
Parallel GraphBLAS with OpenMP ∗

Mohsen Aznaveh† Jinhao Chen† Timothy A. Davis† Bálint Hegyi‡

Scott P. Kolodziej† Timothy G. Mattson§ Gábor Szárnyas‡¶

Abstract

SuiteSparse:GraphBLAS is a complete implementation
of the GraphBLAS standard. It provides a power-
ful and expressive framework for creating graph al-
gorithms based on the elegant mathematics of sparse
matrix operations on a semiring. Algorithms written
with the GraphBLAS achieve high performance with
minimal development time. Multithreaded parallelism
through OpenMP provides additional speedup, which
we illustrate on a 20-core Intel® Xeon® E5-2698 CPU
system when solving various problems (triangle count-
ing, k-truss, breadth-first search, Bellman-Ford, local
clustering coefficient, and a sparse deep neural net-
work problem). This wide variety of algorithms il-
lustrates the expressiveness of the GraphBLAS API
to create new graph algorithms. We present perfor-
mance results with these algorithms on a set of large
real-world graphs, using the newly developed Suite-
Sparse:GraphBLAS v3.0.1.

1 Introduction

The GraphBLAS standard [2] defines sparse matrix and
vector operations on an extended algebra of semirings.
The operations are useful for creating a wide range of
graph algorithms. Kepner and Gilbert [10] provide a
framework for understanding how graph algorithms can
be expressed as matrix computations. This approach
leads to high performance since the library treats oper-
ations over graphs as bulk operations on adjacency ma-
trices. User code need not deal with individual nodes
and edges. Writing graph algorithms with GraphBLAS
reduces development time as well, as illustrated by the
results in this paper.

∗With support from NSF CNS-1514406, NVIDIA, Intel, MIT

Lincoln Lab, Redis Labs, and IBM. Portions of this research were

conducted with the advanced computing resources provided by
Texas A&M High Performance Research Computing.

†Department of Computer Science and Engineering, Texas

A&M University, College Station, TX
‡Department of Measurement and Information Systems, Bu-

dapest University of Technology and Economics
§Intel Corporation, Oregon
¶MTA-BME Lendület Cyber-Physical Systems Res. Group

To show the performance benefits of this parallel
GraphBLAS implementation, results for several large-
scale, computationally intensive graph-based problems
are reported. These problems include the following:

1. Triangle counting. Count the number of trian-
gles (cliques of size three) in a graph.

2. 4-Truss. Compute the 4-truss subgraph of a
graph, in which each edge of the subgraph is
incident on at least two triangles.

3. A breadth-first search of a graph. The search
starts at node zero; and finds all nodes reachable
from the starting node.

4. The Bellman-Ford shortest path algorithm.
For vertex zero, find the shortest path distance to
all other vertices in a directed, weighted graph with
no self-edges.

5. Computing the local clustering coefficient
(LCC) for all vertices in a graph. The LCC
is the ratio between the number of edges between
neighbors of a given node and the maximum possi-
ble number of edges between these neighbors.

6. Sparse deep neural network forward prop-
agation [9]. Given a deep neural network with
known weights and sparse connectivity between
layers, compute the outputs of the network given
several input sets.

2 Overview of GraphBLAS objects, methods,
and operations

SuiteSparse:GraphBLAS provides a collection of meth-
ods to create, query, and free each of its ten different
types of objects. Once these objects are created they
can be used in mathematical operations (not to be con-
fused with how the term operator is used in Graph-
BLAS). The ten types are described below. User appli-
cations can also define their own data types, operators,
monoids, and semirings.

(1) Types: A GraphBLAS type (GrB_Type) can be
any of 11 built-in types (Boolean, integer and unsigned

Copyright © 2020
Copyright for this paper is retained by authors

Table 1: SuiteSparse:GraphBLAS Operations

function name description GraphBLAS notation
GrB_mxm matrix-matrix multiplication C〈M〉 = C�AB
GrB_vxm vector-matrix multiplication w′〈m′〉 = w′ � u′A
GrB_mxv matrix-vector multiplication w〈m〉 = w �Au
GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set-union w〈m〉 = w � (u⊗ v)
GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)

set-intersection w〈m〉 = w � (u⊕ v)
GrB_extract extract submatrix C〈M〉 = C�A(i, j)

w〈m〉 = w � u(i)
GrB_assign assign submatrix C〈M〉(i, j) = C(i, j)�A

w〈m〉(i) = w(i)� u
GxB_subassign assign submatrix C(i, j)〈M〉 = C(i, j)�A

w(i)〈m〉 = w(i)� u
GrB_apply apply unary operation C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GxB_select apply select operation C〈M〉 = C�f(A,k)

w〈m〉 = w�f(u,k)
GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(i, j)]
GrB_transpose transpose C〈M〉 = C�A′

GxB_kron Kronecker product C〈M〉 = C� kron(A,B)

integers of sizes 8, 16, 32, and 64 bits, and single and
double precision floating point). User-defined scalar
types can be created from nearly any C typedef.

