation Ax = b. In each iteration
of the linear programming dual active set algorithm (LPDASA) (see [5, 13, 14, 15,
16, 17]), we solve a symmetric linear system of the form

Cλ = f , C = AFAT
F + σI,

where σ > 0 is a small parameter, F ⊂ {1, 2, . . . , n} are the indices associated with
“free variables” (strictly positive primal variables), AF is a submatrix of A associated
with column indices in F , and f is a function of b and c. As the dual iterates converge
to optimality, the set F changes as the primal variables either reach their bound or
become free. Since C can be expressed as

C =
∑
j∈F

A∗jA
T
∗j + σI,
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622 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

where A∗j denotes the jth column of A, it follows that a small change in F leads to
a small rank change in C; hence, we solve a sequence of linear systems where each
matrix is a small rank modification of the previous matrix.

2. Consider a network of resistors connecting nodes {1, 2, . . . , n} in a graph.
Let Ai denote the set of nodes adjacent to i in the graph, let Rij be the resistance
between i and j, and let Vj be the potential at node j (some of the nodes may be held
at a fixed potential by a battery). By Kirchhoff’s first law, the sum of the currents
entering each node is zero:

∑
j∈Ai

Vj − Vi

Rij
= 0.

If the resistance on an arc (k, l) is changed from Rkl to R̄kl, then there is a rank-1
change in the matrix given by

(
1

Rkl
− 1

R̄kl

)
wwT, w = ek − el,

where ei is the ith column of the identity matrix. In other words, the only change in
the coefficient matrix occurs in rows k and l and in columns k and l. Changing the
resistance on r arcs in the network corresponds to a rank-r change in the matrix.
Additional illustrations can be found in [12].

A variety of techniques for modifying a dense Cholesky factorization are given
in the classic reference [11]. Recently in [3, 4] we considered a sparse Cholesky fac-
torization LDLT of a symmetric, positive definite matrix C, and the modification
associated with a rank-r change of the form C = C ± WWT, where W is n-by-r
with r typically much less than n. In a rank-1 update of the form C = C + wwT,
the columns that change in L correspond to a path in the elimination tree of the
modified factor L. The path starts at the node corresponding to the row index of
the first nonzero entry in w. The total work of the rank-1 update is proportional to
the number of entries in L that change, so our algorithm is optimal. A downdate is
analogous; it follows a path in the original elimination tree, which becomes a subtree
in the new elimination tree.

A rank-r update of the form C = C + WWT, where W has r columns, can be
cast as a sequence of r rank-1 updates. In [4], we show that a rank-r update can be
done more efficiently in a single pass. Rather than following a single path in the tree,
multiple paths are followed. When paths merge, multiple updates are performed to
the corresponding columns of L. Our rank-r algorithm is also optimal.

Figure 1.1 shows an example of a sparse rank-2 update (see Figure 4.1 in [4]).
Entries that change in C are shown as a plus. It is not shown in the figure, but the
updates follow two paths in the tree, one with nodes {1, 2, 6, 8} and the second one
with nodes {3, 4, 5, 6, 7, 8}.

In this paper, we consider a special, but important, rank-2 change corresponding
to a symmetric modification of a row and column of C. Although we could, in
principle, use our previous methodology to update the factorization, we observe that
this rank-2 approach is much less efficient than the streamlined approach we develop
here. In fact, the rank-r approach with r = 2 could result in a completely dense
modification of the factorization, where nonzero entries are first introduced and then
canceled out. Figure 1.2 shows a sparse modification to row 4 and column 4 of the
matrix C from Figure 1.1.
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SPARSE CHOLESKY ROW MODIFICATIONS 623
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Fig. 1.1. Rank-2 update, C = C + WWT.
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31
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Fig. 1.2. Modification to a row and column of C.

With the new approach, the work connected with removing a nonzero row and
column is comparable to the work associated with a sparse rank-1 update, while the
work associated with adding a new nonzero row and column is comparable to the work
associated with a sparse rank-1 downdate. This connection between the modification
of the matrix and the modification of the factorization is nonintuitive: When we
remove elements from the matrix, we update the factorization; when we add elements
to the matrix, we downdate the factorization.

As a byproduct of our analysis, we show how the solution to a triangular system
Lx = b changes when both L and b change as a result of the row and column
modification problem discussed in this paper, or as a result of a rank-r change to C
[3, 4].

One specific application for the techniques developed in this paper is LPDASA.
An inequality aTx ≤ b in a primal linear program is converted to an equality, when
the problem is written in the standard form (1.1), by introducing a primal slack
variable: aTx + y = b, where y ≥ 0 is the slack variable. If the index j corresponds
to a primal slack variable in equation i, and if j ∈ F , then it can be shown that
λi = cj . In essence, we can eliminate the ith dual variable and the ith equation:
The ith equality is satisfied by simply solving for the value of the slack variable, and
the ith dual variable is λi = cj . Thus, in this dual approach to linear programming,
inactive inequalities are identified dynamically, during the solution process; dropping
these inactive inequalities amounts to removing a row and a column from a Cholesky
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624 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

factorized matrix. In the same way, when a dropped inequality later becomes active,
a new row and column must be inserted in the matrix, and the resulting modification
in the Cholesky factorization evaluated. In general, the techniques developed in this
paper are useful in any setting where a system of equations is solved repeatedly with
equations added or dropped before each solve.

