
Accelerating Sparse Cholesky Factorization on
GPUs

Submitted to “IA3 Workshop on Irregular Applications: Architectures & Algorithms”,
to be held Sunday, November 16, 2014,

Colorado Convention Center, New Orleans, LA USA
http://cass-mt.pnnl.gov/irregularworkshop.aspx

Steven C. Rennich
Sr. Engr. DevTech Compute
NVIDIA, Santa Clara, CA

Email: srennich@nvidia.com

Darko Stosic
DevTech Compute Intern

CIn, UFPE
Recife, Brazil

Timothy A. Davis
Professor, CSE

Texas A&M University
College Station, TX

Abstract—Sparse direct factorization is a fundamental tool in
scientific computing. As the major component of a sparse direct
solver, it represents the dominant computational cost for many
analyses. While the substantial computational capability provided
by GPUs (Graphics Processing Units) can help alleviate this cost,
many aspects of sparse factorization and GPU computing, most
particularly the prevalence of small/irregular dense math and
slow PCIe communication, make it challenging to fully utilize
this resource.

In this paper we describe a supernodal Cholesky factorization
algorithm which permits improved utilization of the GPU when
factoring sparse matrices. The central idea is to stream branches
of the elimination tree (subtrees which terminate in leaves)
through the GPU and perform the factorization of each branch
entirely on the GPU. This avoids the majority of the PCIe
communication without the need for a complex task scheduler.
Importantly, within these branches, many independent, small,
dense operations are batched to minimize kernel launch overhead
and several of these batched kernels are executed concurrently to
maximize device utilization. Supernodes towards the root of the
elimination tree (where a branch involving that supernode would
exceed device memory) typically involve sufficient dense math
such that PCIe communication can be effectively hidden, GPU
utilization is high and hybrid computing can be easily leveraged.

Performance results for commonly studied matrices are pre-
sented along with suggested actions for further optimizations.

I. INTRODUCTION

Achieving high performance for sparse direct solvers in
general, and sparse Cholesky factorization in particular, is a
very well researched topic [1]. While the specific performance
of such factorization depends strongly on the characteristics
of the matrix being factored, highly efficient algorithms and
implementations exist for the CPU which can achieve a large
fraction of the CPU’s theoretically available flops for a wide
range of industrially important matrices.

Figure 1 shows modern GPUs are capable of dramatically
higher computation rates than CPUs [2] and many researchers
have investigated using GPUs to accelerate matrix factoriza-
tion. In the case of dense factorization of large matrices, the
results are impressive, with nearly the full computational capa-

Fig. 1. Historical trends of growth in computational performance, floating
point operations per second (flops), for CPUs and GPUs. [2]

bility of the GPU being fairly easily applied to the factorization
operation [3]. However, for the case of sparse factorization,
while the results can be considered encouraging, they are
mixed [4] [5] [6]. That is, for some matrices, particularly
large matrices with substantial fill, such that they contain a
relatively large amount of dense math, significant speedup
vs. the CPU can be achieved. However, for other matrices,
particularly those that are smaller or have substantially lower
fill ratios and consequently less dense math, relatively little or
no speedup in the factorization is achieved using GPUs.

Many problems of interest are in this last category: large
matrices for which the factor’s fill ratio is relatively low. A
prominent example would be the stiffness matrix arising from
a shell or beam Finite Element Analysis model in structural
mechanics (e.g. the analysis of airplanes or automobiles).

Consequently, the objective of this work is to identify means



TABLE I
TEST MATRICES

Matrix dimension nnz in A fill ratio
Fault 639 638,802 27,245,944 78.5
nd24k 72,000 28,715,634 22.6
inline 1 503,712 36,816,170 9.2
Emilia 923 923,136 40,373,538 82.7
bonesS10 914,898 40,878,708 9.7
ldoor 952,203 42,493,817 6.0
bone010 986,703 47,851,783 29.3
Hook 1498 1,498,023 59,374,451 51.6
Geo 1438 1,437,960 60,236,322 78.7
Serena 1,391,349 64,131,971 83.1
audikw 1 943,695 77,651,847 31.7
Flan 1565 1,564,794 114,165,372 24.9

by which sparse Cholesky factorization, defined as

A = LLt

where the sparse, SPD (symmetric positive definite) matrix
A is factored as the product of a sparse lower triangular
matrix, L, and its transpose, can be further accelerated using
GPUs. This investigation is carried out in the context of the
left-looking, supernodal sparse Cholesky code CHOLMOD
[7], part of the SuiteSparse [8] family of sparse solvers,
using GPUs from NVIDIA. However, we expect many of the
findings and algorithmic details will be applicable to GPU
acceleration of many other sparse factorization algorithms.