(2) Unary operators: A unary operator
(GrB_UnaryOp) is a function z = f(x).

(3) Binary operators: Likewise, a binary operator
(GrB_BinaryOp) is a function z = f(x, y), such as
z = x + y or z = xy.

(4) Select operators: The GxB_SelectOp operator is
a SuiteSparse extension to the GraphBLAS API. It is
used in the GxB_select operation to select a subset of
entries from a matrix, like L=tril(A) in MATLAB.

(5) Monoids: The scalar addition of conventional
matrix multiplication is replaced with a monoid. A
monoid (GrB_Monoid) is an associative and commuta-
tive binary operator z = f(x, y) where all three do-
mains are the same (the types of x, y, and z) and
where the operator has an identity value o such that
f(x, o) = f(o, x) = x. Performing matrix multiplication
with a semiring uses a monoid in place of the “add” op-
erator, scalar addition being just one of many possible
monoids.

(6) Semirings: A semiring (GrB_Semiring) consists
of a monoid and a “multiply” operator. Together, these
operations define the matrix “multiplication” C = AB,
where the monoid is used as the additive operator and

the semiring’s “multiply” operator is used in place of the
conventional scalar multiplication in standard matrix
multiplication via the plus-times semiring.

(7) Descriptors: A descriptor GrB_Descriptor

with parameter settings for GraphBLAS operations.
(8) Scalars: A sparse scalar GxB_Scalar, currently

only used as the input k to the GxB_select operation.
(9) Vectors: A sparse vector, GrB_Vector.
(10) Matrices: A sparse matrix, GrB_Matrix.

2.1 Non-blocking mode GraphBLAS includes a
non-blocking mode where operations can be left pend-
ing, and saved for later. This is very useful for subma-
trix assignment (like C(I,J)=A in MATLAB), particu-
larly when A is small compared to C. This exploitation
of the non-blocking mode is essential for some problems,
but has little effect on graph problems presented here,
other than to simplify the reading of input graphs.

2.2 The accumulator and the mask An optional
accumulator operator (odot) and mask matrix (M)
can be specified, written as C〈M〉 = C�T where
Z = C�T denotes the application of the accumulator
operator, and C〈M〉 = Z denotes the mask operator via
the Boolean matrix M. The mask matrix is used to
selectively write results into the output matrix.

Copyright © 2020
Copyright for this paper is retained by authors

GraphBLAS methods and operations The matrix
(GrB_Matrix) and vector (GrB_Vector) objects include
additional methods for setting a single entry, extracting
a single entry, making a copy, and constructing an entire
matrix or vector from a list of tuples. The tuples are
held as three arrays I, J, and X, which work the same as
A=sparse(I,J,X) in MATLAB, except that any type
matrix or vector can be constructed.

Table 1 lists all GraphBLAS operations in the
GraphBLAS notation where AB denotes the multiplica-
tion of two matrices over a semiring. Upper case letters
denote a matrix, and lower case letters are vectors. The
notation A⊕B denotes the element-wise operator that
produces a set-union pattern (like A+B in MATLAB).
The notation A⊗B denotes the element-wise opera-
tor that produces a set-intersection (like A.*B in MAT-
LAB). An optional accumulator operator (�) and mask
matrix (M) can be specified, written as C〈M〉 = C�T
where Z = C�T denotes the application of the accu-
mulator operator, and C〈M〉 = Z denotes the mask op-
erator via the Boolean matrix M. The mask matrix is
used to selectively write results into the output matrix.

3 Parallelism in SuiteSparse:GraphBLAS

SuiteSparse:GraphBLAS Version 2.3.3 is to appear as a
Collected Algorithm of the ACM [5]. While its sequen-
tial performance is good, as illustrated in that paper,
it does not exploit any parallelism at all. Version 3.0.1
has been released (July 31, 2019), with exploitation of
multi-threaded parallelism expressed through OpenMP.
A GPU-accelerated version is also in progress, and an
MPI version is planned in the more distant future.