A brief overview of our paper follows. In section 2 we consider the row addition
problem, in which a row and column, originally zero except for the diagonal element,
are modified in a matrix. The row deletion problem is the opposite of row addition
and is discussed in section 3. Section 4 describes modifications to a row and column
of sparse or dense C. We show that arbitrary modifications can be efficiently im-
plemented as a row deletion followed by a row addition. In contrast, we also show
that if sparse modifications to a sparse row of C are made, some improvement can
be obtained over a row deletion followed by a row addition. The efficient methods
presented in sections 2 through 4 are contrasted with performing the modifications
as a rank-2 outer product modification in section 5, which is shown to be costly, par-
ticularly in the sparse case. Section 6 shows how to efficiently modify the solution to
Lx = b when L and b change. A brief presentation of the experimental performance
of these methods in the context of matrices arising in linear programming is given in
section 7.

We use the notation C to denote the matrix C after it has been modified. Bold
uppercase A refers to a matrix. Bold lowercase italic a is a column vector; thus, aT

always refers to a row vector. Plain lowercase letters (such as a and α) are scalars.
We use |A| to denote the number of nonzero entries in the sparse matrix A. Without
parentheses, the notation Ai or Aij refers to submatrices of a matrix A (sometimes
1-by-1 submatrices). We use parentheses (A)ij to refer to the entry in row i and
column j of the matrix A, (A)∗j to refer to column j of A, and (A)i∗ to refer to row
i of A. When counting floating-point operations (flops), we count one flop for any
arithmetic operation including ∗, /, +, −, and

√
.

2. Adding a row and column to C. If we have a rectangular n-by-m matrix
A, and C = αI + AAT, then modifying row k of A leads to changes in the kth row
and column of C. In this section, we consider the special case where row k is initially
zero and becomes nonzero in A (the row addition case). Equivalently, the kth row
and column of C is initially a multiple of the kth row and column of the identity
matrix and changes to some other value.

We first discuss the linear algebra that applies whether C is dense or sparse.
Specific issues for the dense and sparse case are discussed in sections 2.1 and 2.2.

Let aT
2 be the new nonzero kth row of A,

A =

⎡
⎣ A1

0T

A3

⎤
⎦ , A =

⎡
⎣ A1

aT
2

A3

⎤
⎦ ,

where 0T is a row vector whose entries are all 0. This leads to a modification to row
and column k of C,

C =

⎡
⎣ αI + A1A

T
1 0 A1A

T
3

0T α 0T

A3A
T
1 0 αI + A3A

T
3

⎤
⎦ =

⎡
⎣ C11 0 CT

31

0T c22 0T

C31 0 C33

⎤
⎦ ,

where c22 = α. We can let α be zero; even though C would no longer be positive
definite, the submatrix excluding row and column k could still be positive definite.
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SPARSE CHOLESKY ROW MODIFICATIONS 625

The linear system Cx = b is well defined in this case, except for xk. The new matrix
C is given as

C =

⎡
⎢⎢⎣

αI + A1A
T
1 A1a2 A1A

T
3

aT
2AT

1 α + aT
2 a2 aT

2AT
3

A3A
T
1 A3a2 αI + A3A

T
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C11 c12 CT
31

cT
12 c22 cT

32

C31 c32 C33

⎤
⎥⎥⎦ .

Thus, adding a row k to A is equivalent to adding a row and column k to C. Note
that changing row and column k of C from zero (except for the diagonal entry) to a
nonzero value also can be viewed as increasing the dimension of the (n−1)-by-(n−1)
matrix [

C11 CT
31

C31 C33

]
.

The original factorization of the n-by-n matrix C may be written as

LDLT =

⎡
⎢⎢⎣

L11

0T 1

L31 0 L33

⎤
⎥⎥⎦
⎡
⎣ D11

d22

D33

⎤
⎦
⎡
⎢⎢⎣

LT
11 0 LT

31

1 0T

LT
33

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

C11 0 CT
31

0T α 0T

C31 0 C33

⎤
⎥⎥⎦ ,

which leads to the four equations

L11D11L
T
11 = C11,

d22 = α,

L31D11L
T
11 = C31,

L31D11L
T
31 + L33D33L

T
33 = C33.(2.1)

After adding row and column k to obtain C, we have the factorization

LDL
T

=

⎡
⎢⎢⎣

L11

l
T

12 1

L31 l32 L33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

D11

d22

D33

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

LT
11 l12 LT

31

1 l
T

32

L
T

33

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

C11 c12 CT
31

cT
12 c22 cT

32

C31 c32 C33

⎤
⎥⎥⎦ .(2.2)

Note that L11 and L31 do not change as a result of modifying row and column k of
C. From (2.2), the relevant equations are

L11D11l12 = c12,(2.3)

l
T

12D11l12 + d22 = c22,

L31D11l12 + l32d22 = c32,

L31D11L
T
31 + l32d22l

T

32 + L33D33L
T

33 = C33.(2.4)
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626 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Let w = l32
√
d22. Combining (2.4) with the original equation (2.1), we obtain

L33D33L
T

33 = (C33 − L31D11L
T
31) − l32d22l

T

32 = L33D33L
T
33 − wwT.

The factorization of L33D33L
T
33−wwT can be computed as a rank-1 downdate of the

original factorization L33D33L
T
33 (see [3]). This derivation leads to Algorithm 1 for

computing the modified factorization LDL
T
, which is applicable in both the dense

and sparse cases.
Algorithm 1 (row addition).