The scope of this paper is to demonstrate how a novel
algorithm can alleviate the performance issues observed in
previous work, illustrate its advantages using model problems,
and then demonstrate some of the algorithm’s performance
potential when implemented within a complete, mature, high-
performance sparse solver code.

II. SETUP

For this work we emphasize testing on recent hardware, for
both the CPU and GPU, and on a wide variety of industrially-
relevant matrices. The test matrices were all taken from the
Florida Sparse Matrix Collection [9]. As we will be consid-
ering only Cholesky factorization here, tests are performed
using the 100 largest, real, SPD matrices available from the
collection. More detailed performance results are presented for
the 12 largest of these matrices listed in Table I, where the fill
ratio is the ratio of number of non-zeros (nnz) in L divided
by the number of non-zeros in A.

For all test results presented in this paper, the hardware used
is:

CPU: Dual-socket Intel Xeon (Ivy Bridge) E5-2690 v2 @
3.00 Ghz. using Intel Parallel Studio 2013 [10].

GPU: NVIDIA Tesla K40 with maximum boost clocks of
3004 Mhz. (memory) and 875 Mhz. (core) using
CUDA 6.5 [11].

In this work, with the exception of some trends presented
in Figure 1, we are only concerned with double-precision (dp)
arithmetic.

Fig. 2. Schematic showing BLAS/LAPACK routines used in dense block
factorization. Brown denotes a factorized portion of the matrix.

Sparse matrix factorization typically makes extensive use
of the “Basic Linear Algebra Subprograms” (BLAS) [12]
and “Linear Algebra Package” (LAPACK) [13] libraries. For
best performance, highly optimized versions of these libraries
have been used on both the CPU (Intel MKL [10]) and GPU
(NVIDIA cuBLAS [14]).

The version of CHOLMOD included in the 4.3.1 version of
the publicly-available SuiteSparse package is used to provide
CPU-only and CPU+GPU reference performance results. In
all cases the Metis 4.0 fill-reducing reordering was used. [15]

III. BACKGROUND AND PREVIOUS WORK

Here we only briefly discuss the mechanics of sparse matrix
factorization. Figure 2 is a schematic showing the partial
Cholesky factorization of a symmetric dense matrix and the
BLAS / LAPACK routines that are used. After the partial
factorization, the tan portion of the matrix has been factored
and the green portion, the Schur complement, remains to be
factorized. Any dense SPD matrix can be factored by repeated
application of this operation. Any sparse SPD matrix can
also be factored by extracting dense sub-problems (fronts or
supernodes) and applying exactly the same technique. In either
case, the fact that factorizing of one portion of the matrix, A11

and A21, updates the values in other portions, A22, implies
that this block factorization must be performed in some order,
typically represented by an elimination tree [16].

The specific double-precision BLAS and LAPACK routines
used in Cholesky factorization are:

DPOTRF : direct Cholesky factorization of a dense
matrix (LAPACK)

DTRSM : triangular system solution (BLAS)
DGEMM/DSYRK : general/symmetric matrix-matrix

multiplication (BLAS)

The important point is that most of the factorization occurs
in BLAS operations involving dense matrices which can
achieve very high performance on both the CPU and the
GPU. Consequently, a simple approach to accelerating a sparse
factorization is to just perform the BLAS routines on the GPU.

However, when the input matrices to these BLAS operations
are ‘small’, there are some issues which prevent the routines
from actually being accelerated on the GPU. (Illustrated here
using the DGEMM operation - the most common BLAS



Fig. 3. Ratios of flops (black) and DGEMM calls (dashed red) with an inner
dimension k below a specific value for the audikw 1 matrix.

operation used in sparse factorization. For clarity, note that
DGEMM involves multiplying an m × k matrix by a k × n
matrix to get an m× n matrix as a result.)

1) Computational intensity: When the inner dimension, k,
of the DGEMM is small, the operation on the GPU is
bound by device memory bandwidth which prevents the
operation from achieving the GPU’s peak performance.