3.1 GrB mxm: Parallel matrix multiplication
The sequential version of SuiteSparse:GraphBLAS in-
cludes three different forms of matrix-matrix multiply:
Gustavson’s method [7], a heap-based method [1], and a
dot-product based method. Each of these has a masked
variant to compute C〈M〉 = AB, and the dot product

variant can also compute C〈¬M〉 = AB
T

.
By default, all matrices in SuiteSparse:GraphBLAS

are held in compressed-sparse row (CSR) format, but
the matrices can also be held in compressed-sparse
column format (CSC). This discussion assumes the
default CSR format.

Gustavson’s method and the heap-based method
are both saxpy-based, where the ith row is computed as
a sum of scaled sparse vectors. In MATLAB notation,
assuming the conventional plus-times semiring, the ith
row is computed as:

for k = find (A(i,:))

C(i,:) = C(i,:) + A(i,k) * B(k,:)

end

Gustavson’s method uses a size-n gather/scatter
workspace, where C is m-by-n. In the parallel
case, each thread requires its own workspace. Suite-
Sparse:GraphBLAS keeps a set of workspaces that can
be used in subsequent operations, to reduce the time
to initialize this space. Some uses of C = AB take less
than O(m) time, so it is essential to avoid the O(m) time
need to initialize this space. However, for large numbers
of threads, the Gustavson method does not scale well.
The heap-based method avoids this problem, but (at
least in our current implementation) it is not as fast as
Gustavson’s method. It merges the vectors of B using a
heap of size nnz(A(i,:)). In both methods, all rows of
C can be computed in parallel.

Our current implementation divides the work into
a single task for each thread, where the tasks are chosen
to balance the operation count in each task. Each
submatrix of C is computed in parallel, and then the
resulting submatrices are concatenated together.

For both methods, the matrix A is divided into t
partitions, for t threads. Then the ith thread computes
Ci = AiB, and when all threads finish, the submatrices
are concatenated. The partitions are chosen so as to
balance the operation count for each thread. If A has
too few rows for this to be effective, the partitions are
chosen to split individual rows of A, and the resulting
matrix C must be summed for these rows, not just
concatenated.

The dot-product method takes a different approach.
It computes C=A*B’, if the matrices are in CSR format.
Each entry C(i,j) is computed independently. The
method is not well-suited for general matrix-matrix
multiplication, since all mn dot products must be
computed. The time is thus Ω(mn), so this method
is only used if m or n are 1. However, if the mask is
present, only entries in the mask need be computed. In
this case, the dot product method can be much faster
than Gustavson’s method or the heap-based method,
for computing the masked-dot-product, C〈M〉 = AB

T
.

SuiteSparse:GraphBLAS automatically selects the
method to use, although the user application can make
this selection instead. By default, GraphBLAS selects
the masked-dot-product method for triangle counting,
LCC, the pull phase of the push/pull BFS and Bellman-
Ford, and the simple BFS. The saxpy-based Gustavson
or heap-based methods are used in the K-truss, the
push phase of the push/pull BFS and Bellman-Ford,
and some forms of triangle counting. PageRank uses
an unmasked dot product method. These selections are
typically optimal.

The SuiteSparse implementation of GrB_mxm also
includes two specialized matrix multiplication methods,
in which one of the matrices A or B are diagonal.

Copyright © 2020
Copyright for this paper is retained by authors

These two methods are easy to parallelize, and are fast
sequentially as well. PageRank uses the scaling method
to initialize its Markov transition matrix, and the sparse
deep neural network problem uses it to apply the bias
to each column.

3.2 GrB eWiseAdd and GrB eWiseMult: Par-
allel element-wise operations Two element-wise op-
erations compute the equivalent of C=A+B (sparse ma-
trix add) and C=A.*B (the sparse Hadamard product).
These operations are easy to a parallelize where each
row can be computed independently by its own task.
However, the resulting algorithm can be poorly load-
balanced if the matrices have a few dense rows. In
particular, if A and B are large GrB_Vector objects,
then this coarse-grain parallelism allows for only a single
thread to do all the work.

Thus, we use purely coarse-grain parallelism only
when it provides enough work for each thread. Other-
wise, a mix of fine/coarse-grain tasks are used. Each
row vector that needs multiple threads is broken into
multiple fine-grain tasks. It is not sufficient to simply
divide up the index space. For example, consider adding
two vectors c=a+b of length n, and dividing up the work
as follows:

s = n/2 ;

c(1:s) = a(1:s) + b(1:s) ;

c(s+1:n) = a(s+1:n) + b(s+1:n) ;

If all the entries in a and b are in the first half,
then this gives no speedup. The value s must instead
be chosen to split the work in half. A binary search
is used compute s. For each candidate value of s, two
inner binary searches partition a and b into entries in
rows 1 to s and s+1 to n. All vectors are held with
sorted indices. The sizes of these partitions determine
if s must be increased or decreased. These nested binary
searches take O(log2 n) time in the worst case, or take
O(log n(log |a|+log |b|)) work in the general case, where
|a| denotes the number of entries in the sparse vector
a. However, each of the f tasks can be constructed in
parallel.