1. Solve the lower triangular system L11D11l12 = c12 for l12.

2. d22 = c22 − l
T

12D11l12
3. l32 = (c32 − L31D11l12)/d22

4. w = l32
√
d22

5. Perform the rank-1 downdate L33D33L
T

33 = L33D33L
T
33 − wwT.

end Algorithm 1

2.1. Dense row addition. Consider the case when C is dense.
1. Step (1) of Algorithm 1 requires the solution of a unit lower triangular system

L11y = c12 of order k − 1. The computation of y takes (k − 1)2 − (k − 1) flops, and
computing l12 = D−1

11 y takes another k − 1 flops.
2. Step (2) requires 2(k − 1) work, using y.
3. Step (3) is the matrix-vector multiply L31y, where L31 is (n− k)-by-(k − 1)

and thus takes 2(n− k)(k − 1) operations and k − 1 more to divide by d22.
4. Step (4) requires one square root operation and n− k multiplications.
5. Finally, the rank-1 downdate of step (5) takes 2(n−k)2 +4(n−k) operations

using method C1 of [11] (see [4]).
For the dense case, the total number of flops performed by Algorithm 1 is 2n2 +

3n+k2−(2nk+2k+1). This is roughly 2n2 when k = 1, n2 when k = n, and (5/4)n2

when k = n/2.

2.2. Sparse row addition. If C is sparse, each step of Algorithm 1 must operate
on sparse matrices. The graph algorithms and data structures must efficiently support
each step. We will assume that L is stored in a compressed column vector form, where
the row indices in each column are sorted in ascending order. This is the same data
structure used in [3, 4], except that the algorithms presented there do not require
sorted row indices, but they do require the integer multiplicity of each nonzero entry
of L to support an efficient symbolic downdate operation. The algorithm discussed
below will not require the multiplicities.

Maintaining the row indices in sorted order requires a merge operation for the
set union computation to determine the new nonzero patterns of the columns of L,
rather than a simpler unsorted set union used in [3, 4]. It has no effect on asymptotic
complexity and little effect on the run time. Although more work is required to
maintain the row indices in sorted order, time is gained elsewhere in the algorithm.
Operating on columns in sorted order in the forward solve of Lx = b, for example,
is faster than operating on a matrix with jumbled columns. No additional space is
required to keep the columns sorted.

Step (1) of Algorithm 1 solves the lower triangular system L11y = c12, where all
three terms in this system are sparse. Gilbert and Peierls have shown how to solve
this system optimally, in time proportional to the number of flops required [9, 10].
We review their method here.
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SPARSE CHOLESKY ROW MODIFICATIONS 627

Consider the n-by-n system Lx = b, where L is lower triangular and both L and
b are sparse. The solution will be sparse, and the total work may be less than O(n).
We cannot use a conventional algorithm that iterates over each column of L and skips
those for which x is zero since the work involved will then be at least n. Instead, the
nonzero pattern of x must first be computed, and then the corresponding columns of
L can be used to compute x in time proportional to the floating-point work required.

Let GL be a graph with n nodes and with a directed edge from node j to node
i if and only if lij is nonzero. Gilbert and Peierls show that xj is nonzero (ignoring
numerical cancellation) if and only if there is a path of length zero or more from some
node i, where bi �= 0, to node j in the graph GL. Computing the pattern of x requires
a graph traversal, starting from the nodes corresponding to the nonzero pattern of b.
It can be done in time proportional to the number of edges traversed. Each of these
edges is a nonzero in L that takes part in the subsequent numerical computation.

The above result holds for any lower triangular matrix L. In our case, L arises
from a Cholesky factorization and has an elimination tree [18, 19]. The elimination
tree of L has n nodes. The parent of node j in the elimination tree is the smallest index
i > j for which lij �= 0; node j is a root if there is no such i. Since the nonzero pattern
of (L)∗j is a subset of its path to the root of the elimination tree [20], all the nodes in
GL that can be reached from node j correspond to the path from node j to the root of
the elimination tree. Traversing the paths in the tree, starting at nodes corresponding
to nonzero entries in b, takes time proportional to the number of nonzero entries in
x. A general graph traversal of GL is not required. Step (1) of Algorithm 1 takes

O

⎛
⎝ ∑

(l12)j �=0

|(L11)∗j |

⎞
⎠

time to compute the nonzero pattern and numerical values of both y and l12. The
insertion of the nonzero entries of l12 into the data structure of L is performed in
conjunction with step (3).

Step (2) is a scaled dot product operation and can be computed in time propor-
tional to the number of nonzero entries in l12.

Step (3) is a matrix-vector multiply operation. It accesses the same columns of
L used by the sparse lower triangular solve, namely, each column j for which the jth
entry in l12 is nonzero. These same columns need to be modified by shifting entries
in L31 down by one and inserting the new entries in l12, the kth row of L. No other
columns in the range 1 to k− 1 need to be accessed or modified by steps (1) through
(3). When step (3) completes, the new column k of L needs to be inserted into the
data structure. This can be done in one of two ways. In the general case, we can store
the columns themselves in a noncontiguous manner and simply allocate new space for
this column. A similar strategy can be used for any columns 1 through k − 1 of L
that outgrow their originally allocated space with no increase in asymptotic run time.
Alternatively, we may know an a priori upper bound on the size of each column of L
after all row additions have been performed. In this case, a simpler static allocation
strategy is possible. This latter case occurs in our use of the row addition algorithm
in LPDASA, our target application [5]. In either case, the time to insert l12 into the
data structure and to compute l32 in step (3) is

O

⎛
⎝ ∑

(l12)j �=0

|(L31)∗j |

⎞
⎠ .
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628 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Step (4) is a simple scalar-times-vector operation. The total time for steps (1)
through (4) is

O

⎛
⎝ ∑

(l12)j �=0

|(L)∗j |

⎞
⎠ .

