
Math. Program., Ser. A (2008) 112:403–425
DOI 10.1007/s10107-006-0022-3

F U L L L E N G T H PA P E R

Dual multilevel optimization

Timothy A. Davis · William W. Hager

Received: 17 October 2005 / Accepted: 7 July 2006 / Published online: 19 September 2006
© Springer-Verlag 2006

Abstract We study the structure of dual optimization problems associated
with linear constraints, bounds on the variables, and separable cost. We show
how the separability of the dual cost function is related to the sparsity structure
of the linear equations. As a result, techniques for ordering sparse matrices
based on nested dissection or graph partitioning can be used to decompose a
dual optimization problem into independent subproblems that could be solved
in parallel. The performance of a multilevel implementation of the Dual Active
Set Algorithm is compared with CPLEX Simplex and Barrier codes using Netlib
linear programming test problems.

Keywords Multilevel optimization · Dual optimization · Dual separability ·
Dual active set algorithm · Parallel algorithms

Mathematics Subject Classification (2000) 90C05 · 90C06 · 65Y20

T. A. Davis
Department of Computer and Information Science and Engineering,
University of Florida, PO Box 116120, Gainesville, FL 32611-6120, USA
e-mail: davis@cise.ufl.edu
URL: http://www.cise.ufl.edu/∼davis

W. W. Hager (B)
Department of Mathematics, University of Florida,
Gainesville, PO Box 118105, FL 32611-8105, USA
e-mail: hager@math.ufl.edu
URL: http://www.math.ufl.edu/∼hager

404 T. A. Davis, W. W. Hager

1 Introduction

We consider problems of the form

sup
λ

L(λ), (1)

where

L(λ) = F(λ)+ inf
x≥0

(
f (x)− λTAx

)
,

F(λ) =
m∑

i=1

Fi(λi),

f (x) =
n∑

j=1

fj(xj).

Here Fi : R → R, fj : [0,∞) → R, and A is an m by n matrix. If Fi(λi) =
biλi, i = 1, 2, . . . , m, for some b ∈ R

m, then (1) is the dual of the primal problem

min f (x) subject to Ax = b, x ≥ 0. (2)

We refer to L as the “dual function” and to (1) as the “dual problem,” regard-
less of how the Fi are chosen. In the case where (1) is obtained by forming
the dual of an optimization problem, the fj should be convex to ensure that
the dual problem solves the primal problem. The special case fj(xj) = xj log xj
corresponds to the (negative) Boltzmann–Shannon entropy function [32].

Because of the separable structure of f , the dual function can be expressed
as

L(λ) = F(λ)+
n∑

j=1

�j(λ), (3)

where

�j(λ) = inf
xj≥0

(
fj(xj)− xj

m∑
i=1

λiaij

)
. (4)

Even though both f and F are separable, the dual cost function does not sep-
arate, in general, because each of the functions �j can depend on the entire λ

vector. In this paper, we examine how the dual problem can be decomposed
into relatively independent subproblems by exploiting the sparsity of A.

The basic step in the decomposition process is to write

L(λ) = L̄(λ̄)+ L1(λ1, λ̄)+ L2(λ2, λ̄), (5)

where λ1, λ2, and λ̄ are disjoint subvectors of λ whose union yields the entire
vector λ. That is, the components of the vectors λ1, λ2, and λ̄ are distinct com-

Dual multilevel optimization 405

Fig. 1 The dual optimization
tree for the decomposition (5)

ponents of λ, and the union of the components of λ1, λ2, and λ̄ yields λ. When L
can be decomposed in this way, we can visualize the dual optimization problem
using the tree shown in Fig. 1. The full dual function L(λ) is associated with
the root of the tree, while L1 and L2 are associated with each leaf of the tree.
If λ̄ is fixed, then the optimization of L1(λ1, λ̄) over λ1 is independent of the
optimization of L2(λ2, λ̄) over λ2.

Figure 1 suggests various approaches for exploiting the structure. For exam-
ple, if the optimization is done using dual coordinate ascent, we could start at
the leaves of the tree and optimize over λ1 and λ2 while holding λ̄ fixed. The
optimization over λ1 and λ2 can be done in parallel. Then we can move to the
root of the tree and optimize over λ̄ while holding λ1 and λ2 fixed. After a
new value of λ̄ is determined, we would drop to the leaves and again optimize
over λ1 and λ2 with λ̄ fixed. Under suitable assumptions, the dual coordinate
ascent iteration converges to a stationary point of L (e.g. [31, p. 228]). The
decomposition (5) reveals that two of the dual coordinate ascent iterates could
be computed independently.

In this paper, we develop general multilevel techniques for decomposing the
dual problem into independent subproblems, with each subproblem associated
with a node in a tree. Multilevel techniques have proved to be very effective
for solving elliptic partial differential equations [4,16], and for solving NP-hard
graph partitioning problems [25–29]. Our multilevel strategy is related to the
arrowhead partitioning presented in [13]. However, instead of working towards
an arrowhead form, we utilize a nested dissection ordering of AAT (recursive
graph partitioning via node separators) [24–29], similar to the block-structured
matrices in linear programming and interior point solvers discussed by [14].

We present a version of the dual active set algorithm (DASA) [10,17–22] for
maximizing L. The algorithm exploits a multilevel decomposition and moves
up and down the multilevel tree in a way loosely related to that of multilev-
el methods for graph partitioning or multigrid methods for partial differential
equations. Although the decoupled problems could be solved in parallel, we find
that even for a single processor, it can be quicker to solve some problems using
a multilevel approach, as opposed to the single level approach, because the sub-
problems are solved quickly, and there are relatively few iterations at the root
node. Comparisons with CPLEX simplex and barrier codes, using Netlib linear
programming (LP) test problems, are given in Sect. 7. Our implementation of
LP DASA is based on our recent package CHOLMOD [6,8,9,11] for comput-
ing a Cholesky factorization and its modification after small rank changes in

406 T. A. Davis, W. W. Hager

the matrix. CHOLMOD is partially incorporated in MATLAB 7.2 as the chol,
symbfact, and etree functions, and in x=A\b when A is symmetric positive
definite.