2) Device utilization: When the DGEMM output matrix
size is small (m × n), there is insufficient parallelism
to fully utilize the GPU.

3) PCIe bandwidth: The time required to communicate the
input/output data between the CPU and GPU via PCIe
will reduce the effective performance.

4) Launch latency: Every kernel launch requires some
amount of launch overhead, typically 4-15 µsec. This
will further reduce effective performance.

For these reasons, a large or even dominant portion of the
dense math encountered when factorizing a matrix is too small
to be easily accelerated on the GPU. To illustrate this, figure
3 plots the ratio of a) flops, and b) DGEMM calls, performed
with an inner dimension k below a specific value vs. the total
number of flops or DGEMM calls for the audikw 1 matrix,
extracted from the CPU version of CHOLMOD. Most of the
flops are in DGEMM calls with large k, but most of the
DGEMM calls have small k. Specifically, for audikw 1, 50%
of the flops occur in DGEMM calls with an inner dimension,
k > 1024 and and will achieve performance of more than 1
Tflops on the GPU. However, 50% of the calls to DGEMM are
made with an inner dimension k < 128 and their performance
on the GPU will be much worse.

Distributions for DTRSM and DSYRK behave somewhat
differently (but DGEMM is the dominant operation) and
the distributions will be different for different matrices. The
audik 1 matrix is in the middle of the spectrum. Others, like
Serena, with a high fill-in ratio, will have a greater portion
of the flops in operations with k > 1024 and fewer calls to
DGEMM with k < 128. While ldoor, with a very low fill-in
ratio, will be the opposite.

Fig. 4. Previous results showing comparison of factorization rates using
CHOLMOD from SuiteSparse 4.3.1 using the CPU (blue) vs. the CPU+GPU
(green) from [18]. This work made extensive effort to overlap all of a) device
computation, b) host computation and c) PCIe communication.

The point is that not all BLAS operations can be accelerated
by simply moving them to the GPU. So researchers have
constructed a variety of schemes to move only those BLAS
operations that can be accelerated to the GPU and to try
to overlap PCIe communication with GPU computation and
CPU computation as much as possible [17] [6] [5]. Some
relevant results from this type of effort are shown in figure
4 from [18] which focused on hybrid computing and hiding
(aka shadowing) PCIe communications behind GPU and CPU
computation as much as possible. Here it can clearly be seen
that matrices with large fill ratios, which consequently tend
to have the majority of the flops occurring in BLAS calls
with large input matrices and with large inner dimensions
k, (high computational intensity, and plenty of parallelism to
fully utilize the GPU) show good acceleration on the GPU.
Conversely, those matrices with the lowest fill ratios show
very modest levels of acceleration on the GPU since the
factorization of those matrices is dominated by small BLAS
operations which remain on the CPU. This is the primary issue
we seek to remedy in the present work.

IV. ALGORITHM

To construct an algorithm which minimizes the detrimental
effects of 3 of the 4 “small dense BLAS” issues itemized in
the previous section, we observe that:

1) ‘batching’ (using a single kernel to perform many BLAS
operations) can be used to minimize the effect of launch
latency

2) concurrent kernels (i.e. simultaneous execution of mul-
tiple kernels on the GPU - possible when an individual
kernel isn’t utilizing all of the GPU’s resources) can be
used to maximize GPU utilization



Fig. 5. Comparison of the performance of a series of host-interface DGEMMs,
vs. a series of device-interface DGEMMs for m,n, k = 16 showing the effect
of PCIe communication and kernel launch latency. All kernels are launched
in succession - there are no intervening computations. (Note that the two
cases were not run concurrently, but time scales are identical and profiles are
stacked vertically for comparison purposes.

3) by placing a large amount of matrix data on the GPU
and performing all of the factorization steps (DPOTRF,
DTRSM, DGEMM, DSYRK) on the GPU, communica-
tion across PCIe can be almost completely avoided.