Step (5) almost fits the specifications of the sparse rank-1 modification in [3],
but with one interesting twist. The original kth row and column of C are zero,
except for the placeholder diagonal entry, α. The new row and column only add
entries to C, and thus the nonzero pattern of the original factor L is a subset of the
nonzero pattern of L (ignoring numerical cancellation). The rank-1 modification in
Algorithm 1 is a symbolic update (new nonzero entries are added, not removed) and a
numeric downdate L33D33L

T
33 −wwT. Since the multiplicities used in [3] are needed

only for a subsequent symbolic downdate, they are not required by the row addition
algorithm. They would be required by a row deletion algorithm that maintains a
strict nonzero pattern of L; this issue is addressed in section 3.2.

The rank-1 modification to obtain the factorization L33D33L
T

33 takes time pro-
portional to the number of nonzero entries in L33 that change. The columns that
change correspond to the path from node k to the root of the elimination tree of L.
This path is denoted P in [3]. At each node j along the path P, at most four flops
are performed for each nonzero entry in (L)∗j .

With our choice of data structures, exploitation of the elimination tree, and the
rank-1 modification from [3], the total time taken by Algorithm 1 is proportional to
the total number of nonzero entries in columns corresponding to nonzero entries in l12,
to compute steps (1) through (4), plus the time required for the rank-1 modification
in step (5). The total time is

O

⎛
⎝ ∑

(l12)j �=0

|(L)∗j | +
∑
j∈P

|(L)∗j |

⎞
⎠ .

This time includes all data structure manipulations, sparsity pattern computation,
and graph algorithms required to implement the algorithm. It is identical to the total
number of flops required, and thus Algorithm 1 is optimal. In the sparse case, if every
column j takes part in the computation, the time is O(|L|). Normally, not all columns
will be affected by the sparse row addition. If the new row and column of L are very
sparse, only a few columns take part in the computation.

3. Row deletion. By deleting a row and column k from the matrix C, we mean
setting the entire row and column to zero, except for the diagonal entry (C)kk which
is set to α. This is the opposite of row addition. Here, we present an algorithm that
applies whether C is sparse or dense. Specific issues in the dense case are considered
in section 3.1, and the sparse case is discussed in section 3.2.

Prior to deleting row and column k, we have the original factorization

LDLT =

⎡
⎣ L11

lT12 1
L31 l32 L33

⎤
⎦
⎡
⎣ D11

d22

D33

⎤
⎦
⎡
⎣ LT

11 l12 LT
31

1 lT32
LT

33

⎤
⎦

=

⎡
⎣ C11 c12 CT

31

cT
12 c22 cT

32

C31 c32 C33

⎤
⎦ .

D
ow

nl
oa

de
d 

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



SPARSE CHOLESKY ROW MODIFICATIONS 629

After deleting row and column k, we have

LDL
T

=

⎡
⎣ L11

0T 1
L31 0 L33

⎤
⎦
⎡
⎣ D11

α
D33

⎤
⎦
⎡
⎣ LT

11 0 LT
31

1 0T

L
T

33

⎤
⎦

=

⎡
⎣ C11 0 CT

31

0T α 0T

C31 0 C33

⎤
⎦ .

Thus we only need to set row and column k of L to zero, set the diagonal entry to α,
and compute L33 and D33. The original factorization is

L33D33L
T
33 = C33 − L31D11L

T
31 − l32d22l

T
32,

while the new factorization is given as

L33D33L
T

33 = C33 − L31D11L
T
31.

Combining these two equations, we have a numeric rank-1 update,

L33D33L
T

33 = L33D33L
T
33 + wwT,(3.1)

where w = l32
√
d22. Algorithm 2 gives the complete row deletion algorithm, which is

applicable in both the dense and sparse cases.
Algorithm 2 (row deletion).

1. l12 = 0

2. d22 = α

3. l32 = 0
4. w = l32

√
d22

5. Perform the rank-1 update L33D33L
T

33 = L33D33L
T
33 + wwT.

end Algorithm 2

3.1. Dense row deletion. When C is dense, the number of flops performed by
Algorithm 2 is 2(n−k)2 +5(n−k)+1 (the same as steps (4) and (5) of Algorithm 1).
This is roughly 2n2 when k = 1, and (1/2)n2 when k = n/2. No work is required
when k = n.

3.2. Sparse row deletion. When row and column k of a sparse C are deleted
to obtain C, no new nonzero terms will appear in L, and some nonzero entries in L
may become zero. We refer to the deletion of entries in L as a symbolic downdate
[3]. The symbolic downdate is combined with a numeric rank-1 update because of the
addition of wwT in (3.1).

We cannot simply delete entries from L that become numerically zero. An entry
in L can be removed only if it becomes symbolically zero (that is, its value is zero
regardless of the assignment of numerical values to the nonzero pattern of C). If
entries are zero because of exact numerical cancellation and are dropped from the
data structure of L, then the elimination tree no longer characterizes the structure
of the matrix. If the elimination tree is no longer valid, subsequent updates and
downdates will not be able to determine which columns of L must be modified.