2 Level 1 partitioning

Given vectors x, y ∈ R
n, define

x� y =
⎧
⎨
⎩

0 if xjyj = 0 for all j,

1 if xjyj �= 0 for some j.

If ai denotes the i-th row of A, then ai � aj = 0 if and only if the variables
in equations i and j of Ax = b are different. In essence, equations i and j are
independent of each other.

Lemma 1 Let Rk, k = 1, 2, . . . , N, be disjoint subsets of {1, 2, . . . , m} and define

R̄ = (R1 ∪R2 ∪ · · · ∪RN)c ,

where the superscript “c” denotes complement. If the “orthogonality condition”
ap � aq = 0 holds for all p ∈ Rk and q ∈ Rl whenever 1 ≤ k < l ≤ N, then L
can be expressed as

L(λ) = L̄(λ̄)+
N∑

k=1

Lk(λk, λ̄), (6)

where λk, k = 1, . . . , N, and λ̄ are disjoint subvectors of λ associated with indices
in Rk, k = 1, . . . , N, and in R̄ respectively.

Proof Define the sets

Ck = {j ∈ [1, n] : aij �= 0 for some i ∈ Rk}, k = 1, 2, . . . , N − 1, (7)

and
CN =

(
C1 ∪ C2 ∪ · · · ∪ CN−1

)c . (8)

Observe that

(a) Ck and Cl are disjoint for k �= l: Clearly, CN is disjoint from Cl for l < N by
the definition of CN . If j ∈ Ck ∩ Cl for k < l < N, then there exists p ∈ Rk
and q ∈ Rj such that apj �= 0 and aqj �= 0. This implies that ap � aq = 1, a
contradiction.

(b) For any l, aij = 0 for every i ∈ (Rl ∪ R̄)c and j ∈ Cl: If l < N and j ∈ Cl,
then by (7) there exists p ∈ Rl such that apj �= 0. By the orthogonality

Dual multilevel optimization 407

Fig. 2 Structure of the
dependency matrix of PA in
Lemma 1 for an appropriate
permutation P; equivalently,
the sparsity pattern of
(PA)(PA)T

0

0

condition, aij = 0 whenever i ∈ (Rl ∪ R̄)c. If l = N and j ∈ CN , then j �∈ Ck
for k < N. Since j �∈ Ck, (7) implies that aij = 0 for every i ∈ Rk. Since

(RN ∪ R̄)c = R1 ∪R2 ∪ · · · ∪RN−1,

it follows that aij = 0 for every i ∈ (RN ∪ R̄)c and j ∈ CN .

By (a) and (8), we can group the terms of (3) in the following way:

L(λ) = F(λ)+
N∑

k=1

⎛
⎝∑

j∈Ck

�j(λ)

⎞
⎠ .

If j ∈ Ck, then by (b), the only nonzero terms λiaij in (4) correspond to indi-
ces i ∈ Rk ∪ R̄. It follows that �j(λ) is independent of λp when p �= k. The
decomposition (6) is obtained by taking, for example,

Lk(λk, λ̄) =
∑

i∈Rk

Fi(λi)+
∑
j∈Ck

�j(λ), (9)

and
L̄(λ̄) =

∑

i∈R̄
Fi(λi). (10)

The dependency matrix D associated with A is a symmetric matrix defined
by

dij = ai � aj.

Under the hypotheses of Lemma 1, if we permute the rows of A in the order R1,
R2, and R̄ and shade the nonzero parts of the dependency matrix, we obtain
Fig. 2. If P a matrix which permutes the rows of A in the order R1, R2, and R̄,
then the dependency matrix D depicted in Fig. 2 indicates the sparsity pattern

408 T. A. Davis, W. W. Hager

Fig. 3 The permuted matrix
PAQ associated with
Lemma 1 0

0

of (PA)(PA)T. Observe that D is 0 in the region corresponding to (i, j) with
i ∈ R1 and j ∈ R2 or i ∈ R2 and j ∈ R1. Suppose that in addition the columns
of A are permuted in the order C1 followed by C2. If Q is a column permutation
matrix which puts the columns in the order C1 followed by C2, then PAQ has
the block-angular structure seen in Fig. 3. By the definition of Ck in (7), aij is
zero for i ∈ R1 and j ∈ C2 or i ∈ R2 and j ∈ C1.

As a specific illustration, let us consider the Netlib test problem truss.
Although this matrix, in its original form, does not have the structure seen
in Fig. 2, it can be put in this form using graph partitioning codes such as
CHACO [25,26] or METIS [27–29]. These heuristic methods find a small edge
separator of the graph G whose adjacency matrix is D. An edge separator is a
subset of the edges of G that, when removed from G, cause it to split into two
(or more) disconnected components. Ideally, the separator is a balanced one,
where the two components are of equal size. Finding a minimal balanced edge
separator is an NP-complete problem. When applied to D, these codes parti-
tion the row and column indices into two sets Q1 and Q2, chosen to minimize
approximately the number of nonzeros dij with i ∈ Q1 and j ∈ Q2. The sets Q1
and Q2 are roughly the same size. We then extract elements from Q1 or Q2 in
order to obtain a set R̄ with the property that dij = 0 whenever i ∈ Q1 \ R̄ and
j ∈ Q2 \ R̄. Finally, Rl = Ql \ R̄ for l = 1 and 2. This step converts the edge
separator found by CHACO or METIS into a vertex separator.

In LP DASA, we use the nested dissection ordering computed in our new
software package CHOLMOD [6]. It uses METIS to find the node separators
at each level, followed by a constrained minimum degree ordering of the whole
graph (CCOLAMD). After a node separator is found, the subgraphs are them-
selves split, recursively, unless they consist of fewer than 200 nodes. The set
of node separators found forms a tree, where each node in the tree represents
one block or subgraph in the nested dissection ordering. The parent of a node
(other than the root) is the subgraph consisting of the nodes in the separator.
This method gives a good fill-reducing ordering, but can lead to an excessive
number of blocks for multilevel LP DASA. A post-processing step collapses
nodes in this separator tree, if the separator consists of more than 6% of the
subgraph being processed, or if the subgraph has less than 500 nodes. The same
permutation was used for the single-level LP DASA tests, but the entire tree is
always collapsed into a single node. Thus, if the top-level separator consists of

Dual multilevel optimization 409

(a) original AA’ (b) permuted matrix (c) factorization L+L’

Fig. 4 Netlib test problem truss

more than 6% of the nodes of the graph (or if there are fewer than 500 rows in
A, the multilevel method collapses the tree into a single block, and the method
becomes identical to single-level LP DASA.