In general, the work for a dense row of C is split into
as many fine tasks as needed. If f tasks as used, the
preprocessing to construct these tasks takes O(f log2 n)
time, but f is normally normally small, f < 32p if p
OpenMP threads are used. The number of fine tasks is
chosen based on the number of entries in a and b, so
that each task operates on at least 4096 entries.

The work is split into four phases, each of which
are fully parallel: (1) find the vectors present in C,
(2) split the work into fine/coarse tasks, (3) count the
number of entries in each vector of the result (followed

by a cumulative sum to determine where each vector
resides in the result C), and (4) compute each vector
of the result. Each phase is fully parallel, and handles
any matrix or vector with no sequential bottleneck. In
important cases, phase (3) takes less time in practice
than phase (4), and is asymptotically faster as well. For
example, if the vector a is much sparser than b, the
size of c (the set union) can be found by computing the
size of the set intersection instead, in time O(|a| log |b|),
where |a| << |b|. Phase (4) for this case takes O(|a|+|b|)
time.

3.3 GrB extract: Parallel submatrix extrac-
tion The GraphBLAS operation GrB_extract com-
putes the equivalent of C=A(I,J) in MATLAB. The par-
allel algorithm in SuiteSparse:GraphBLAS divides into
four distinct phases, just like the element-wise opera-
tions: (1) find the vectors of C and the properties of I
and J, (2) split the work into fine and coarse tasks, (3)
count the number of entries in each vector of the result
C (followed by a parallel cumulative sum), and (4) ex-
tract the entries from A into C. The first phase is trivial
if A and B are standard CSR or CSC matrices, but it
must construct a set union if the both are hypersparse.
The second phase constructs fine and coarse grain tasks,
using a similar method as the element-wise operations,
GrB_eWiseAdd and GrB_eWiseMult. Phase (3) is a ‘dry-
run’, doing all the work of the extraction but not saving
the results. All it does is to count the number of entries
in each vector of C. This may seem inefficient, but it
leads to better parallelism. Phase (3) is typically much
faster than phase (4), since it is a read-only process, and
it is asymptotically faster in many special yet important
cases.

3.4 GrB assign: Parallel submatrix assignment
Submatrix assignment is the most complex method in
GraphBLAS, in terms of code complexity and algorithm
variations. From the user perspective, it looks decep-
tively simple, computing C(i, j)〈M〉� = A if an accu-
mulator operator is present (where� denotes any binary
operator). In MATLAB notation, this is C(I,J)=A or
C(I,J)=C(I,J)+A if no mask is present.

The complete parallel implementation of this
method takes 6K lines of code. It subdivides into 32
different cases: A may be a matrix or a scalar, the ac-
cumulator may or may not be present, the mask may
or may not be present, the mask may or may not be
complemented, and the replace option may or may not
be used. Of these 32 cases, some are redundant, and so
SuiteSparse:GraphBLAS has 22 different functions for
these 32 cases.

In all cases, the pattern of C may be changed, but

Copyright © 2020
Copyright for this paper is retained by authors

this is always postponed. It is left unfinished if non-
blocking mode is enabled, or finished at the end of
the assignment otherwise. This design decision greatly
facilitates a parallel algorithm for each of these 32 cases.

If the submatrix assignment needs to delete an
entry, it is not deleted right away. Instead, it is marked
for future deletion, but “negating” its index (the actual
negation of a column index j is flip(j)=-j-2, to
allow for zero-based indices. The flip function is its
own inverse, just like negation for one-based indices.
These entries marked for deletion are called zombies.
Removing a single zombie is costly, but all zombies can
be removed from matrix, in parallel, in the same time
as removing a single zombie.

If the submatrix assignment needs to add an entry,
it is not added right away. Instead, it is placed in an
unsorted list of pending tuples, each with a row index,
column index, and value. Pending tuples are assembled
all at once, when the work is finished, and added into
the matrix with a parallel sparse matrix addition.