Steps (1) through (3) of Algorithm 2 require no numerical work, but they do
require some data structure modifications. All of the entries in row and column k
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630 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

of L become symbolically zero and can be removed. If L is stored by columns, it is
trivial in step (3) to immediately delete all entries in column l32. On the other hand,
the statement l12 = 0 in step (1) is less obvious. Each nonzero element in row k lies in
a different column. We must either set these values to zero, delete them from the data
structure, or flag row k as zero and require any subsequent algorithm that accesses
the matrix L to ignored flagged rows. The latter option would lead to a sparse row
deletion algorithm with optimal run time but complicates all other algorithms in our
application and increases their run time. We choose to search for the row k entries in
each column in which they appear and delete them from the data structure.

To set l12 to zero and delete the entries from the data structure for L requires
a scan of all the columns j of L for which the jth entry of l12 is nonzero. The time
taken for this operation is asymptotically bounded by the time taken for steps (1)
through (3) of sparse row addition (Algorithm 1), but the bound is not tight. The
nonzero pattern of row k of L can easily be found from the elimination tree. Finding
the row index k in the columns takes less time than step (1) of Algorithm 1 since a
binary search can be used. Deleting the entries takes time equivalent to step (3) of
Algorithm 1 since we maintain each column with sorted row indices.

The immediate removal of entries in L33 can be done using the symbolic rank-1
downdate presented in [3]. However, this requires an additional array of multiplicities,
which is one additional integer value for each nonzero in the matrix. Instead, we can
allow these entries to become numerically zero (or very small values due to numerical
roundoff) and not remove them immediately. Since they become numerically zero
(or tiny), they can simply remain in the data structure for the matrix and have no
effect on subsequent operations that use the matrix L. The entries can be pruned
later on by a complete symbolic factorization, taking O(|L|) time [6, 7, 8]. If this is
done rarely, the overall run time of the application that uses the sparse row deletion
algorithm will not be affected adversely.

The asymptotic run time of our sparse row deletion algorithm is the same as
sparse row addition (or less, because of the binary search), even though sparse row
addition requires more numerical work. This is nonoptimal but no worse than sparse
row addition, whose run time is optimal.

4. Row modification. It is possible to generalize our row deletion and addition
algorithms to handle the case where the kth row and column of C is neither originally
zero (the row addition case) nor set to zero (the row deletion case), but is changed
arbitrarily. Any change of this form can be handled as a row deletion followed by a
row addition, but the question may remain as to whether or not it can be done faster
as a single step. Here, we show that an arbitrary row modification can be efficiently
implemented as a row deletion followed by a row addition. If the changes to the row
are sparse, however, some work can be saved by combining the two steps.

4.1. Arbitrary row modification. In this section we show that no flops are
saved in a single-pass row modification algorithm, as compared to the row deletion +
row addition approach, if the change in the kth row and column is arbitrary. This is
true whether C is sparse or dense.

The original matrix C and the new matrix C are

C =

⎡
⎣ C11 c12 CT

31

cT
12 c22 cT

32

C31 c32 C33

⎤
⎦ and C =

⎡
⎣ C11 c12 CT

31

cT
12 c22 cT

32

C31 c32 C33

⎤
⎦ .(4.1)
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SPARSE CHOLESKY ROW MODIFICATIONS 631

Computing l12, d22, and l32 is the same as the row addition algorithm and takes
exactly the same number of flops. The original factorization of the (33)-block is

L33D33L
T
33 = C33 − L31D11L

T
31 − l32d22l

T
32,

while the new factorization is

L33D33L
T

33 = C33 − L31D11L
T
31 − l32d22l

T

32.

These can be combined into a rank-1 update and rank-1 downdate

L33D33L
T

33 = L33D33L
T
33 + w1w

T
1 − w2w

T
2 ,(4.2)

where w1 = l32
√
d22 and w2 = l32

√
d22. The multiple rank update/downdate pre-

sented in [4] cannot perform a simultaneous update and downdate, but if the sparse
downdate (removal of entries that become symbolically zero) is not performed, it
would be possible to compute the simultaneous update and downdate (4.2) in a single
pass. This may result in some time savings since the data structure for L is scanned
once, not twice. No floating-point work would be saved, however. The total flop
count of the row modification algorithm is identical to a row deletion followed by a
row addition.

4.2. Sparse row modification. Suppose we modify some, but not all, of the
elements of the kth row and column of C. In this case, we can reduce the total

amount of floating-point work required to compute the modified factorization LDL
T
,

as shown below.
More precisely, consider the case where only a few entries in row and column k

of C are changed. Let

∆c12 = c12 − c12,

∆c22 = c22 − c22,

∆c32 = c32 − c32,

and assume that the change in the kth row and column is much sparser than in the
original kth row and column of C (for example, |∆c12| � |c12|).

If we consider (2.3) and its analog for the original matrix C, we have

L11D11l12 = c12,(4.3)

L11D11l12 = c12.(4.4)

Combining these two equations gives

L11D11∆l12 = ∆c12,

where ∆l12 = l12 − l12. Since ∆c12 is sparse, the solution of this lower triangular
system will be sparse in general. It can be solved in time proportional to the time
required to multiply L11 times ∆l12, or

O

⎛
⎝ ∑

(∆l12)j �=0

|(L11)∗j |

⎞
⎠D
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632 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

[9, 10]. We can then compute l12 = l12 + ∆l12. This approach for computing l12 can
be much faster than solving (4.4) directly, which would take

O

⎛
⎝ ∑

(l12)j �=0

|(L11)∗j |

⎞
⎠

time. Computing d22 can be done in time proportional to |∆l12|, using the following
formula that modifies the dot product computation in Algorithm 1:

d22 = d22 + ∆d22 = d22 + ∆c22 −
∑

(∆l12)j �=0

(∆l12)j((l12)j + (l12)j)(D11)jj .