The original matrix AAT from the truss problem, the permuted matrix
PA(PA)T, and its Cholesky factorization, are shown in Fig. 4. Figure 5 shows
the separator tree found by CHOLMOD, followed by the collapsed tree. In this
case the collapsed tree consists of just three nodes, but in general it can be a
subtree of the original tree.

3 Multilevel partitioning

In Lemma 1 we take the dual function L and write it as a sum of functions Lk
given in (9). Notice that Lk has the same structure as L itself in (3); it is the sum
of a separable function of λ (the Fl terms in (9)) and terms �j(λ), j ∈ Ck. For
any j ∈ Ck, the nonzeros aij in column of j of A correspond to indices i ∈ Rk or
i ∈ R̄. Hence, for any j ∈ Ck, we have

�j(λ) = inf
xj≥0

⎛
⎝fj(xj)− xj

∑

i∈R̄
λiaij − xj

∑
i∈Rk

λiaij

⎞
⎠ . (11)

Fig. 5 Separator tree and
collapsed separator tree for
truss

410 T. A. Davis, W. W. Hager

Let us view λ̄ as constant. If we identity the first two terms in (11) with the fj
term in (4) and if we identity the Rk sum in (11) with the sum in (4), we can
apply Lemma 1 to Lk to decompose the dual function further.

We will carry out this recursion in the case k = 2. In the initial application of
Lemma 1, we have

L(λ) = L̄(λ̄)+ L1(λ1, λ̄)+ L2(λ2, λ̄),

where λk denotes the components of λ associated with the set Rk, and where
Lk and L̄ are given in (9) and (10) in terms of the sets Ck in (7). Suppose that
Rk is partitioned further as

Rk = Rk1 ∪Rk2 ∪ R̄k,

where the sets Rk1 and Rk2 satisfy the orthogonality condition of Lemma 1.
Lemma 1 is applied to (9) in the case k = 2. The terms that define Lk are
grouped in the following way:

Lk(λk, λ̄) = L̄k(λ̄k)+ Lk1(λk1, λ̄k)+ Lk2(λk2, λ̄k), (12)

where

Lkl(λkl, λ̄k) =
∑

i∈Rkl

Fi(λi)+
∑
j∈Ckl

�j(λ),

Ck1 = {j ∈ Ck : aij �= 0 for some i ∈ Rk1}, Ck2 = Ck \ Ck1,

L̄k(λ̄k) =
∑

i∈R̄k

Fi(λi).

In the recursion (12), some components of λk form the vector λk1 (correspond-
ing to Rk1), other components go into the vector λk2 (corresponding to Rk2),
while the remaining components (corresponding to R̄k) are added to λ̄ to form
λ̄k. Thus λk1 and λk2 are subvectors of λk and λ̄k is λ̄ augmented with the
remaining components of λk. When λ̄k is fixed in (12), the minimization of Lk1
over λk1 and the minimization of Lk2 over λk2 can be done independently.

In Fig. 3 we show the nested block-angular arrangement of nonzeros when
A is initially partitioned (and permuted) in accordance with Lemma 1. In Fig. 6
we show the further rearrangements of nonzeros arising from the additional
partitioning of R1 and R2, and C1 and C2.

If the sets of Lemma 1 were generated by graph partitioning, as we did for
truss in the previous section, then the dependency matrix of A used for the
initial partitioning would be replaced by the dependency matrix for Ak, the
submatrix of A associated with the intersection of the rows with indices in Rk
and columns with indices in Ck. The partitioning process writes the initial Rk
as a disjoint union of sets Rkl, l = 1, 2, and R̄k. The dependency matrix of the
permuted A for truss appears in Fig. 7a. To visualize better the structure of the

Dual multilevel optimization 411

Fig. 6 The matrix in Fig. 3
after applying additional
permutations to the rows and
columns forming the diagonal
blocks

0

0

reordered matrix, we darken the portion between the first nonzero in each row
or column and the diagonal to obtain Fig. 7b, the profile of the matrix in Fig. 7a.

With these insights, we now formally define a multilevel decomposition of
the dual problem. It is described by a tree T with r nodes labeled 1, 2, . . . , r that
satisfy the following four conditions:

M1. Corresponding to each node k of T , there is a set Rk. The root of the tree
is r and Rr = {1, 2, . . . , m}.

M2. For each node k of T , Rk is strictly contained in Rπ(k), where π(k) is the
parent of k, the node directly above k in T .

M3. For each node p of T , Rk ∩Rl = ∅ whenever k and l are distinct children
of p (that is, p = π(k) = π(l) and k �= l).

M4. For each node p of T , ai1 � ai2 = 0 whenever i1 ∈ Rk and i2 ∈ Rl, where
k and l are distinct children of p.

In the tree of Fig. 8 associated with a 2-level decomposition, π(1) = 3 and
π(3) = 7. The matrix was not ordered with CCOLAMD, so that the original
structure is more visible in the decomposition in the figure. By M2 the sets Rl
grow in size as we move from the leaves up to the root of the tree. At any level

Fig. 7 a Sparsity structure of (P2P1A)(P2P1A)T for truss; b the corresponding matrix profile

412 T. A. Davis, W. W. Hager

Fig. 8 Tree associated with
2-level decomposition (12)

7

3

1 4 5

6

2

in the tree, the sets are disjoint according to M3. The orthogonality property
M4 leads to the decomposition of the dual function as described in Lemma 1.

Using the sets Rk associated with each node in the multilevel decomposition,
we construct the following additional sets and functions:

(a) the vector λk formed from components of λ associated with elements of
Rk,

(b) a complementary set R̄k and a complementary vector λ̄k (defined below),
(c) the function Lk (also defined below).