To illustrate this, figure 5 shows two timelines (generated
using the Nvidia Visual Profiler [19]) performing repeated
DGEMMs with m,n, k = 16, using cuBLAS [14]. The first
shows the profile of host-based DGEMMs where the A, B
and C matrices need to be first copied to the GPU and
then the result needs to be copied back to the CPU. Each
DGEMM kernel takes approximately 6 µsec and achieves 1.2
Gflops (dp). However, the time required for PCIe commu-
nications, and the approximately 10 µsec of launch latency
between kernels, results in an effective performance of only
100 Mflops. The second timeline in the same figure shows
repeated DGEMMs using only data on the GPU and avoiding
PCIe communication. Launch latency is still present, but by
avoiding all PCIe communications (and the launch latency for
the memory copies) effective performance is accelerated by
5x and rises to 500 Mflops.

Launch latency can be almost entirely eliminated by ’batch-
ing’ small BLAS or LAPACK operations. That is, using a
modified kernel, which takes lists of all input arguments
(such as m,n, k dimensions, pointers to A,B and C matrices,
etc. for DGEMM) and loops through the list performing
many independent dense computations with a single kernel
launch. Figure 6 shows two timelines, the first being the
case of a single ’batched’ DGEMM kernel computing 8192
individual DGEMMs with m,n, k = 16. For this batched case,
elimination of launch latency improves aggregate performance
to 1.2 Gflops. The performance of such small DGEMM kernels
is limited since they can utilize only a small fraction of
the GPU’s resources. But this permits multiple instances of
such a batched DGEMM kernel to be executed simultane-
ously (concurrent kernels using CUDA streams). The lower
timeline in figure 6 shows the case of four batched DGEMM
kernels, each computing 2048 DGEMMs for which aggregate
performance rises to 4.8 Gflops. Note however, the case of four
concurrent kernels is used only for visualization purposes. The
optimal number of concurrent kernels for this case is 64 (each

Fig. 6. Comparison of the performance of a single batch of 8192 DGEMMs
with m,n, k = 16 vs. the same set of DGEMMS split into four batches
and run concurrently on the GPU. (Note that the two cases are not run
concurrently, but time scales are identical and timelines are stacked vertically
for comparison purposes.

kernel computing a batch of 128 DGEMMs) which gives a
performance of 34 Gflops - a 340-fold improvement over the
initial implementation.

While most effective for DGEMM, this improved perfor-
mance of BLAS routines obtained through batching and con-
current kernels applies to DTRSM, DSYRK and DPOTRF as
well and this forms a fundamental component of the proposed
algorithm.

However, to take advantage of such batching and concur-
rency, large collections of independent dense BLAS operations
are needed. As well, since many matrices of interest have
factors which are too large to fit in GPU memory, any batching
and concurrency scheme must also permit streaming the matrix
data through the device so that matrices of any size can be
accommodated.

Figure 7 shows a simple schematic of a supernode elimina-
tion tree as might be seen in a Cholesky factorization. Circles
represent supernodes, lines represent parent/child relationships
and the root node is at the top of the figure. All of the
independent supernodes are grouped in ‘levels’ shown as black
boxes. The factorization of any supernode is only dependent
on the factored supernodes in previous levels. Consequently,
within a level all supernodes are independent and can be
factored simultaneously. High computational performance will
be achieved by computing all of the independent BLAS and
LAPACK operations within a level using concurrent, batched
kernels.

Figure 8 shows the number of supernodes and the sum of
DGEMM and DSYRK operations in each independent level
for the audikw 1 model. Clearly the lowest level, with 24,700
supernodes and 36,068 DGEMM or DSYRK operations, has
more than enough to fill many batched, streamed kernels. For
higher levels, the number of supernodes per level drops off
rapidly with the top 10 levels having only one supernode.
While the number of DGEMM or DSYRK operations falls for
the higher levels as well, it never drops below 920. For the
higher levels the average size of the supernodes is larger which
means both a) the individual BLAS operations run longer so
it takes fewer operations to amortize the kernel launch latency
and b) the BLAS operations are larger and fill the device more
quickly so fewer concurrent kernels are needed to completely



Fig. 7. Simple diagram of an elimination tree for Cholesky factorization.
Circles represent supernodes and lines represent parent/child dependencies.
Red arrows show how the factored red supernode, a descendant of each of
the green supernodes, would need to be assembled. The blue box shows a
possible branch of the elimination tree.

Fig. 8. Number of independent supernodes (grey) and number of
DGEMM+DSYRK operations (green) in each independent level of the elim-
ination tree for audikw 1.

utilize the device. The result is that for the matrices studied,
there are plenty of BLAS and LAPACK operations at all levels
to support effective batching and concurrency.

