
Write Quick, Run Fast: Sparse Deep Neural
Network in 20 Minutes of Development Time via

SuiteSparse:GraphBLAS
Timothy A. Davis∗, Mohsen Aznaveh†, and Scott Kolodziej‡

Dept. of Computer Science and Engineering
Texas A&M University

College Station, TX
Email: ∗davis@tamu.edu, †aznaveh@tamu.edu, ‡scottk@tamu.edu

Abstract—SuiteSparse:GraphBLAS is a full implementation
of the GraphBLAS standard, which provides a powerful and
expressive framework for creating graph algorithms based on the
elegant mathematics of sparse matrix operations on a semiring.
Algorithms written in GraphBLAS achieve high performance
with minimal development time. Using GraphBLAS, it took
a mere 20 minutes to write a first-cut computational kernel
that solves the Sparse Deep Neural Network Graph Challenge.
Understanding the problem description and file format, writing
code to read in the files that define the problem, and comparing
our results with the reference solution took a full day. The kernel
consists of a single for-loop around 4 lines of code, all of which
are calls to GraphBLAS, and it worked perfectly the first time
it was compiled. The sequential performance of the GraphBLAS
solution is 3x to 5x faster than the MATLAB reference imple-
mentation. OpenMP parallelism gives an additional 10x to 15x
speedup on a 20-core Intel processor, 17x on an IBM Power8
system, and 20x on a Power9 system, for the largest problems.
Since SuiteSparse:GraphBLAS does not yet employ MPI, this
was added at the application level, a development effort that
took one week, primarily because of difficulties in resolving a
load-balancing issue in the MPI-based parallel algorithm.

Index Terms—graph algorithms, sparse matrix computations

I. INTRODUCTION

The GraphBLAS standard [1] defines sparse matrix and
vector operations on an extended algebra of semirings. The
operations are useful for creating a wide range of graph
algorithms. Kepner and Gilbert [2] provide a framework for
understanding how graph algorithms can be expressed as
matrix computations. This approach leads to high perfor-
mance, since the library can then compute bulk operations on
adjacency matrices. User code need not deal with individual
nodes and edges. Writing graph algorithms with GraphBLAS
reduces development time as well, as illustrated by the results
in this paper.

To demonstrate the utility of GraphBLAS in solving large-
scale computational problems quickly from both a perfor-
mance and development standpoint, we used it to solve the

With support from NSF CNS-1514406, NVIDIA, Intel, MIT Lincoln Lab,
Redis Labs, and IBM. Portions of this research were conducted with the
advanced computing resources provided by Texas A&M High Performance
Research Computing.

Sparse Deep Neural Network Graph Challenge [3]. Not ac-
counting for the software development time to understand the
problem format, to write the code to read in the problem
into GraphBLAS matrices and to check the results with the
posted solutions, writing the computational kernel for solving
the entire sparse deep neural network took only 20 minutes of
programmer time. The kernel worked correctly the first time
it was compiled.

Sparse Deep Neural Network Graph Challenge

Deep neural networks have become highly effective tools
throughout the fields of artificial intelligence and machine
learning. However, the computational time and effort required
to solve these networks has increased as they have grown
larger. To combat this, pruning and sparse coding methods
were introduced to remove unimportant connections in these
networks, decreasing the amount of computation required for
forward propagation of values through the network [4]–[6].

The sparse deep neural network problem (Figure 1) involves
computing an output vector (Yn) based on an input vector
(Y0) and a deep neural network consisting of n layers of
a fixed number of neurons in each layer. The connections
between each layer of neurons are sparse, meaning that not
all inter-neuronal connections are present (or, alternatively,
many of the inter-neuronal connections have zero weight) [7]–
[9]. The values of each layer are computed using a rectified
linear unit (ReLU) computation. In practice, there are many
independent input vectors, yielding a matrix of inputs; each
layer computation is thus a sparse matrix-matrix multipli-
cation. The Sparse Deep Neural Network Graph Challenge
describes several instances of the sparse deep neural network
problem, which we solve using GraphBLAS [3].