We now define the entities introduced in (b) and (c). The complementary set
R̄k is obtained by removing from Rk the sets Rc of its children. In other words,

R̄k = Rk \
⋃

c∈π−1(k)

Rc.

In sparse matrix terminology, the complementary set R̄k is the separator of the
children Rc, c ∈ π−1(k); the equations (Ax − b)i = 0 associated with i ∈ R̄k
couple together the equations associated with each of the children Rc.

The complementary vector λ̄k is defined as follows: At the root, λ̄r is the
vector with components λi, i ∈ R̄r. At any other node k �= r, λ̄k consists of the
complementary vector λ̄π(k) of the parent augmented by those components of
λ associated with the set R̄k. Since the parent of the root π(r) is undefined, we
take λ̄π(r) to be empty. An equivalent description of the complementary vector
λ̄k is the following: It consists of those components of λ associated with sets R̄p
for each p on the path between k and r, the root of the tree.

Next, we write the decomposition rule (6) of Lemma 1 in a recursive fashion.
At the root, Lr(λ) = L(λ). For nodes beneath the root, the structure of the
recursion is gleaned from (12). The left side of the equation contains a func-
tion Lk associated with node k of the tree. The right side contains functions
associated with each of the children of k. The left side involves the variable λk
associated with node k, and the complementary variable λ̄ associated with the
parent of k (and the set R̄). The right side involves the dual variables λkl of the
children of k, and the complementary variable λ̄k for node k. Hence, we have

Dual multilevel optimization 413

Fig. 9 Tree associated with
2-level decomposition (12); a
R̄3 = ∅, b R̄3 = R̄6 = ∅

(b)(a)

Fig. 10 Dependency matrix
for ken_07 in Netlib/lp

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 14382

Lk(λk, λ̄π(k)) = L̄k(λ̄k)+
∑

c∈π−1(k)

Lc(λc, λ̄k),

= L̄k(λ̄k)+
∑

c∈π−1(k)

Lc(λc, λ̄π(c)), (13)

with the initialization Lr(λ) = L(λ).
If L is split into two parts as in (5), and if these parts are further subdivided

into two parts, then the tree associated with the decomposition process is binary.
In the special case where the complementary set is vacuous, the multilevel tree
can be simplified. For example, if R̄3 = ∅ in Fig. 8, then the decomposed
Lagrangian is represented by the tree in Fig. 9a. If in addition R̄6 = ∅ in Fig. 8,
then the decomposed Lagrangian is represented by the tree in Fig. 9b. As an
example, the dependency matrix of the Netlib test problem ken_07 shown in
Fig. 10 is associated with a tree that has 49 nodes beneath the root.

4 Dual dependencies

The dual functions Li, i = 1, . . . , r, are not all independent of each other. For
the decomposition associated with Fig. 8, L1, L2, L4, and L5 are all independent
of each other (assuming the complementary variables are fixed). Also, L1 and
L2 are independent of L6 because L1 and L2 are obtained by decomposing L3,
which is independent of L6. On the other hand, L3 is not independent of L1

414 T. A. Davis, W. W. Hager

and L2, even when the complementary variables are fixed, because they share
common variables. In this section, we specify the independent functions in the
dual decomposition.

Given a subset N of the nodes of T , the special subtree TN is the tree
obtained by pruning from T all descendants of the nodes N . Hence, if N = ∅,
then TN = T ; if r ∈ N , then TN = {r}. For any tree T , we let ∂T denote the
leaves of the tree (that is, the childless nodes).

Lemma 2 Given a multilevel decomposition associated with a tree T satisfying
(13) and a special subtree TN , we have

L(λ) =
∑

l∈TN \∂TN

L̄l(λ̄l)+
∑

l∈∂TN

Ll(λl, λ̄π(l)). (14)

Proof Suppose that (14) is violated for some special subtree TN0 of T . Let
l0 ∈ ∂TN0 , and let p0 = π(l0) be its parent. Let TN1 be the special subtree of T
obtained by pruning from TN0 all the children π−1(p0). That is, N1 = N0 ∪ {p0}.
Either (14) holds for TN1 and we stop the pruning process, or it is violated for
TN1 , in which case we choose l1 ∈ ∂TN1 , p1 = π(l1), and TN2 is the special
subtree of T induced by N2 = N1∪{p1}. Since the decomposition (14) holds for
the special subtree T{r}, which is contained in any special subtree, this pruning
process must terminate with a special subtree TNt for which (14) is violated,
while (14) holds for TNt+1 . Since TNt+1 is obtained by pruning the children of
some node k from TNt , it follows from (13) that

Lk(λk, λ̄π(k)) = L̄k(λ̄k)+
∑

c∈π−1(k)

Lc(λc, λ̄π(c)). (15)

Since (14) holds for TNt+1 , we have

L(λ) =
∑

l∈TNt+1\∂TNt+1

L̄l(λ̄l)+
∑

l∈∂TNt+1

Ll(λl, λ̄π(l)). (16)

Since k ∈ ∂TNt+1 , it is one of the terms in the last summation in (16). After
making the substitution (15) in (16), we obtain (14) in the case N = Nt. This
contradicts the fact that (15) was violated for N = Nt. Hence, (14) holds for all
special subtrees of T . �
Lemma 3 If TN is a special subtree of T and k and l ∈ ∂TN , k �= l, then
Rk ∩Rl = ∅. If Sk is the set of indices of λ associated with the complementary
variable λ̄k (equivalently, Sk is the union of the complementary sets R̄q over all
nodes q on the path between k and the root), then Sk ∩Rl = ∅.