The remaining issue to resolve is the case where the factor
is too large to fit on the GPU. We solve this by only copying
a ‘branch’ of the original matrix to the GPU, such that the
factored branch fits on the GPU. (Where a branch is a subtree
with terminates in leaves.) This is shown in Figure 7 by the
dashed blue box. Assembling any supernode in the branch
might require the factored supernodes in the levels below. By
placing a branch of the elimination tree on the GPU, thus
ensuring that any lower-level result is already present on the
GPU, and performing all the factorization operations on the
GPU, this entire branch can be factored without requiring any
communication with the CPU across the PCIe bus.

For the case of large matrices, multiple branches are simply
streamed through the GPU. For those nodes of the elimination
tree which are above any branches (that is, the factor of a
branch containing these supernodes would be too large to
fit on the GPU) existing methods, particularly those from
[18], are used for factorization. While these supernodes might
still have many small supernodes as descendants (requiring
small BLAS and LAPACK operations) they very likely have

branches← scan elimination tree for A to construct
appropriately sized branches

for all branches do
levels← arrange branch supernodes into levels
copy unfactored A data in branch to GPU
for all levels do

using concurrent, batched kernels:
initialize buffers and construct all scatter maps
assemble supernodes (DSYRK)
assemble lower panels (DGEMM)
factor supernodes (DPOTRF)
factor lower panels (DTRSM)

copy factored supernodes back to CPU
end for

end for
for all remaining supernodes do

simultaneously:
assemble small descendants on CPU
assemble large descendants on GPU

block factorization of supernode diagonal block
on CPU and, depending on size, GPU

block factorization of lower panel on CPU or
GPU depending on size

end for

Fig. 9. Sparse supernodal Cholesky factorization algorithm.

sufficient large operations, such that both CPU computation
and PCIe communication can be executed concurrently with
(hidden behind) computation on the GPU.

Summarizing the algorithm, if there are GPU versions of the
required BLAS and LAPACK routines, and a few additional
GPU kernels for mapping and scattering, once the A data
pertaining to a branch of the elimination tree has been copied
to the GPU, the entire branch can be factored without any
need for PCIe communication, thus completely eliminating
the biggest impediment previously encountered when accel-
erating sparse Cholesky factorization on the GPU. To achieve
high computational performance, BLAS/LAPACK operations
within an independent level of the elimination tree can be
batched to minimize kernel launch overhead and these batched
kernels can be executed concurrently to fully utilize the GPU’s
computational resources. Large matrices are decomposed into
multiple branches which are streamed through the GPU. The
factorization of supernodes which do not fit into a branch
due to limited GPU memory are expected to involve sufficient
dense math such that existing GPU accelerated factorization
methods perform well.

The suggested supernodal Cholesky factorization algorithm
is presented in figure 9.

V. IMPLEMENTATION

A private version of CHOLMOD has been modified to
develop and test the performance this algorithm. The benefit
of starting with a complete, industrial-strength, direct sparse



factorization library is that we can be confident the perfor-
mance observed is representative of what an end-user might
see - no simplifying assumptions or limitations. However, it
also means that the complete implementation is both quite
involved and, as yet, by no means optimal. Only the most
important implementation aspects are covered here.

The first implementation issues are the code and data struc-
ture modifications required to manage dividing the existing
elimination tree into branches and ordering the supernodes
into levels. That process is straightforward using the existing
data structures describing the elimination tree.

GPU-specific work is required to construct the batched
versions of DPOTRF, DTRSM, DSYRK and DGEMM which
accept lists of pointers as inputs and which loop sequentially
over the lists to perform all the necessary computations. In
the present case this was done by just creating minimally
modified versions of the cuBLAS code for DTRSM, DSYRK
and DGEMM. An NVIDIA-internal version of DPOTRF has
been modified in a similar manner. Such modifications are not
difficult, but it is recognized that other developers might not
have access to the necessary GPU source code. An aspect of
this research is to suggest considering the creation of a library
of such batched routines.

While the branches of the elimination tree are being factored
on the GPU, the sole task of the CPU is to package the
BLAS/LAPACK operation into batches and submit the batched
kernels to the GPU. This can be done in a large number of
different ways. In the present case the levels in the elimination
tree have been divided into three categories, with each category
being batched in a different manner.