II. OVERVIEW OF GRAPHBLAS OBJECTS, METHODS, AND
OPERATIONS

SuiteSparse:GraphBLAS provides a collection of methods
to create, query, and free each of its nine different types of
objects. Once these objects are created they can be used in
mathematical operations (not to be confused with the how the
term operator is used in GraphBLAS). The nine types are



Fig. 1. Sparse Deep Neural Network Problem

described below. User applications can also define their own
data types, operators, monoids, and semirings.

(1) Types: A GraphBLAS type (GrB_Type) can be any of
11 built-in types (Boolean, integer and unsigned integers of
sizes 8, 16, 32, and 64 bits, and single and double precision
floating point). In addition, user-defined scalar types can
be created from nearly any C typedef. The sparse deep
neural network problem is solved in GraphBLAS using single
precision floating-point.

(2) Unary operators: A unary operator (GrB_UnaryOp) is
a function z = f(x). The sparse deep neural network problem
requires a user-defined unary operator as part of the ReLU
threshold.

(3) Binary operators: Likewise, a binary operator
(GrB_BinaryOp) is a function z = f(x, y), such as z =
x + y or z = xy. The floating-point plus and times operators
were used, but only as part of the two semirings, for the sparse
DNN.

(4) Select operators: The GxB_SelectOp operator is a
SuiteSparse extension to the GraphBLAS API. It is used in the
GxB_select operation to select a subset of entries from a
matrix, like L=tril(A) in MATLAB. This operator was also
used for the ReLU phase on the sparse deep neural network.

(5) Monoids: The scalar addition of conventional ma-
trix multiplication is replaced with a monoid. A monoid
(GrB_Monoid) is an associative and commutative binary
operator z = f(x, y) where all three domains are the same (the
types of x, y, and z) and where the operator has an identity
value o such that f(x, o) = f(o, x) = x. Performing matrix
multiplication with a semiring uses a monoid in place of the
“add” operator, scalar addition being just one of many possible
monoids. The sparse DNN relies only on the plus monoid.

(6) Semirings: A semiring (GrB_Semiring) consists of a
monoid and a “multiply” operator. Together, these operations
define the matrix “multiplication” C = AB, where the
monoid is used as the additive operator and the semiring’s
“multiply” operator is used in place of the conventional scalar

TABLE I
SUITESPARSE:GRAPHBLAS OPERATIONS USED IN SOLVING THE SPARSE

DEEP NEURAL NETWORK GRAPH CHALLENGE

function name description GraphBLAS notation
GrB_mxm matrix-matrix mult. C〈M〉 = C�AB
GrB_apply apply unary op. C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GxB_select apply select op. C〈M〉 = C�f(A,k)

w〈m〉 = w�f(u,k)
GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set-union w〈m〉 = w � (u⊗ v)
GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(i, j)]

multiplication in standard matrix multiplication via the plus-
times semiring. The sparse DNN requires two different semir-
ings: the conventional plus-times, and a plus-plus semiring,
both over the single-precision floating-point type.

(7) Descriptors: A descriptor GrB_Descriptor with
parameter settings for GraphBLAS operations.

(8) Vectors: A sparse vector, GrB_Vector.
(9) Matrices: A sparse matrix, GrB_Matrix.

GraphBLAS methods and operations

The matrix (GrB_Matrix) and vector (GrB_Vector)
objects include additional methods for setting a single entry,
extracting a single entry, making a copy, and constructing
an entire matrix or vector from a list of tuples. The tuples
are held as three arrays I, J, and X, which work the same
as A=sparse(I,J,X) in MATLAB, except that any type
matrix or vector can be constructed.

Table I lists a subset of GraphBLAS operations used in
solving the Sparse Deep Neural Network Challenge in the
GraphBLAS notation where AB denotes the multiplication
of two matrices over a semiring. Upper case letters denote a
matrix, and lower case letters are vectors. The two operations
in the latter part (GrB_eWiseMult and GrB_reduce) were
used to compare the results with the reference solution. An
optional accumulator operator (�) and mask matrix (M) can
be specified, written as C〈M〉 = C�T where Z = C�T
denotes the application of the accumulator operator, and
C〈M〉 = Z denotes the mask operator via the Boolean matrix
M. The mask matrix is used to selectively write results into
the output matrix. The mask was not used in our solution, but
it could be used in conjunction with two calls to GrB_apply
to implement the ReLU operator, in place of GxB_select.