Similarly, the kth column of L can be computed as

l32 = (∆C32 + l32d22 − L31D11∆l12) /d22.

The key component in this computation is the sparse matrix-vector multiplication
L31D11∆l12, which takes less time to compute than the corresponding computation
L31D11l12 in step (2) of Algorithm 1.

The remaining work for the rank-1 update/downdate of L33D33L
T
33 is identi-

cal to the arbitrary row modification (4.2). If k is small, it is likely that this up-
date/downdate computation will take much more time than the computation of l12,
d22, and l32. If k is large, however, a significant reduction in the total amount of work
can be obtained by exploiting sparsity in the change in the row and column of C.

5. Row modifications as a rank-2 outer-product. Modifying row and col-
umn k of a symmetric matrix C can be written as a rank-2 modification C =
C + w1w

T
1 − w2w

T
2 . Suppose C and C are as given in (4.1). Let

d =

⎡
⎣ c12 − c12

(c22 − c22)/2
c32 − c32

⎤
⎦ .

Let ek be the kth column of the identity. Then C = C + deT
k + ekd

T. This can be
put into the form C = C+w1w

T
1 −w2w

T
2 using the following relationship (note that

e, below, is an arbitrary column vector, not necessarily ek). Given d and e ∈ R
n,

define

p =
d

‖d‖ +
e

‖e‖ and q =
d

‖d‖ − e

‖e‖ .

Then we have

deT + edT =
‖d‖‖e‖

2

(
ppT − qqT

)
.(5.1)

In our case, e = ek and ||e|| = 1. Defining

w1 =

√
‖d‖
2

(
d

‖d‖ + ek

)
and w2 =

√
‖d‖
2

(
d

‖d‖ − ek

)
,

it follows from (5.1) that

C = C + w1w
T
1 − w2w

T
2 .(5.2)
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SPARSE CHOLESKY ROW MODIFICATIONS 633

C + w1wT
1

Fig. 5.1. Modifying C after the first outer product.

In the dense case, computing (5.2) using a rank-1 update and rank-1 downdate
takes 4n2 + 11n flops, independent of k (including the work to compute w1 and w2).
If we use Algorithms 1and 2 to make an arbitrary change in the kth row and column
of C, the total work is 4n2 +8n+3k2 − (6nk+7k), which is roughly 4n2 when k = 1,
n2 + n when k = n, and (7/4)n2 when k = n/2. Using the rank-2 update/downdate
method to modify row and column k of C can thus take up to four times the work
compared to the row addition/deletion presented here.

If the modification requires only the addition or deletion of row and column k,
then only Algorithm 1 or 2 needs to be used, but the entire rank-2 update/downdate
method presented in this section is still required (about 4n2 work, independent of
k). Considering only the quadratic terms, Algorithm 1 performs 2n2 + k2 − 2nk
operations, and Algorithm 2 performs 2(n − k)2 operations. The row modification
methods require much less work, particularly for the row deletion case when k ≈ n,
in which the work drops from 4n2 for the rank-2 update/downdate method to nearly
no work at all.

In the sparse case, the differences in work and memory usage can be extreme.
Both the rank-1 update and downdate could affect the entire matrix L and could
cause catastrophic intermediate fill-in. Consider the row addition case when k ≈ n
and the new row and column of C is dense. The factorization of C will still be fairly
sparse, since the large submatrix C11 does not change, and remains very sparse. The
factor L11 can have as few as O(n) entries. However, after one rank-1 update, the (11)-
block of C+ w1w

T
1 is completely dense, since w1 is a dense column vector. After the

rank-1 downdate (with −w2w
T
2 ), massive cancellation occurs, and the factorization

of C11 is restored to its original sparse nonzero pattern. But the damage has been
done, since we require O(n2) memory to hold the intermediate factorization. This
is infeasible in a sparse matrix algorithm. The memory problem could be solved if
a single-pass rank-2 update/downdate algorithm were used, but even then, the total
work required would be O(n2), which is much more than the O(|L|) time required for
Algorithm 1 in this case. The same problem occurs if the downdate with −w2w

T
2 is

applied first.

Figure 5.1 illustrates the change in C after the first rank-1 update, if the row
modification of Figure 1.2 is performed as the rank-2 modification C = C + w1w

T
1 −

w2w
T
2 . The vectors w1 and w2 have the same nonzero pattern as the change in row

k of C. The graph of the matrix w1w
T
1 is a single clique; its entries are shown as

pluses in Figure 5.1. If column 8 of this matrix were modified to become completely
dense, then Figure 5.1 would be a full matrix of pluses.

6. Modifying a lower triangular system. We now consider a related opera-
tion that can be performed efficiently at the same time that we modify the Cholesky
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634 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

factorization. Suppose we have a linear system Cx = b and the system is modified,
either by changing a row and column of C as discussed above, or due to a low-rank
change C = C ± WWT as discussed in [3, 4]. After the factorization is modified,

the new factorization LDL
T

= C will normally be used to solve a modified linear
system Cx = b. The complete solution x will likely be different in every component
because of the backsolve, but a significant reduction of work can be obtained in the
forward solve of the lower triangular system Lx = b. We thus focus only on this lower
triangular system, not the complete system.