• Lowest level: The supernodes in the lowest level of the
elimination tree have no descendants. Hence they do not
require assembly and do not call DSYRK or DGEMM.
In this case only DPOTRF and DTRSM (and supporting
mapping and initialization) operations are batched. Oper-
ations are grouped in batches of 16.

• Mid levels: In the mid levels the supernodes have a few
descendants, but not a sufficient number to effectively fill
a batch. So batches are created by aggregating operations
required for 16 supernodes. That is, all of the operations
to assemble the descendants for 16 supernodes form one
batch.

• Upper levels: Levels with 64 or fewer supernodes, using
batches of 16 supernodes at a time, would not permit
sufficient concurrency. So in these levels the batches are
formed by the descendants of just each individual supern-
ode. Supernodes in the higher levels typically have many
descendants. When there are fewer than 4 supernodes,
multiple batches are created from the descendants of each
supernode.

For all levels, concurrency is achieved by simultaneously
executing batches/operations in 16 CUDA streams.

When performing these batched BLAS operations, tempo-
rary GPU memory buffers are required to store intermediate
output. For example, the Schur complement update from a

descendant before it gets assembled. In the current implemen-
tation, these temporary buffers are just whatever GPU memory
is not occupied by the factor of the branch or the supernode
maps. So the size of the branches are adjusted to be as large
as possible such that the factor, plus the required temporary
memory, fills the available GPU memory.

To present just a snapshot of how this works, figure 10
shows a timeline of supernodes from the lowest-level of the
elimination tree (i.e. leaves) of the inline 1 matrix being
factored without the benefit of batching (but using 4 CUDA
streams for concurrency). This shows the full factorization
(DPOTRF and DTRSM) of 32 supernodes (plus the beginning
operations for 3 more supernodes). Note the large amount
of idle time (whitespace) and limited concurrency (lack of
overlap between streams) due to launch latency. In the figures
grey and white backgrounds represent different CUDA streams
used achieve concurrency. Colored blocks represent compute
kernels. Gold blocks represent PCIe communication - all but
the very leftmost gold blocks are GPU to CPU communication
copying the factored supernodes back to the CPU.

By contrast, figure 11 shows the timeline generated from
the factorization of 128 leaf supernodes of the inline 1 matrix
when performed in 8 batches of 16 supernodes. The horizontal
scale (time) is not the same for the two timelines (figures 10
and 11). The point is that there is relatively much less idle
time and relatively much greater concurrency as compared to
the non-batched case shown in figure 10. The performance for
the batched case shown is 4.8x that of the non-batched case.
However, for performance benchmarking, much larger batches
and many more streams are used - the simpler cases are shown
here only for clarity. Timelines for the mid and upper levels
are not shown, but the effect is the same.

It must be emphasized that this version of CHOLMOD,
modified to leverage the current branches algorithm, did not
exploit CPU/GPU hybrid processing when the branches of
the elimination tree were being factored on the GPU. Only
those supernodes which were not included in branches lever-
aged hybrid computing. That is, the CPU was used to sort
BLAS/LAPACK operations, assemble them into batches and
launch kernels on the GPU to factor a branch. However, while
doing this, which was not computationally intensive, the CPU
was not being used to perform any actual factorization com-
putations. Implementing hybrid computing to better leverage
this idle CPU resource should provide a straightforward way
to achieve significant further performance improvements.

VI. RESULTS

Figure 12. shows the performance (Gflops) achieved for
the sparse factorization, using the described algorithm imple-
mented in CHOLMOD vs. the previous (SuiteSparse 4.3.1)
GPU-accelerated version of CHOLMOD and vs. the CPU
version of CHOLMOD for the 12 largest real SPD matrices
from the Florida Sparse Matrix collection. For the matrices
whose factors had the lowest fill ratios, boneS10, inline 1
and ldoor, for which better GPU acceleration was the primary
motivation for this work, the GPU performance has risen



Fig. 10. NVIDIA Visual Profiler output showing the factorization of 32 leaf supernodes of the inline 1 matrix for the case no batching. Alternating grey and
white backgrounds indicate separate CUDA streams. Colored blocks represent compute kernels (as labeled). Gold blocks represent GPU↔CPU communication.