III. OPENMP PARALLELISM IN
SUITESPARSE:GRAPHBLAS

SuiteSparse:GraphBLAS Version 2.3.4 is to appear as a
Collected Algorithm of the ACM [10]. While its sequential
performance is good, as illustrated in that paper and in the
results in this paper, it does not exploit any parallelism at
all. An OpenMP version is in progress, and is robust enough
to use for these experiments. A CUDA-accelerated version is
also in progress, and an MPI version is planned in the more
future. While all major operations in SuiteSparse:GraphBLAS



(V3.0.0 Draft, July 9) have been parallelized, the subset of
operations used in solving the Sparse Deep Neural Network
Graph Challenge (and the method by which they were paral-
lelized) are described below.

A. GrB mxm: Parallel matrix multiplication

The sequential version of SuiteSparse:GraphBLAS includes
three different forms of matrix-matrix multiply: Gustavson’s
method [11], a heap-based method [12], and a dot-product
based method. Each of these has a masked variant to compute
C〈M〉 = AB, and the dot product variant can also compute
C〈¬M〉 = AB.

By default, all matrices in SuiteSparse:GraphBLAS are held
in compressed-sparse row (CSR) format, but the matrices can
also be held in compressed-sparse column format (CSC). This
discussion assumes the default CSR format.

Gustavson’s method and the heap-based method are both
saxpy-based, where the ith row is computed as a sum of
scaled sparse vectors. In MATLAB notation, assuming the
conventional plus-times semiring:

for k = find (A(i,:))
C(i,:) = C(i,:) + A(i,k) * B(k,:)

end

Gustavson’s method uses a size-n gather/scatter workspace,
where C is m-by-n. In the parallel case, each thread requires
its own workspace. SuiteSparse:GraphBLAS keeps a set of
workspaces that can be used in subsequent operations, to
reduce the time to initialize this space. However, for large
numbers of threads, the Gustavson method does not scale well.
The heap-based method avoids this problem, but (at least in
our current implementation) it is not as fast as Gustavson’s
method. It merges the vectors of B using a heap of size
nnz(A(i,:)). In both methods, all rows of C can be
computed in parallel.

Our current implementation divides the work into a single
task for each thread, where the tasks are chosen to balance the
operation count in each task. Each submatrix of C is computed
in parallel, and then the resulting submatrices are concatenated
together.

The dot-product method takes a different approach. It effi-
ciently computes C=A*B’, if the matrices are in CSR format.
Each entry C(i,j) is computed independently. The method is
not well-suited for general matrix-matrix multiplication, since
all mn dot products must be computed. The time is thus
Ω(mn). However, if the mask is present, only entries in the
mask need be computed. In this case, the dot product method
can be much faster than Gustavson’s method or the heap-based
method.

SuiteSparse:GraphBLAS automatically selects the method
to use, although the user application can make this selection
instead. The sparse deep neural network solution spends
the bulk of its time in the parallel Gustavson matrix-matrix
multiplication.

The SuiteSparse implementation of GrB_mxm also includes
two specialized matrix multiplication methods, in which one

of the matrices A or B are diagonal. These two methods are
easy to parallelize, and are fast sequentially as well. The sparse
deep neural network problem uses one of these methods for
its second GrB_mxm, to apply the bias to each neuron, using
the plus-plus semiring.

B. GrB apply: Parallel unary operators

The GrB_apply operation applies a unary operator to each
entry in A, as C=f(A). It is easy to parallelize, since dense
vectors of A can easily be split into multiple tasks. Unlike
sparse matrix addition (GrB_eWiseAdd) or element-wise
multiplication (GrB_eWiseMult), which require a nested bi-
nary search to split dense columns, GrB_apply can directly
split a dense vector amongst several tasks. All the tasks are the
same size. The GrB_apply operation is used in the sparse
deep neural network solution for the YMAX threshold, to limit
the values in Y to 32.