Proof Consider the sequence of ancestors πp(k), p = 1, 2, . . . , and πq(l), q =
1, 2, Let P = πp(k) = πq(l) be the first common ancestor of k and l (see

Dual multilevel optimization 415

Fig. 11 P is first common
ancestor of nodes k and l

P

Fig. 11). Since P is the first common ancestor, the children c1 = πp−1(k) and
c2 = πq−1(l) are distinct. By M3, Rc1 ∩ Rc2 = ∅. By M2, Rk ⊂ Rc1 and
Rl ⊂ Rc2 . Hence, Rk ∩ Rl = ∅. By the definition of the complementary set
R̄P, it is disjoint from the sets Rc of each of the children c ∈ π−1(P). That is,
R̄P ∩Rc = ∅ for each c ∈ π−1(P). Applying this result to each node between
P and the root r, we conclude that SP ∩Rc = ∅ for each c ∈ π−1(P). For each
node on the path from c1 to k, the complementary set is contained in Rc1 due
to M2. Hence, Sk ⊂ (Rc1 ∪ SP). The relations

Rc1 ∩Rc2 = ∅, Sk ∩Rc2 = ∅, Rl ⊂ Rc2 , and Sk ⊂ (Rc1 ∪ SP),

imply that Sk ∩Rl = ∅. �

By Lemmas 2 and 3, it follows that when TN is a special subtree of T , max-
imizing the dual function in (14) over λl for each l ∈ ∂TN , while holding the
other components of λ fixed, decomposes into independent maximizations:

max
λl

Ll(λl, λ̄π(l)).

5 An example

We give a concrete illustration of a multilevel decomposition using the dual of
a linear programming problem

min cTx subject to Ax = b, x ≥ 0,

416 T. A. Davis, W. W. Hager

with

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 0 1 0 0 0
1 1 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

⎤
⎥⎥⎥⎥⎦

. (17)

For the tree shown in Fig. 12, it can be checked that conditions M1–M4 hold.
The first level of the tree corresponds to the decomposition

L(λ) = b5λ5 + L3(λ1, λ2, λ3, λ5)+ L4(λ4, λ5),

where the complementary variable is λ̄5 = λ5, and the first term b5λ5
corresponds to L̄5(λ̄5). The functions L3 and L4 are given as follows:

L3(λ1, λ2, λ3, λ5) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b1λ1 + b2λ2 + b3λ3 if

⎧⎪⎪⎨
⎪⎪⎩

c1 ≥ λ1 + λ3 + λ5
c2 ≥ λ1 + λ3
c3 ≥ λ2 + λ3 + λ5
c4 ≥ λ3

−∞ otherwise,

and

L4(λ4, λ5) =
⎧
⎨
⎩

b4λ4 if
{

c5 ≥ λ4 + λ5
c6 ≥ λ4

−∞ otherwise.

L3 is independent of L4 when λ̄5 is fixed. At nodes 3 and 4, we have λ3 =
(λ1, λ2, λ3) and λ4 = (λ4). By the structure of L3, it can be further decomposed
as

L3(λ) = b3λ3 + L1(λ1, λ3, λ5)+ L2(λ2, λ3, λ5),

where

L1(λ1, λ3, λ5) =
⎧
⎨
⎩

b1λ1 if
{

c1 ≥ λ1 + λ3 + λ5
c2 ≥ λ1 + λ3

−∞ otherwise,

and

L2(λ2, λ3, λ5) =
⎧
⎨
⎩

b2λ2 if
{

c3 ≥ λ2 + λ3 + λ5
c4 ≥ λ3

−∞ otherwise.

The complementary variable at node 3 is λ̄3 = (λ3, λ5), the complementary vari-
able at the parent of 3 augmented by the variable λ3 associated with R̄3 = {3}. L1

Dual multilevel optimization 417

Fig. 12 Multilevel
decomposition associated
with (17)

Fig. 13 Nonzero structure of
A corresponding to multilevel
partitioning tree in Fig. 12

1 0 0 0 01

0 0 1 0 0 0

1 1 1 1 0 0

0 0 0 0 1 1

1 11 0 0 0

and L2 are independent when λ̄3 is fixed. The nonzero structure of A associated
with the tree of Fig. 12 is shaded in Fig. 13.

6 Multilevel DASA

It was pointed out in Sect. 1 that a multilevel decomposition could be used in
various algorithms for solving the dual problem; a specific illustration was dual
coordinate ascent. Here we focus on a more efficient use of a multilevel decom-
position based on the dual active set algorithm (DASA). By [19, Theorem. 1],
DASA solves (1) in a finite number of iterations when f is strongly convex and F
is strongly concave. Given a bound set B ⊂ {1, 2, . . . , n}, let xB be the subvector
of x consisting of those components xi associated with i ∈ B. We define the
functions

LB+(λ) = min {L(λ, x) : x ∈ R
n, xB ≥ 0}, (18)

and
LB0(λ) = min {L(λ, x) : x ∈ R

n, xB = 0}, (19)

where

L(λ, x) = F(λ)+ f (x)− λTAx.

The components of x in the minimization problems (18) and (19) correspond-
ing to indices in the complement of B are unconstrained. Assuming the fj are
strongly convex, there exists a unique minimizer x(λ, B) in (18) for each choice
of λ and B. Let x(λ) denote x(λ, B) in the case B = {1, 2, . . . , n}.

418 T. A. Davis, W. W. Hager

Algorithm 1 Dual active set algorithm

s = 0
λ0 = starting guess
while ∇L(λs) �= 0

ν0 = λs
B0 = {j ∈ [1, n] : xj(λs) = 0}
for t = 0, 1, . . .

ω = arg max{LB0
t
(λ) : λ ∈ R

m}
νt+1 = arg max{LB+t

(λ) : λ ∈ [νt , ω]}
Bt+1 =

{
j ∈ Bt : xj(νt+1, Bt) = 0

}
if νt+1 = ω break

end
s = s+ 1
λs = ω

end

The statement of DASA in Algorithm 1 has an outer loop indexed by s, and
an inner loop indexed by t. In the inner loop, indices are deleted from Bt to
obtain Bt+1; that is, Bt+1 is a subset of Bt consisting of those indices for which
xi(νt+1, Bt) = 0. When the inner loop terminates, we reinitialize B0 by solving
the problem

min
x≥0

L(λs, x) (20)

to obtain x(λs). Since the optimization over x in (20) decomposes into indepen-
dent optimization over xj as in (4), it follows that the B0 set at the start of the
iteration includes some indices that were missing from the final Bt associated
with the inner loop in the previous iteration. Hence, the dual initialization step
adds indices to the current bound set, while the formula for Bt+1 in the subit-
eration deletes bound indices. The proof [19, Thm. 1] that DASA solves (1) in
a finite number of iterations is based on the fact that the subiteration strictly
increases the value of the dual function; as a result, the final set Bt generated
in the subiteration cannot repeat. Since the sets Bt are chosen from a finite set,
convergence occurs in a finite number of steps.