Fig. 11. NVIDIA Visual Profiler output for 128 leaf supernodes of the inline 1 matrix in batches of 16. Alternative grey and white backgrounds indicate
separate CUDA streams. Colored blocks represent compute kernels (as labeled). Gold blocks represent GPU↔CPU communication.

dramatically, from an average of 1.2x vs. the CPU to an
average of 2.2x vs the CPU. This clearly demonstrates that the
algorithm is achieving its goal of accelerating a much greater
portion of the factorization computation on the GPU.

Compared to the previous version of GPU accelerated
results, the peak performance (Serena) rises from 684 Gflops
to 783 Gflops and demonstrates that, even for large matrices
with substantial fill, use of the current algorithm results in
a significant performance benefit. The peak speedup for the
GPU accelerated factorization rises from 3.5x to 4.1x vs. the
CPU-only version.

Speedups over the CPU-only case exist for many matrices
beyond what was presented in Figure 12. Figure 13 shows the
current GPU+CPU speedup vs. the CPU-only performance for
the 100 largest SPD matrices in the Florida Collection, ordered
by size of A. (Results for 6 of the 100 matrices are missing
due to errors in the test version of CHOLMOD.) The current
method uses the GPU to successfully accelerate the majority
of the 100 matrices studied and, in fact, works well even for
matrices that are quite small. As a point of reference, matrix
number 30, Dubcova2, which is roughly on the boundary
separating poorly accelerated matrices from well accelerated
matrices, has a dimension of only 65,025 and a fill ratio of
only 5.4. The average speedup vs. the CPU for all 94 tested
matrices is 1.75x and the geometric mean is 1.6x. For matrices
number 31 and higher, the average and geometric means of
the speedups are both approximately 2x.

Figure 14 shows the speedup of the algorithm presented
here vs. the previous best CPU+GPU accelerated algorithm
(SuiteSparse 4.3.1). Clearly there are some performance re-
gressions but, except for the smallest 30 matrices, the general
trend is again good speedup. Average speedup for the 94 tested
matrices is 1.2x. Average speedup for matrices 31 and greater

Fig. 12. Comparison of Gflops achieved for the sparse factorization between
CHOLMOD 4.3.1 CPU-only (blue), CHOLMOD 4.3.1 CPU+GPU (light
green) and CPU+GPU for the current algorithm for the 12 largest real SPD
matrices in the Florida Sparse Matrix collection.

is 1.3x.

VII. CONCLUSIONS AND FUTURE WORK

Previous work has shown that, while it is relatively easy
to achieve GPU acceleration for large matrices whose fac-
tors contain substantial fill, basic methods are insufficient to
achieve compelling speedups when factoring matrices with
smaller fill ratios.



Fig. 13. Speedup achieved using the current algorithm vs. the CPU-only
version for the 100 largest real SPD matrices from the Florida Sparse Matrix
collection.

Fig. 14. Speedup achieved using the current algorithm vs. the previous
CPU+GPU algorithm (SuiteSparse 4.3.1) for the 100 largest real SPD matrices
from the Florida Sparse Matrix collection.

We have proposed that better performance can be achieved
by a) streaming branches of the elimination tree through the
GPU to accommodate matrices of any size, b) performing
the entire factorization of that branch on the GPU to greatly
reduce PCIe communication, c) batching collections of small
BLAS and LAPACK operations to minimize launch latency
and by d) executing multiple such batches concurrently to
maximize GPU utilization. A version of CHOLMOD which
been modified with the resulting algorithm has been used
to demonstrate the performance benefits. For those matrices
where the previous CPU+GPU algorithm performed the worst,
the current algorithm performs as much as 1.9x better, and 2.2x
better than the CPU alone. Even large matrices with relatively
large fill ratios showed significant improvements of 1.15x vs.
the previous GPU algorithm and 4.1x vs. the CPU alone. An
average performance gain of 1.75x vs. the CPU alone was
observed for the 94 matrices tested.

This algorithm has been tailored for and performance bench-
marked using a left-looking supernodal Cholesky factorization

code. However, it is expected that that fundamental optimiza-
tions could likely be applied to other factorization methods
as well (right-looking/multi-frontal, LU, pivoting, etc.) since
they all still involve many small dense BLAS and LAPACK
operations. Reducing PCIe communications overhead and im-
proving effective BLAS and LAPACK operation performance
should benefit any GPU accelerated sparse direct factorization.