Since the pattern of C does not change during the
assignment, the assignment can start with a symbolic
extraction. The matrix S=C(I,J) can be computed,
in parallel. The entries in S are not the values of the
corresponding entry in C, however. Instead, the entries
are pointers back into C itself. Thus, to modify an entry
in C, it can be found quickly by traversing the matrix S.

Most but not all submatrix assignment methods
start with the construction of the matrix S. Three cases
are best done without S. For one of the 32 cases, it is
sometimes useful to use S, and sometimes faster not to
create it at all, and the decision is based on the sparsity
of A and the mask M.

The 32 cases are listed below, along with the parallel
strategy used for the method. The 32 cases use 22
functions but only 4 different parallel strategies, listed
in the last column of the table.

• IxJ: the method must examine all positions in
C in the Cartesian product IxJ, even where no
entries exist. The space IxJ is subdivided into
independent tasks.

• M or S: the method must examine all entries in
the mask M or the matrix S. This one matrix is
subdivided into coarse and fine tasks, of roughly
the same amount of work. A coarse task takes one
or more entire rows of the matrix, while a fine task
takes a subset of a single row (this is useful for
handling dense rows in M or S).

• S+A or S+M: This is identical to how the
sparse matrix addition of two matrices per-
formed. The same scheduling method is used from
GrB_eWiseAdd_Matrix.

• M.*A: this is the same method as used by
GrB_eWiseMult_Matrix, for the two matrices M and
A. Only entries in the intersection of M and A need
be examined.

M ¬ R + A S Method Para.

- - - - x S C(I,J) = x IxJ

- - - - A S C(I,J) = A S+A

- - - + x S C(I,J) += x IxJ

- - - + A S C(I,J) += A S+A

- - r (same as 1st 4 methods)
- c - (no work)

- c r S C(I,J)<!,repl>=[] S

M - - - x - C(I,J)<M> = x M

M - - - A - C(I,J)<M> = A M

M - - - A S C(I,J)<M> = A S+A

M - - + x - C(I,J)<M> += x M

M - - + A - C(I,J)<M> += A M.*A

M - r - x S C(I,J)<M,repl> = x S+M

M - r - A S C(I,J)<M,repl> = A S+A

M - r + x S C(I,J)<M,repl> += x S+M

M - r + A S C(I,J)<M,repl> += A S+A

M c - - x S C(I,J)<!M> = x IxJ

M c - - A S C(I,J)<!M> = A S+A

M c - + x S C(I,J)<!M> += x IxJ

M c - + A S C(I,J)<!M> += A S+A

M c r - x S C(I,J)<!M,repl> = x IxJ

M c r - A S C(I,J)<!M,repl> = A S+A

M c r + - S C(I,J)<!M,repl> += x IxJ

M c r + A S C(I,J)<!M,repl> += A S+A

In table above, the first 5 columns define the
method: (1) if M is present, (2) if M is complemented,
(3) if the REPLACE option is used in the descriptor,
(4) if an accumulator operator is present, and (5) if
the assignment is a matrix assignment (A), or a scalar
assignment (x). The 6th column denotes whether or
not the S matrix is constructed. The corresponding
assignment expression is shown under the “Method”
column and “Para.” denotes the parallelism strategy
that is used.

All of these methods are either asymptotically op-
timal, or to within a log factor of being optimal. For
the parallel strategies, all tasks generated are fully in-
dependent, and roughly the same size. The methods
all scale to a large number of tasks since the tasks can
be either “coarse” (operating on one or more rows) or
“fine” (where individual rows can be subdivided, all the
way down to single entries).

The graph algorithms discussed in this paper use
only a small subset of these methods. The simple BFS
requires C(:,:)<M>=x and C(:,:)<M,repl>=A, where
the colon denotes GrB_ALL in GraphBLAS notation,
for all rows or columns. The push-pull BFS also
uses C(:,:)+=x and C(:,:)<M>+=x, to construct the
BFS tree. For both BFS methods, C and A are
vectors. PageRank relies on a single C(:,:)=x vector
assignment.

Copyright © 2020
Copyright for this paper is retained by authors

The performance of the submatrix assignment is
typically either just as fast as the same operation
in MATLAB, when one or two threads are used, or
sometimes vastly asymptotically faster. For example,
consider a very large assignment C(I,J)=A, where C has
dimension 12 million with 230 million nonzeros. The
matrix A is 5500-by-7800 with about 38,500 entries. The
index vectors are randomly chosen. For this simple
MATLAB expression, MATLAB R2018a takes about
30 minutes. Computing the same thing with a single
thread in GraphBLAS takes about 5 seconds, and 40
threads reduces the time to 0.75 seconds. Non-blocking
mode was not exploited; GraphBLAS took this time
to return a completed matrix back to MATLAB, as
a valid MATLAB sparse matrix, through a MATLAB
mexFunction interface, with no unfinished work. This
represents a speedup of 2,660x over MATLAB, for a
computation that is a simple one-line expression in
MATLAB, namely C(I,J)=A.