Algorithm 2 is the multilevel version of DASA. Here we replace the max-
imization over λ in the computation of ω in Algorithm 1 by a maximization
over the leaves of a special subtree. The set Nt in Algorithm 2 is a collection
of nodes in the tree T ; these nodes essentially correspond to components of
the dual variable over which the dual function has been maximized. Initially,
N0 = ∅ because we have not maximized over any components of λ. As the
inner iterations progress, the set Nt grows in size. In each inner iteration, we
maximize LB0

t
over the leaves of the special subtree TNt . As seen after Lemmas

2 and 3, maximization over the leaves of a special subtree decomposes into
the independent maximization of local dual functions, which could be done in
parallel. These maximizers are utilized in local line searches that take us to a
new point νt+1 with a larger value for both LB+t and L. Since the bound set Bt

can only decrease in size, the line search on the interval [ν, ω] eventually takes a

Dual multilevel optimization 419

Algorithm 2 Multilevel dual active set algorithm

s = 0
λ0 = starting guess
while ∇L(λs) �= 0

initialize ν0 = λs and N0 = ∅
B0 = {j ∈ [1, n] : xj(λs) = 0}
for t = 0, 1, . . .

initialize ν = νt and N = Nt
for each l ∈ ∂TNt

ω = arg max{LB0
t
(λ) : λi = νi, for all i ∈ Rc

l }

ν ← arg max{LB+t
(λ) : λ ∈ [ν, ω]}

if ν = ω, then N ← N ∪ {l}
end
νt+1 = ν and Nt+1 = N
if r ∈ N break
Bt+1 =

{
j ∈ Bt : xj(νt+1, Bt) = 0

}
end
s = s+ 1
λs = νt

end

full step to ω, in which case N grows by the addition of node l. That is, the step
stops short of ω only when the bound set decreases in size. If a full step is taken
in the line search, then we add the associated node l to the set of completed
nodes N . Eventually, N includes the root r, in which case the inner iteration
terminates.

The proof of finite convergence is the same given previously for DASA
(e.g. [17,19,21]). That is, in the multilevel setting, we work up to the root of the
tree T increasing the value of the dual function, and by M1, the set Rr contains
all the indices of λ. Hence, in the multilevel setting, the final dual subiterate
again takes us to a maximizer of LB0

k
for some set Bk, which can never repeat

without contradicting the strict ascent of the dual iterates.
In Algorithms 1 and 2, we maximize LB0

k
in each subiteration. As an alterna-

tive, we could approximately maximize LB0
k

in each subiteration. Under suitable

assumptions (see [20]), convergence is achieved in the limit, as the number of
iterations tends to infinity.

7 Numerical comparisons

In this section, we apply both single level and multilevel versions of LP DASA
to Netlib linear programming test problems and compare the performance to
that of simplex and barrier methods as implemented in the commercial code
ILOG CPLEX version 9.1.3 [2]. The test problems were solved on a 3.2 GHz
Pentium 4 with 4 GB of RAM, running SUSE Linux, and the Goto BLAS [15].
Since the CPLEX Barrier code automatically applies a presolver [1] to the
input problem, we use the CPLEX presolved problem as input to the codes. All

420 T. A. Davis, W. W. Hager

Table 1 Description of the
test problems

Problem Rows Columns Nonzeros

perold 503 1,273 5,545
25fv47 682 1,732 10,181
nug07 473 930 3,321
pilot_we 602 2,526 8,414
pilotnov 748 1,999 11,703
cre_c 2,257 5,293 13,078
cre_a 2,684 6,382 15,739
osa_07 1,047 24,062 63,037
nesm 598 2,764 12,988
d6cube 402 5,467 34,332
truss 1,000 8,806 27,836
fit2p 3,000 13,525 50,284
pilot_ja 708 1,684 11,155
nug08 741 1,631 5,940
fit2d 25 10,388 127,793
greenbeb 1,015 3,211 23,042
greenbea 1,015 3,220 23,142
80bau3b 1,789 9,872 20,007
qap8 741 1,631 5,940
ken_11 5,511 11,984 26,538
degen3 1,406 2,503 25,204
pds_06 2,972 18,530 42,304
osa_14 2,266 52,723 139,136
d2q06c 1,855 5,380 31,325
maros_r7 2,152 6,578 80,167
stocfor3 8,388 15,254 53,528
pilot 1,204 4,124 41,160
osa_30 4,279 100,396 267,149
pds_10 4,725 33,270 76,307
ken_13 10,962 24,818 57,238
cre_d 3,990 28,489 86,144
cre_b 5,176 36,222 111,434
pilot87 1,811 6,065 71,838
osa_60 10,209 234,334 594,462
pds_20 10,214 81,224 184,176
ken_18 39,867 89,439 208,594
nug12 2,793 8,855 33,526
qap12 2,793 8,855 33,526
dfl001 3,861 9,607 31,955
nug15 5,697 22,274 85,468
qap15 5,697 22,274 85,468
nug20 14,097 72,599 281,958
nug30 49,647 376,740 1,486,829

Netlib problems taking more than 0.1 s (based the fastest of CPLEX and LP
DASA run times) are listed in Table 1. The table is sorted by this run time. These
statistics are for the presolved problems used in the numerical experiments, not
for the original problems on the Netlib test site.

The multilevel partitioning is computed via nested dissection of AAT

using CHOLMOD Version 1.2. The run times we report for LP DASA
include the time to compute the ordering, including the separator tree and
its post-processing.

Dual multilevel optimization 421

For LP DASA, developed in [10], we take

f (x) = ε

2
‖x− y‖2,

where ε > 0 is a regularization parameter and y is a shift. Once we achieve
the maximum in the dual problem, the regularization parameter and shift are
updated. The details of their adjustments are given in [10].