C. GxB select: Parallel selection operators

SuiteSparse:GraphBLAS adds the GxB_select operation
as an extension to the API Specification. It selects a subset of
entries from a matrix, keeping only those for which the select
operator is true. In this way, the select operator acts much like
a functional mask. The selector can depend on the row and
column index, the dimension of A, and the value of the entry.
There are two kinds of built-in operators: those that depend
solely on the position of the entry (like tril and triu),
and those that depend on the value (such as keeping only
nonzero values). User-defined select operators can combine
both tests. The parallelism for the two kinds of operators is
slightly different. Both are split into an analysis phase that
counts the number of entries in each vector of the result, and a
execution phase that constructs the result. Methods that depend
only on the position require only a binary search for each
vector in the analysis phase. Computation is divided into tasks
in much the same as GrB_apply.
GxB_select was introduced into Suite-

Sparse:GraphBLAS for the 2018 Graph Challenge, since it
was needed to compute the lower triangular part of a matrix
for the triangle counting problem [13], or L=tril(A) in
MATLAB notation. It now finds use in the sparse deep neural
network problem, as the ReLU function, which must drop
entries at each layer, keeping only those greater than zero.
Since it proved useful for both the 2018 and 2019 Graph
Challenges, GxB_select is a good candidate to consider
for adding to a future GraphBLAS C Specification.

D. GrB * build: Parallel matrix and vector build

GrB_Matrix_build creates a CSR or CSC matrix from
a list of unsorted tuples (each with a row index, column index,
and value). The parallel method divides into five phases. Phase
1 makes a copy of the user input. Phase 2 sorts the tuples, using
a parallel quicksort. Phase 3 finds the non-empty vectors and
the duplicate entries in O(e/p) time. Phase 4 constructs the
vector pointers, and list of non-empty vectors. The final phase
assembles the tuples. All phases except the parallel quicksort



in phase 2 take O(e/p) time, with p threads and an input of
e tuples. GrB_Vector_build creates an analogous sparse
vector.

This method is well suited for constructing hypersparse
matrices, since no part of the time or memory complexity
depends on the matrix dimensions. In a hypersparse CSR
matrix, the list of row vectors itself becomes sparse, and the
total memory required is O(e) for a matrix with e entries.
The output is always constructed as hypersparse, and then
converted to standard CSR or CSC format, if appropriate. An
m-by-n matrix in standard CSR format requires O(m + e)
memory. If e > m, the standard format is faster, but it uses
too much memory and takes too much time to construct if
e << m. In that case, the matrix is constructed in hypersparse
form.
GrB_Matrix_build was used to construct the input ma-

trices for the sparse deep neural network, from the input files,
although this time was not included in the total computation.

IV. SUITESPARSE:GRAPHBLAS DEVELOPMENT

SuiteSparse:GraphBLAS has undergone intense develop-
ment since February 2017, and the sequential version ap-
pears in the ACM Transactions on Mathematical Software,
consisting of 28K lines of code. The OpenMP version was
started in February 2019, and is still in progress. As of July,
2019, the draft Version 3.0.0 is 41K lines in size, all close to
robust, library quality code ready for inclusion in a production
application. It is nearly fully parallel. Overall, this reflects a
total effort of about 18 months, spanning 2.5 years, to create
the parallel GraphBLAS library used to obtain the results
presented in this paper. SuiteSparse:GraphBLAS depends on
no other libraries except for the standard ANSI C run-time
library.

V. SPARSE DEEP NEURAL NETWORK SOLUTION IN
GRAPHBLAS

Compared with writing GraphBLAS, the level of effort
required to create a working solution to the Sparse Deep Neu-
ral Network Graph Challenge using SuiteSparse:GraphBLAS
stands in stark contrast:

Twenty lines in twenty minutes.