3.5 GrB apply: Parallel unary operators The
GrB_apply operation applies an unary operator to each
entry in A, as C=f(A). It is easy to parallelize, but
only if dense vectors of A are allowed to be split into
multiple tasks. This is done in a simple manner that
does not require a nested binary search (as used in
GrB_eWiseAdd). The entries of A are split equally. If
a vector has many entries, it is split amongst several
tasks (“fine” tasks). All the tasks are the same size.

3.6 GxB select: Parallel selection operators
SuiteSparse:GraphBLAS adds the GxB_select opera-
tion as an extension to the API Specification. It selects
a subset of entries from a matrix, keeping only those for
which the select operator is true. In this way, the select
operator acts much like a functional mask. The selector
can depend on the row and column index, the dimension
of A, and the value of the entry. There are two kinds
of built-in operators: those that depend solely on the
position of the entry (like tril and triu), and those
that depend on the value (such as keeping only nonzero
values. The parallelism for the two kinds of operators is
slightly different. Both are split into an analysis phase
that counts the number of entries in each vector of the
result, and a execution phase that constructs the result.
Methods that depend only on the position require only
a binary search for each vector in the analysis phase.
Computation is divided into tasks in much the same as
GrB_apply.

GxB_select was added to SuiteSparse:GraphBLAS
for the 2018 Graph Challenge, since it was needed to
compute the lower triangular part of a matrix for the
triangle counting problem [4]. It was also used in

the sparse deep neural network problem as the ReLU
function, which must drop entries at each layer, keeping
only those greater than zero [6].

3.7 GrB reduce: Parallel reduction GraphBLAS
has two kinds of reduction operations: reduction to a
vector, and reduction to a scalar; both are called via
GrB_reduce. At first glance, scalar reduction is simple
to compute in parallel, but to improve vectorization for
built-in reduction operators, the entries are split into
panels of size 8 to 64 entries, depending on the operator
and data type. The innermost loop is thus no longer
a reduction, and all iterations are independent. As a
result, it vectorizes better, giving a 5x speedup for the
max and min operators, over the non-vectorized method.
The panel method is used inside each parallel task.

The reduction to a vector can be computed in two
ways. For an m-by-n matrix A, either all the entries in
each row can be reduced to a scalar, leading to a vector
of size m, or all entries in each column can be reduced
to a scalar, leading to a vector of size n. If the matrix
is stored by row, the first method is straight-forward,
although dense vectors must be handled with fine-grain
tasks to obtain sufficient parallelism. In that case, the
results from multiple threads working in a single row
must be combined to get the final result.

Reducing the columns of a matrix in CSR format
is more difficult. If the matrix is extremely sparse
(|A| < n/16), this is accomplished by discarding the
row indices, and using GrB_build to build a vector of
dimension n, with the reduction operator as the opera-
tor for removing duplicate entries (see Section 3.9), tak-
ing O(|A| log |A|) time, if a single thread is used. This
relies on a parallel mergesort for parallelism. No part of
the time complexity depends on the matrix dimension,
so a hypersparse matrix of dimension 260-by-260 can be
reduced quickly on a low-powered laptop to a vector of
dimension 260, in well under a second, depending on the
number of entries.

Otherwise, if the matrix is not extremely sparse,
a bucket method is used. Each task reduces a set of
rows of A to its own vector of dimension n, and a final
parallel step reduces these vectors to a single vector of
dimension n. This takes pn workspace for p threads,
so to ensure that the workspace does not dominate the
method, at most p = |A|/n threads are used. This
implies that the bucket method does not scale well to
very many threads. In that case, the mergesort method
with GrB_build is used instead. The selection is based
on which method takes the least total workspace.

3.8 GrB transpose: Parallel transpose Suite-
Sparse:GraphBLAS implements two kinds of parallel

Copyright © 2020
Copyright for this paper is retained by authors

transpose. The first one constructs a list of tuples from
A, swaps them, and sorts the result, using GrB_build to
construct the output matrix. This method is well-suited
for hypersparse matrices, since no part of the time or
memory complexity depends on the matrix dimensions.
The second method uses a method like bucket-sort. In
the first phase, each task counts entries in each vec-
tor of the output, for its input rows (assuming A is in
CSR format). The next step sums up those counts,
and the final step builds the result. Like the bucket
method for GrB_reduce, each of the p tasks requires
size n workspace, and so the number of threads is lim-
ited to p = |A|/n. The method thus does not scale well
to very large numbers of threads, but it does get good
parallelism in spite of this, for large matrices.