In coding the LP DASA multilevel algorithm, we need to factor a matrix
of the form AFAT

F , where F is the complement of the set Bk in Algorithm 1,
and the subscript “F” denotes the submatrix of A associated with column indi-
ces in F. This factorization is done using a supernodal Cholesky factorization
algorithm, in CHOLMOD. In the multilevel case, the rows and columns of L
corresponding to leaves of the separator tree are factorized in a supernodal
method. The nodes farther up in the tree are factorized incrementally as they
are needed, using a row-oriented sparse factorization [5,30].

We refactor the matrix infrequently, and after a column is freed or a row
is dropped, we use the sparse modification techniques developed in [8,9,11]
to modify the factorization. Since the Cholesky factorization is computed
row-by-row, it can be incrementally extended in the multilevel setting. The
submatrix associated with a subtree (nodes 1, 2 and 3 in Fig. 12, for example)
can be factored without having to compute the entire factorization. New rows
corresponding to separators can be added to the factorization without touching
the previously computed partial factorization. The codes for modifying a fac-
torization after column or row updates take advantage of speedup associated
with multiple-rank updates. As a result, a rank-16 update of a sparse matrix
achieves flop rates comparable to those of a BLAS dot product, and about 1/3
the speed of a BLAS matrix-matrix multiply [12], in the experiments given
in [9].

In coding LP DASA, we use a new version of COLAMD [7], which we call
constrained COLAMD (CCOLAMD), to reorder the rows of A to minimize
the fill associated with the Cholesky factorization of AAT. We constrain the
ordering so that rows associated with a set Rk for a leaf of the partitioning tree
remain in Rk, where the sets Rk are chosen to satisfy the orthogonality condi-
tion of Lemma 1; to preserve this orthogonality property, we can only exchange
rows within Rk. Our constrained COLAMD, developed in collaboration with
S. Rajamanickam, is related to the scheme developed in [3] for a sparse LU
factorization.

Our starting guesses for an optimal dual multiplier and primal solution are
always λ = 0 and x = 0 respectively. Our convergence test is based on the LP
optimality conditions. The primal approximation x(λ) always satisfies the bound
constraints x ≥ 0. The column indices are expressed as B ∪ F where F = Bc.
For all j ∈ B, xj(λ) = 0 and (c − ATλ)j ≥ 0. Hence, the optimality conditions
would be satisfied if the primal and dual linear systems, Ax = b and AT

Fλ = cF ,
were satisfied. Our convergence criterion is expressed in terms of the relative
residuals in the primal and dual systems:

422 T. A. Davis, W. W. Hager

‖b−Ax‖∞
1+ ‖x‖∞ + ‖cF −AT

Fλ‖∞
1+ ‖λ‖∞ ≤ 10−8. (21)

Here ‖ · ‖∞ denotes the maximum absolute component of a vector. Note that
the test problems are given in MPS format which provides, in general, space for
about five significant digits when the data is represented in floating point (expo-
nential) format. Hence, the number of significant digits in A, b, and c is five in
general, while the relative error in (21) is 10−8. Note that in certain cases, more
than five significant digits can be represented in MPS format; for example, any
problem where the data consists of small integers, such as a network problem,
could be represented exactly using MPS format.

The CPU times for LP DASA, both single level and multilevel versions, and
for CPLEX simplex and barrier codes are in Table 2. We also give the num-
ber of blocks for multilevel LP DASA. A dash means the problem cannot be
solved by that method on our computer. Note that LP DASA was the only
code that was able to solve nug30. With both Barrier and Simplex, there was
not enough memory. LP DASA switches to an iterative implementation when
there is insufficient memory to factor the matrix. In the iterative approach,
developed in [20], a conjugate gradient scheme is used to compute the solution
of the quadratic programming problems as opposed to a direct method based
on a Cholesky factorization. Observe that the number of blocks in the truss
problem is 3, which is the number of nodes in the collapsed tree in Fig. 5.

Even for a single processor, the multilevel implementation is typically at
least as fast as the single level implementation. The small subproblems in the
multilevel approach are solved quickly and the overall flop count (not listed) is
much smaller than that of a single-level implementation. Of course in a parallel
computing environment where the 324 independent subproblems associated
with ken_18 (for example) can be assigned to separate computers, significant
speedup is possible.

In Table 2, we see the following: multilevel LP DASA is faster than CPLEX
simplex for 20 out of 43 problems, and it is faster than CPLEX Barrier for 12
problems.

8 Summary

Sparse optimization problems with separable cost and with linear constraints
and bounds can be decomposed into a multilevel structure by applying codes
such as CHACO or METIS to the dependency matrix. The multilevel struc-
ture is described by a tree in which each node i is associated with a function
Li. Those Li associated with the leaves of a special subtree can be optimized
independently, when the complementary variables are fixed.

In an implementation of the dual active set algorithm, the computation pro-
ceeds from the leaves of the tree up to the root, optimizing over the leaves
of special subtrees along the way. Even on a single processor, the multilevel

Dual multilevel optimization 423

Table 2 LP DASA (single and multilevel), CPLEX (Simplex and Barrier)