While the performance improvement achieved so far is
significant, there is substantially more that can be done. Most
particularly, hybrid computing could be enabled to leverage the
CPU’s computing resources while a branch is being factored
on the GPU. That is, the CPU could factor one branch while
the GPU is factoring another. In that case the current GPU
performance would be almost completely additive to the CPU-
only performance meaning that, for matrices with low fill
ratios, the speedup vs. the CPU should be closer to 3x (rather
than the current 2x).

The other straightforward improvement is to leverage multi-
GPU computing. The mechanism of splitting the elimination
tree into branches naturally lends itself to sending differ-
ent branches to different GPUs such that multiple branches
are factored simultaneously. For large matrices with many
branches, where each branch fills the GPU, we expect this
would work well. For smaller matrices, care would need to be
taken when creating the branches to trade-off load-balancing
(easier with smaller branches) with GPU efficiency (larger
branches will lead to larger batches of BLAS operations and
greater efficiency on the GPU).

REFERENCES

[1] N. I. M. Gould, J. A. Scott, and Y. Hu, “A numerical evaluation of
sparse direct solvers for the solution of large sparse symmetric linear
systems of equations,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1236463.1236465

[2] NVIDIA, “CUDA C programming guide,” http://docs.nvidia.com/cuda/-
pdf/CUDA C Programming Guide.pdf, 2014.

[3] M. Fatica, “Accelerating linpack with cuda on heterogenous
clusters,” in Proceedings of 2Nd Workshop on General Purpose
Processing on Graphics Processing Units, ser. GPGPU-2. New
York, NY, USA: ACM, 2009, pp. 46–51. [Online]. Available:
http://doi.acm.org/10.1145/1513895.1513901

[4] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and
A. Shringarpure, “On the limits of gpu acceleration,” in Proceedings
of the 2Nd USENIX Conference on Hot Topics in Parallelism, ser.
HotPar’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 13–13.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1863086.1863099

[5] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury,
“Multifrontal Factorization of Sparse SPD Matrices on GPUs,” in IEEE
International Parallel & Distributed Processing Symposium. IEEE,
January 2011.

[6] R. Lucas, G. Wagenbreth, J. Tran, and D. Davis, “Multifrontal sparse
matrix factorization on graphics processing units,” 2012.

[7] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam,
“Algorithm 887: Cholmod, supernodal sparse cholesky factorization
and update/downdate,” ACM Trans. Math. Softw., vol. 35,
no. 3, pp. 22:1–22:14, Oct. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1391989.1391995

[8] T. A. Davis, “SuiteSparse,” http://www.suitesparse.com, 2014.
[9] T. A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049663

[10] Intel, “Intel Parallel Studio XE,” https://software.intel.com/en-us/intel-
parallel-studio-xe/, 2013.



[11] NVIDIA, “CUDA Toolkit,” https://developer.nvidia.com/cuda-toolkit,
2014.

[12] Netlib, “BLAS (Basic Linear Algebra Subprograms),” http://www.-
netlib.org/blas.

[13] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen,
“Lapack: A portable linear algebra library for high-performance
computers,” in Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing, ser. Supercomputing ’90. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1990, pp. 2–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=110382.110385

[14] NVIDIA, “CUBLAS LIBRARY,” http://docs.nvidia.com/cuda/pdf/-
CUBLAS Library.pdf, 2014.

[15] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, Dec. 1998. [Online]. Available:
http://dx.doi.org/10.1137/S1064827595287997

[16] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2). Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2006.

[17] G. Krawezik and G. Poole, “Accelerating the ansys direct sparse solver
with gpus,” 2009.

[18] S. C. Rennich, T. A. Davis, and P. Vandermersch, “GPU
Acceleration of Sparse Matrix Factorization in CHOLMOD,” in GPU
Technology Conference 2014. Nvidia Corp., March 2014. [Online].
Available: http://on-demand.gputechconf.com/gtc/2014/presentations/
S4201-gpu-acceleration-sparse-matrix-factorization-cholmod.pdf

[19] NVIDIA, “PROFILER USER’S GUIDE,” http://docs.nvidia.com/cuda/-
pdf/CUDA Profiler Users Guide.pdf, 2014.