3.9 GrB * build: Parallel matrix and vector
build The GrB_Matrix_build operation creates a CSR
or CSC matrix from a list of unsorted tuples (each with
a row index, column index, and value). The parallel
method divides into five phases. Phase 1 makes a copy
of the user input. Phase 2 sorts the tuples, using a
parallel mergesort. The parallel mergesort algorithm
uses OpenMP explicit task constructs to implement a
parallel divide-and-conquer algorithm. Task constructs
recursively partition the arrays until the result matches
the base-case size. At that point we sort the arrays
using a sequential quick sort algorithm. We then merge
the results in parallel inside the OpenMP explicit task
constructs. Phase 3 finds the non-empty vectors and
the duplicate entries in O(e/p) time. Phase 4 constructs
the vector pointers, and list of non-empty vectors. The
final phase assembles the tuples. All phases except the
parallel mergesort in phase 2 take O(e/p) time, with p
threads and an input of e tuples. GrB_Vector_build

creates an analogous sparse vector.
This method is well suited for constructing hyper-

sparse matrices, since no part of the time or memory
complexity depends on the matrix dimensions. The out-
put is always constructed as hypersparse, and then con-
verted to standard CSR or CSC format, if appropriate.

4 Problem Descriptions

Using built-in operators, SuiteSparse:GraphBLAS has
1040 unique semirings that can be used in a wide va-
riety of graph algorithms (independent set, breadth-
first search, centrality metrics, and so on). MATLAB
has just two semirings that it can apply to its sparse
matrices: PLUS_TIMES_FP64 and PLUS_TIMES_COMPLEX.
Along with the masking operation, this gives Graph-
BLAS a distinct edge (pun intended) in writing com-
plex graph algorithms. We describe a variety of these
graph problems below, to both illustrate the expressive

power of GraphBLAS, and to test and demonstrate the
performance gains of our parallel OpenMP-based im-
plementation of GraphBLAS relative to the serial im-
plementation.

4.1 Triangle Counting A triangle in a graph is a
clique of size 3. The best matrix formulation we are
aware of is by Wolf et al. [14], a variant of Cohen’s
method [3]. If A is a symmetric adjacency matrix of a
graph, and L=tril(A) denotes the lower triangular part
of A, then the MATLAB expression sum(sum(L*L).*L)

computes the number of triangles in the graph. This is
expressed as C〈L〉 = L2 in GraphBLAS notation, fol-
lowed by a summation of all entries in C to a scalar. If L
is stored by row (the default in SuiteSparse:GraphBLAS
and also in the work of Wolf et al.) then this can also
be computed as C〈L〉 = LUT or C=(L*U’).*L in MAT-
LAB notation, where U=triu(A) is the upper triangular
part of A (since A is symmetric, L = UT). This latter
method is used for these experiments as it is overall the
best of the different variants tried in both [4] and [14].
First, L and U are computed with GxB_select. Next
GrB_mxm computes C using a masked dot-product ma-
trix multiply. Finally GrB_reduce sums up C to the
scalar result.

4.2 4-Truss The k-truss C of a graph A is a sub-
graph with the same number of nodes, but where each
edge in the k-truss appears in at least k − 2 triangles
in A. The term cij is the number of triangles contain-
ing the edge (i, j), which is defined as the support of
the edge (i, j). In the 4-truss, any edges with support
less than k − 2 = 2 are removed, and thus all edges in
the 4-truss are in at least two triangles. The process is
iterative; to compute the first support, which is to let
C = A and then compute C〈C〉 = C2. Since C is sym-
metric, this can also be computed with C〈C〉 = CCT.
This is done with GrB_mxm. Next, GxB_select is used
to drop any edges with edge weight less than the sup-
port, k− 2. The process continues until the graph does
not change. Since more than one iteration is typically
required, computing the 4-truss takes more time than
simply counting the triangles in the graph.

We tested both variants: C〈C〉 = C2, which uses
the masked Gustavson method, and and C〈C〉 = CCT,
which uses the masked dot product. Table 2 reports the
results of the fastest method found.