Problem One level Multilevel Blocks Simplex Barrier

perold 1.16 1.16 1 0.15 0.12
25fv47 0.18 0.18 1 0.32 0.12
nug07 0.30 0.29 1 0.29 0.12
pilot_we 1.53 1.52 1 0.54 0.16
pilotnov 1.21 1.20 1 0.23 0.18
cre_c 0.44 0.40 93 0.18 0.20
cre_a 0.61 0.60 133 0.18 0.25
osa_07 0.22 0.19 628 0.23 0.43
nesm 0.39 0.39 1 0.35 0.19
d6cube 3.53 3.54 1 0.20 0.31
truss 1.08 0.94 3 11.62 0.21
fit2p 0.23 0.23 1 4.46 0.43
pilot_ja 3.72 3.70 1 0.33 0.25
nug08 0.71 0.70 1 1.86 0.25
fit2d 0.26 0.26 1 0.59 0.71
greenbeb 0.59 0.57 11 1.46 0.27
greenbea 1.82 2.19 3 1.03 0.28
80bau3b 1.60 1.14 49 0.28 0.41
qap8 0.84 0.83 1 1.40 0.28
ken_11 0.53 0.32 122 0.38 0.55
degen3 0.65 0.84 3 0.57 0.43
pds_06 1.93 1.69 23 0.50 1.81
osa_14 0.76 0.68 1837 0.59 1.03
d2q06c 2.70 2.70 1 2.81 0.62
maros_r7 0.83 0.83 1 3.29 1.37
stocfor3 5.24 4.33 26 1.75 1.09
pilot 5.30 5.29 1 3.22 1.19
osa_30 1.74 1.51 4070 1.41 2.56
pds_10 5.23 4.65 96 1.43 6.29
ken_13 5.57 2.72 170 1.50 1.65
cre_d 8.37 8.33 1 1.86 2.54
cre_b 8.63 8.34 576 4.24 3.03
pilot87 17.69 17.73 1 22.49 3.68
osa_60 5.10 3.76 9766 4.08 6.58
pds_20 34.91 36.34 149 9.16 29.07
ken_18 58.53 23.49 325 11.74 11.23
nug12 52.86 52.99 1 202.72 11.33
qap12 64.22 64.37 1 197.93 12.71
dfl001 36.94 37.08 1 22.51 16.04
nug15 438.60 443.34 1 2787.11 78.99
qap15 339.76 342.70 1 3143.31 85.83
nug20 6094.90 6175.99 1 – 13755.03
nug30 32206.34 32206.34 1 – –

implementation was faster than the single level implementation. Competitive
performance, as compared to CPLEX, was achieved for the test set of Table 1.
Further speedup in LP DASA could be achieved by exploiting hypersparsity
of the solution to the linear systems that arise during the solution process (see
[23]), and by developing a recursive version of the equation dropping techniques
introduced in [10].

424 T. A. Davis, W. W. Hager

Acknowledgements Constructive comments by the referee leading to an improved presentation
are gratefully acknowledged. This material is based upon work supported by the National Science
Foundation under Grant No. 0203270.

References

1. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71,
221–245 (1995)

2. Bixby, R.E.: Progress in linear programming. ORSA J. Comput. 6, 15–22 (1994)
3. Brainman, I., Toledo, S.: Nested-dissection orderings for sparse LU with partial pivoting. SIAM

J. Matrix Anal. Appl. 23, 998–1012 (2002)
4. Bramble, J.H.: Multigrid Methods. Wiley, New York (1993)
5. Davis, T.A.: Algorithm 849: a concise sparse Cholesky factorization package. ACM Trans.

Math. Softw. 31, 587–591 (2005)
6. Davis, T.A.: CHOLMOD users’ guide. University of Florida (2005). http: www.cise.ufl.edu/
∼davis

7. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum degree
ordering algorithm. ACM Trans. Math. Softw. 30, 353–376 (2004)

8. Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal.
Appl. 20, 606–627 (1999)

9. Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization.
SIAM J. Matrix Anal. Appl. 22, 997–1013 (2001)

10. Davis, T.A., Hager, W.W.: A sparse proximal implementation of the LP dual active set algo-
rithm. Math. Program (in press) (2006). DOI 10.1007/s10107-006-0017-0

11. Davis, T.A., Hager, W.W.: Row modifications of a sparse Cholesky factorization. SIAM
J. Matrix Anal. Appl. 26, 621–639 (2005)

12. Dongarra, J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear algebra subpro-
grams. ACM Trans. Math. Softw. 16, 1–17 (1990)

13. Ferris, M.C., Horn, J.D.: Partitioning mathematical programs for parallel solution. Math. Pro-
gram. 80, 35–62 (1998)

14. Gondzio, J., Sarkissian, R.: Parallel interior-point solver for structured linear programs. Math.
Prog. 96, 561–584 (2003)

15. Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplication. TR-2002-55,
University of Texas at Austin, Departmentn of Computer Sciences (2002)

16. Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin Heidelberg New York
(1985)

17. Hager, W.W.: The dual active set algorithm. In: Pardalos, P.M. (ed.) Advances in Optimization
and Parallel Computing 137–142. North Holland, Amsterdam (1992)

18. Hager, W.W.: The LP dual active set algorithm. In: Leone, R.D., Murli, A., Pardalos, P.M.,
Toraldo, G. (eds.) High Performance Algorithms and Software in Nonlinear Optimization
pp. 243–254. Kluwer, Dordrecht (1998)

19. Hager, W.W.: The dual active set algorithm and its application to linear programming. Comput.
Optim. Appl. 21, 263–275 (2002)

20. Hager, W.W.: The dual active set algorithm and the iterative solution of linear programs.
In: Pardalos, P.M., Wolkowicz, H. (eds.) Novel Approaches to Hard Discrete Optimization
pp. 95–107, vol. 37. Fields Institute Communications (2003)

21. Hager, W.W., Hearn, D.W.: Application of the dual active set algorithm to quadratic network
optimization. Comput. Optim. Appl. 1, 349–373 (1993)

22. Hager, W.W., Shi, C.-L., Lundin, E.O.: Active set strategies in the LP dual active set algorithm,
Tech. Report, University of Florida, http://www.math.ufl.edu/∼hager/LPDASA (1996)

23. Hall, J.A.J., McKinnon, K.I.M.: Hyper-sparsity in the revised simplex method and how to
exploit it. Comput. Optim. Appl. 32, 259–283 (2005)

24. Heath, M.T., Raghavan, P.: A Cartesian parallel nested dissection algorithm. SIAM J. Matrix
Anal. Appl. 16, 235–253 (1995)

25. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proc. Super-
computing ’95, ACM (1995)

Dual multilevel optimization 425

26. Hendrickson, B., Rothberg, E.: Improving the runtime and quality of nested dissection order-
ing. SIAM J. Sci. Comput. 20, 468–489 (1999)

27. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

28. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel
Distrib. Comput. 48, 96–129 (1999)

29. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs.
SIAM Rev. 41, 278–300 (1999)

30. Liu, J.W.H.: A generalized envelope method for sparse factorization by rows. ACM Trans.
Math. Softw. 17, 112–129 (1991)

31. Luenberger, D.G.: Linear and Nonlinear Programming. Addison Wesley, Reading (1984)
32. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–653 (1948)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