The code is shown in Figure 2. The time to write the code
was carefully monitored. This first version did not include
the ymax operator and the call to GrB_apply. The function
compiled and worked perfectly, the first time it was compiled.
The time of 20 minutes does not include the time it took to
read the problem definition, to understand the non-standard file
format of the problem, and to write the code to read in the files,
call the dnn function, and check the result with the reference
solution. All of that took about a full working day, for an
additional of 220 lines of code. This full-working day level of
effort points to the need for more standard file I/O formats in
either GraphBLAS, or LAGraph [14]. The input files for the
graph challenge were not in a standard input format, such as
the Matrix Market format.

#include "GraphBLAS.h"
void ymax_fp32 (float *z, const float *x)
{

(*z) = fminf ((*x), (float) 32.0) ;
}
void dnn // solve a sparse deep neural network
(

GrB_Matrix *Yhandle, // Y, created on output
GrB_Matrix *W, // W [0..nlayers-1]
GrB_Matrix *Bias, // Bias [0..nlayers-1]
int nlayers, // # of layers
GrB_Matrix Y0 // nfeatures-by-nneurons

)
{

GrB_Matrix Y = NULL ;
GrB_UnaryOp ymax = NULL ;
GrB_Index nfeatures, nneurons ;
GrB_Matrix_nrows (&nfeatures, Y0) ;
GrB_Matrix_ncols (&nneurons, Y0) ;
GrB_Matrix_new (&Y, type, nfeatures, nneurons) ;
GrB_UnaryOp_new (&ymax, ymax_fp32, GrB_FP32, GrB_FP32) ;
// propagate the features through the neuron layers
for (int layer = 0 ; layer < nlayers ; layer++)
{

// Y = Y * W [layer]
GrB_mxm (Y, NULL, NULL, GxB_PLUS_TIMES_FP32,

((layer == 0) ? Y0 : Y), W [layer], NULL) ;
// Y(i,j) += Bias [layer] (j,j) for each Y(i,j)
GrB_mxm (Y, NULL, NULL, GxB_PLUS_PLUS_FP3

2, Y, Bias [layer], NULL) ;
// delete entries; keep only those > 0
GxB_select (Y, NULL, NULL, GxB_GT_ZERO, Y,

NULL, NULL) ;
// threshold maximum values: Y (Y > 32) = 32
GrB_apply (Y, NULL, NULL, ymax, Y, NULL) ;

}
GrB_free (&ymax) ; // free the unary operator
(*Yhandle) = Y ; // return result

}

Fig. 2. A complete solution to the Sparse Deep Neural Network in Graph-
BLAS, requiring 20 minutes to write.

function Y = inferenceReLUvec (W, bias, Y0)
% Performs ReLU inference using input feature
% vector(s) Y0, DNN weights W, and constant bias

Y = Y0 ;
nlayers = length (W) ;
% Loop through each weight layer W{layer}
for layer = 1:nlayers

% Propagate through layer.
Z = Y * W{layer} ;
% Apply bias to non-zero entries.
Y = Z + (double(logical(Z)) .* bias {layer}) ;
% Threshold negative values.
Y (Y < 0) = 0 ;
% Threshold maximum values.
Y (Y > 32) = 32 ;

end

Fig. 3. A complete solution to the Sparse Deep Neural Network in MATLAB.

For comparison, the MATLAB reference implementation
posted at graphchallenge.org is shown in Figure 3, slightly
edited for style, to align it more closely with Figure 2. The
edits do not affect performance or the length of code, just
the spacing and variable names. Each of the four lines of
MATLAB in the innermost loop correspond to a single line
of GraphBLAS in Figure 2.