First, consider the simpler case of a low-rank change of a dense matrix. As shown
below, it takes double the work to modify the solution instead of computing it from
scratch, but the dense matrix method can be used for submatrices in the sparse case,
resulting in a significant reduction in work. Suppose we have the system Lx = b,
including its solution x, and the new linear system is Lx = b. Combining these two
equations gives

Lx = b − b + Lx = ∆b + Lx,

where ∆b = b − b. Suppose we are given L, x, and ∆b. The matrix L is computed
column-by-column by either the low-rank update/downdate algorithm in [3, 4] or the
row and column modification algorithm discussed in this paper. We can combine the
modification of L with the computation of x, as shown in Algorithm 3.

Algorithm 3 (dense modification of Lx = b to solve Lx = b).
x = ∆b
for j = 1 to n do

x = x + (L)∗jxj

compute the new column (L)∗j
(x)j+1...n = (x)j+1...n − (L)j+1...n,jxj

end for
end Algorithm 3

The total work to modify the solution to Lx = b is roughly 2n2, as compared to
n2 work to solve Lx = b from scratch. One would never use this method if L and b
are dense.

Now consider the sparse case. Suppose we have a low-rank sparse update of L.
The columns that change in L correspond to a single path P in the elimination tree
for a rank-1 update. Every entry in these specific columns is modified. For a rank-r
update, where r > 1, the columns that change correspond to a set of paths in the
elimination tree, which we also will refer to as P in this more general case. In both
cases, the nonzero pattern of each column j in the path P is a subset of the path [20].
We can thus partition the matrices L and L into two parts, according to the set P.
The original system is

[
L11 0
L21 L22

] [
x1

x2

]
=

[
b1

b2

]
,

where the matrix L22 consists of all the rows and columns corresponding to nodes in
the path P. If the changes in the right-hand side b are also constrained to the set P,
the new linear system is

[
L11 0
L12 L22

] [
x1

x2

]
=

[
b1

b2

]
.

D
ow

nl
oa

de
d 

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



SPARSE CHOLESKY ROW MODIFICATIONS 635

3

5

6 7

8

1 2 4

3

6 7

8

2

41

5

C = C + wwT

original factor L

new factor L new elimination tree

C w original elimination tree

[
L11 0
L21 L22

]
=

P = {1, 2, 6, 8}

L partitioned according to the path P

Fig. 6.1. Modifying Lx = b after a rank-1 update.

Note that L11, L12, and b1 do not change, and thus x1 does not change. If the
change in the right-hand side is arbitrary (not constrained to P, for example), then
x1 changes and no work is saved over solving Lx = b from scratch.

We have made a sparse change to both the matrix L and the right-hand side.
The solution to the subsystem L11x1 = b1 does not change. We have

L21x1 + L22x2 = b2,

L21x1 + L22x2 = b2.

We can apply Algorithm 3 to the subsystem

L22x2 = ∆b2 + L22x22,

where ∆b2 = b2−b2, to obtain the new solution x2. Algorithm 3 takes 4|L22|+O(P)
flops to compute x2. An additional 4r|L22| + O(P) flops are required to update L22.
Solving Lx = b after L is updated takes 2|L| flops. If the path P is short, making
a sparse modification to the old solution x to obtain the new solution x during the
update of L takes much less work than solving the new linear system after L is
updated.

Figure 6.1 shows a matrix C, its factorization, and its elimination tree after a
rank-1 update, using just the first column of W from the example shown in Figure 1.1.
As in our other figures, a plus denotes an entry that changes, or an entry of w. The
subtree of the original elimination tree consisting of nodes {1, 2, 6, 8} becomes a single
path P = {1, 2, 6, 8} in the new elimination tree. The rows and columns of L can be
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636 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

partitioned according to the path P, as shown in Figure 6.1. We do not perform this
permutation, of course, but only illustrate it here. The algorithm that updates L and
x accesses only columns {1, 2, 6, 8} of L (the submatrix L22) and the same rows of x
and b.

Finally, consider the case discussed in this paper of modifying row and column k
of C. If we add row k, the original lower triangular system is

⎡
⎣ L11

0T 1
L31 0 L33

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ b1

b2
b3

⎤
⎦ .(6.1)

The new lower triangular system is

⎡
⎣ L11

l
T

12 1

L31 l32 L33

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ b1

b2
b3

⎤
⎦ ,(6.2)

where we assume b1 does not change, and the entries that change in b3 are a subset
of the path P. Let ∆b3 = b3 − b3. The term x2 can be computed as

x2 = b2 − l
T

12x1.

The (33)-blocks of (6.1) and (6.2) give the equations

L33x3 = b3 − L31x1,

L33x3 = (b3 − L31x1) + (∆b3 − l32x2).(6.3)

The change in the right-hand side of this system is ∆b3 − l32x2. Since the nonzero
pattern of l32 is a subset of P, this computation fits the same requirements for the
sparse change in x due to a sparse low-rank change in L and b, discussed above. The
row deletion case is analogous.

The number of flops in Algorithm 3 to modify the solution to Lx = b is roughly
the same as a rank-1 update to compute the modified L. However, the run time is
not doubled compared to a stand-alone rank-1 update. At step j, for each j in the
path P, the rank-1 update must read column j of L, modify it, and then write the
jth column of L back into memory. No extra memory traffic to access L is required
to compute the solution to the lower triangular system using (6.3). With current
technology, memory traffic can consume more time than flops. Thus, when modifying
the kth row and column of C, or performing a rank-r update/downdate to C, we can
update the solution to the lower triangular system at almost no extra cost. In our
target application [5], solving the linear system Cx = b, given its LDLT factorization,
can often be the dominant step. The method presented here can cut this time almost
in half since the forward solve time is virtually eliminated, leaving us with the time
for the upper triangular backsolve.

7. Experimental results. To illustrate the performance of the algorithms de-
veloped in this paper in a specific application, Table 7.1 gives the flops associated with
the solution of the four largest problems in the Netlib linear programming test set
using the LPDASA [5]. The problems passed to the solver were first simplified using
the ILOG CPLEX [2] version 7.0 presolve routine. An LP presolver [1] preprocesses
the problem by removing redundant constraints and variables whose values can be
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Table 7.1

Experimental results.

Problem Performance Forward Column Row
solve updates deletions

dfl001 number: 2629 87
n: 3881 avg. mod. rank 1.2 1

avg. mod. flops 2.43 × 106 1.64 × 106

avg. solve flops 1.46 × 106 2.03 × 106 1.64 × 106

pds20 number: 1736 65
n: 10214 avg. mod. rank 3.5 1

avg. mod. flops 3.37 × 106 2.13 × 106

avg. solve flops 1.11 × 106 1.21 × 106 2.12 × 106

ken18 number: 2799 23
n: 39856 avg. mod. rank 15.6 1

avg. mod. flops 61.7 × 103 2242
avg. solve flops 195.8 × 103 7155 2075

osa60 number: 71 277
n: 10209 avg. mod. rank 58.9 1

avg. mod. flops 4415 62
avg. solve flops 11.0 × 103 270 37

easily determined. Hence, the number of rows n of the problems listed in the first
column of Table 7.1 is much smaller than the number of rows in the original Netlib
problems.

The third column (labeled “Forward solve”) gives the average number of flops
that would have been required if forward solves were done in a conventional way, by
a forward elimination process. This number is simply twice the average number of
nonzeros in L. As the LP is solved, the sparsity of L changes slightly due to changes in
the current basis. Hence, we give the average flops needed for a conventional forward
solve, which can be compared with the average flops in modifying the solution using
the technique developed in this paper. The problems are sorted according to this
column.

The fourth column of the table, entitled “Column updates,” lists the number of
rank-r column updates performed (of the form C + WWT), the average rank r of
those updates, the flops required to modify L, and the flops required to modify the
solution to the forward solve when L changes as a result of a column update. Since
we have developed [4] a multiple-rank approach for performing column updates, the
average ranks listed are all greater than 1. They are near 1 for the densest problem
dfl001 and near 60 for the sparsest problem osa60. Recall that the column update
requires about 4r flops per entry in L that change. Modifying the forward solve takes
4 flops per entry in L that change. The average flops associated with the modification
of L is thus always greater than the flops associated with the forward solve update,
especially for multiple rank column updates. The conventional forward solve requires
2 flops for each nonzero entry in L, whether they change or not. In the worst case,
when all of the entries in L change, modifying the forward solve takes no more than
twice the work of the conventional forward solve, and a column update takes no more
than 2r times the work of a conventional forward solve.

The last column of the table, entitled “Row deletions,” lists the number of dele-
tions of a row (and column) from C, the average number of flops required to modify
L after deleting a row from C, and the average number of flops required to modify
the solution to the forward solve when L changes as a result of a row deletion. Since
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the row deletion algorithm developed in this paper is a single-rank process, the ranks
listed are all 1.

When the matrix L is very sparse (such as osa60), both the column update and
row deletion methods modify only a small portion of the matrix. The elimination tree
tends to be short and wide, with short paths from any node to the root. Thus, for
very sparse problems the conventional forward solve (which accesses all of L) takes
much more work than either the column update or the row deletion. For the osa60

matrix, the conventional forward solve takes about 40 times the work compared to
modifying the forward solve during a column update.

For a matrix L that is fairly dense (such as dfl001), the elimination tree tends to
be tall and thin, and the column updates or row deletions modify most entries in L. In
this case, the work required to modify the forward solve is more on average than that
of a full forward solve, but it is never more than twice the work. A combined update of
the factorization and forward solve cuts the memory traffic at least in half compared
with an update of L followed by a conventional forward solve. The update accesses
only the parts of L that change, whereas the conventional forward solve accesses all
of L. The performance of most modern computers is substantially affected by the
amount of memory transfers between cache and main memory, so cutting memory
traffic at least in half at the cost of at most doubling the flop count will normally lead
to an overall improvement in performance, even when the matrix is fairly dense.

8. Summary. We have presented a method for modifying the sparse Cholesky
factorization of a symmetric positive definite matrix C after a row and column of C
have been modified. One algorithm, the sparse row addition, is optimal. The corre-
sponding row deletion algorithm is not optimal but takes no more time than the row
addition. Although changing a row and column of C can be cast as rank-2 change of
the form C + w1w

T
1 − w2w

T
2 , the latter is impractical in a sparse context. We have

shown how to modify the solution to a lower triangular system Lx = b when the ma-
trix L changes as a result of either the row addition/deletion operation discussed here
or an update/downdate of the form C±WWT described in our previous papers [3, 4].
By postponing the symbolic downdate, the memory usage has been reduced by 25%
(assuming 8-byte floating-point values and 4-byte integers), compared with the col-
umn update/downdate methods described in [3, 4], which also store the multiplicities.
Together, the row addition/deletion algorithms and the column update/downdate al-
gorithms form a useful suite of tools for modifying a sparse Cholesky factorization
and for solving a sparse system of linear equations. Using these algorithms, the linear
programming solver LPDASA is able to achieve an overall performance that rivals,
and sometimes exceeds, the performance of current commercially available solvers [5].
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