In most respects, the MATLAB implementation is simpler
and more elegant that the GraphBLAS solution, but in one
aspect it is more complex. The application of the bias for



Sparse DNN Problem MATLAB on (1) GraphBLAS on (1) GraphBLAS on (2) GraphBLAS on (3) GraphBLAS on (4)

Neurons
Per

Layer
Layers Total

Neurons

1 Thread 1 Thread 40 Threads Best of 1-160 Threads 1 Node (20 Threads) 2 Nodes (40 Threads) 64 Threads
Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate

(s) (104/s) (s) (109/s) (s) (109/s) (s) (109/s) (s) (109/s) (s) (109/s) (s) (109/s)

1,0
24

120 1.23 × 105 179 2.19 21 11.3 2 153.3 2 110.8

←
40

T
hr

ea
ds
→ 2 118.6 3 92.6 4 57.5

480 4.92 × 105 678 2.32 57 16.4 4 239.5 7 139.0 5 176.7 7 128.4 14 67.7
1920 1.97 × 106 2681 2.35 203 18.5 14 275.4 25 151.0 20 190.2 28 134.6 53 70.6

4,0
96

120 4.92 × 105 818 1.92 100 9.5 9 100.4 8 125.0 7 138.8 9 103.1 8 115.2
480 1.97 × 106 3240 1.94 303 12.5 30 126.9 23 164.2 22 174.3 30 127.5 27 140.3

1920 7.86 × 106 12738 1.98 1108 13.6 106 143.1 83 182.5 81 186.3 109 138.0 101 149.5

16
,38

4
120 1.97 × 106 3452 1.82 769 4.9 50 75.1 37 101.9

←
16

0
T

hr
ea

ds
→ 36 104.8 42 89.1 38 98.8

480 7.86 × 106 13987 1.80 2630 5.7 183 82.7 135 111.7 131 115.6 142 106.1 131 115.1
1920 3.15 × 107 59354 1.70 10182 5.9 689 87.7 531 113.8 599 100.9 - - 502 120.3

65
,53

6
120 7.86 × 106 15472 1.63 3697 4.1 251 60.1 144 105.0 167 90.4 - - 186 81.4
480 3.15 × 107 62678 1.61 13103 4.6 885 68.3 553 109.1 - - - - 682 88.6

1920 1.26 × 108 259919 1.55 51387 4.7 3721 64.9 2143 112.7 - - - - - -

TABLE II
SPARSE DEEP NEURAL NETWORK CHALLENGE COMPUTATIONAL RESULTS

each neuron can be done with a single multiplication by
a diagonal matrix, Bias [layer], in GraphBLAS, using
the PLUS_PLUS_FP32 semiring. This is difficult to do in
MATLAB, since MATLAB does not provide this semiring.

Using purely built-in operators, SuiteSparse:GraphBLAS
has 1040 unique semirings that can be used in a wide variety
of graph algorithms (independent set, breadth-first search, cen-
trality metrics, and so on). MATLAB has just two semirings
that it can apply to its sparse matrices: PLUS_TIMES_FP64
and PLUS_TIMES_COMPLEX. Along with the masking op-
eration, this gives GraphBLAS a distinct edge (pun intended)
in writing complex graph algorithms, although this particular
problem does not require the GraphBLAS mask, and the bulk
of the work is done with a conventional linear algebra semiring
(Z=Y*W{layer}).

VI. MPI PARALLELISM

The sparse deep neural network problem is embarrassingly
parallel due to its many independent input vectors. We used
GraphBLAS as a basis to add further parallelism at the
user application level, in addition to the internal OpenMP
parallelism, to improve performance.

Our first parallel implementation uses MPI, where each
process computes the matrix multiplication using a subset
of independent rows. There is no communication between
processes, and each process checks its result with the expected
categories. While this method only requires another 20 minutes
to implement and provides a reasonable performance improve-
ment, it suffers from load balancing difficulties, as some rows
may require significantly more or less operations to compute
the final result.

To address this problem, our second parallel implementation
uses a manager/worker strategy. In this algorithm, tasks have a
finer granularity and are scheduled by the manager; once any
worker finishes their part, it calls the manager and another job
is assigned to the worker until no jobs remain. This schema
adds another 40 lines of code, but scales significantly better.

Both MPI implementations require very little time to imple-
ment. However, as with any MPI application, cross-platform
compilation and performance varies greatly. Note that both
implementations use independent memory spaces, which could
be further improved using a shared memory model for increas-
ingly large problems.

VII. PERFORMANCE RESULTS

Experiments were performed on four systems:
(1) An NVIDIA DGX Station (256GB RAM, Intel Xeon E5-

2698 v4, with 2.2 GHz, 20 hardware cores (40 threads)),
with the Intel icc compiler (19.0.3.199). The GPUs were
not used since the CUDA-based parallelism is still in
progress.

(2) An IBM Minsky system, with 1TB of RAM and 160
hardware threads (IBM Power8 8335-GTB, 4GHz, 20
hardware cores with 8-way threading on each core, gcc
v7.2.0 compiler).

(3) A 4-node IBM Power9 cluster, with each node having
256GB of RAM and 160 hardware threads (40 hardware
cores at 2.4GHz).

(4) A Lenovo x86 cluster with two CPU sockets (34-core
Intel Xeon Phi CPU 7250 1.40GHz) with icc compiler
(19.0.1.144) and 96GB RAM per node. Results for 64
threads (on a single node) are reported.

Computational results for solving the Sparse Deep Neural
Network Challenge are tabulated in Table II. GraphBLAS
on (1) uses the OpenMP-based parallelism described in Sec-
tion III, while the other GraphBLAS results use both the
OpenMP and MPI-based parallelism described in Section VI
to take advantage of multiple nodes within a cluster. A serial
MATLAB implementation is provided for comparison. Best
results for a given sparse DNN problem are shown in bold;
generally, larger problems can be more efficiently solved using
more parallelism (combining both OpenMP and MPI-based
parallelism). Wall times (in seconds) and connection rates
(defined by inputs × DNN connections per unit time) are
reported for all approaches.



Fig. 4. Scaling Behavior of Parallel GraphBLAS Approaches

The scaling behavior of the various approaches on the
65,536 neuron/1920 layers sparse DNN is shown in Figure
4. Note that GraphBLAS on (3) was not included, as it was
not able to solve the problem on the system (3) due to time
constraints, and GraphBLAS on (4) is shown solving the
65,536 neuron/480 layer DNN, as it was unable to solve the
larger 1920 layer problem. Generally, all approaches scale
well up to the maximum number of hardware threads per
node, beyond which performance scales more modestly. Future
experiments taking advantage of more nodes are necessary to
better define the scaling behavior.

VIII. CONCLUSIONS

These results demonstrate that GraphBLAS can be an
efficient library that allows end users to write simple yet
fast code. All codes used in this paper will appear at
http://suitesparse.com.

REFERENCES

[1] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “The
GraphBLAS C API specification,” http://graphblas.org/, Tech. Rep.,
2017.

[2] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA: SIAM, 2011.

[3] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett,
and S. Samsi, “Sparse deep neural network graph challenge,” MIT
Lincoln Laboratory Supercomputing Center, Tech. Rep., 2019,
http://graphchallenge.mit.edu/sites/default/files/documents/SparseDNN-
GraphChallenge-2019-06-13-DRAFT.pdf.

[4] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Advances in neural information processing systems,
2007, pp. 801–808.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[6] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[7] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
“Exploring the regularity of sparse structure in convolutional neural
networks,” arXiv preprint arXiv:1705.08922, 2017.

[8] X. Liu, J. Pool, S. Han, and W. J. Dally, “Efficient sparse-winograd
convolutional neural networks,” arXiv preprint arXiv:1802.06367, 2018.

[9] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2017, pp. 27–40.

[10] T. A. Davis, “Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms
in the language of sparse linear algebra,” ACM Trans. Math. Softw., vol.
to appear, 2019.

[11] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3, pp.
250–269, 1978.

[12] A. Buluç and J. R. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in IPDPS08: the IEEE International Symposium
on Parallel & Distributed Processing. IEEE Computer Society, 2008,
pp. 1–11.

[13] T. A. Davis, “Graph algorithms via SuiteSparse:GraphBLAS: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC), Sep. 2018, pp. 1–6.

[14] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira,
and C. Yang, “LAGraph: A community effort to collect graph algorithms
built on top of the GraphBLAS,” in Proc. GrAPL’19, Workshop on
Graphs, Architectures, Programming, and Learning, 2019.