4.3 Breadth-First Search The breadth-first search
is a traversal of all nodes of the undirected graph that
the sparse matrix represents. The specific algorithm
is a direction-optimized push/pull breadth first search,
which finds all nodes reachable for a single starting

Copyright © 2020
Copyright for this paper is retained by authors

40-Thread Speedup Relative to 1 Thread 40-Thread Edge Computation Rate (106 edges/s)

Triangle
Counting 4-Truss BFS

Bellman-
Ford LCC

Triangle
Counting 4-Truss BFS

Bellman-
Ford LCCMatrix

datagen-8 9-fb 26.6 27.7 3.5 11.6 25.8 15.3 0.6 285.0 114.1 6.7

datagen-9 2-zf 16.9 19.6 * * 7.9 63.0 3.2 * * 12.5

cit-Patents 16.1 19.7 2.6 9.1 11.7 87.8 11.7 25.4 23.8 23.0

g-1073643522-268435456 11.2 16.6 3.6 5.2 8.4 268.3 252.4 10.5 0.04 86.0

graph500-scale25-ef16 30.5 * 3.9 9.5 30.2 1.8 0.1 186.6 98.6 0.6

MAWI/201512020330 5.8 13.4 9.7 2.4 5.7 104.5 86.2 48.7 21.7 23.4

Table 2: Parallel GraphBLAS Computational Results.

node. In our experiment, we used node zero. This
reaches most or all the graph, for 5 of the 6 graphs in our
tests (for one graph, only a few nodes are reached and
we thus do not report the results for this graph). The
output vector v contains the level k of each vertex i as
it is discovered during the search. The search tree can
also optionally be returned, but our results presented
here do not compute the tree.

The basic operation of this algorithm computes
ATq where q is the queue of nodes in the current
level. This can be done with GrB_vxm(q,A) = (qTA)T

= ATq, or by GrB_mxv(B,q) = Bq = ATq, where
B = AT is the explicit transpose of A. Both steps
compute the same thing, just in a different way; the first
is a push step and the second is a pull step, assuming
the matrices are in CSR format. In GraphBLAS, unlike
MATLAB, a GrB_Vector is simultaneously a row and
column vector, so q and qT are interchangeable.

4.4 Bellman-Ford Shortest Path For a given
source vertex s, the Bellman-Ford algorithm finds the
shortest path to all other n− 1 vertices in the directed
weighted graph A, which is assumed to have no self-
edges (the adjacency matrix has an explicit zero diago-
nal). The Bellman-Ford algorithm performs relaxation
for n − 1 iterations. Each relaxation updates the ap-
proximate distance to each vertex with the minimum of
its old value and a newly found distance, represented
as dv = min{dv,du + Au,v}, where d is the distance
vector of length n and A is the adjacency matrix of the
graph [10]. As with our breadth-first search, we used
s = 0 as the source node which reaches most or all the
graph, except in the case of graph datagen-9 2-zf, where
insufficient exploration due to multiple connected com-
ponents required us to exclude it from this experiment.

Similar to breadth-first search, the traversal is
done with GrB_vxm(d,A), or by GrB_mxv(B,d), where
B = AT is the explicit transpose of A. Previous
test results indicate that GrB_vxm(d,A) is faster than
GrB_mxv(B,d) when d is sparse, while GrB_mxv(B,d)

is faster when d is dense. Furthermore, when the
sparse vector d becomes too dense, the performance of
both GrB_vxm(d,A) and GrB_mxv(B,d) can improved
by treating d as a dense vector. Therefore, to accelerate
the Bellman-Ford algorithm, the vector d is initially
sparse and converted to dense when nnz(d) > n/2.
If both A and B are available, GrB_vxm(d,A) is used
when nnz(d) ≤ n/2, while GrB_mxv(B,d) is used for
nnz(d) > n/2.

4.5 Local Clustering Coefficient For a given ver-
tex v, LCC(v) can be determined as the number of
triangles containing v divided by the number of pos-
sible edges between the neighbors of v. The algorithm
uses the adjacency matrix A and a Boolean matrix C
describing neighborhood relations, which considers ver-
tices on both incoming and outgoing edges. If the adja-
cency matrix A is symmetric, C = A, else C = A∨AT.

The triangles are enumerated using T〈C〉 = CA
or T=(C*A).*C in MATLAB notation. This is com-
puted with GrB_mxm using a masked dot-product matrix
multiply. The number of triangles for each vertex are
summed using a row-wise GrB_reduce operation on T
with the operator GrB_PLUS_FP64, resulting in vector t.
To get the number of neighbors for each vertex, the next
step computes vector w from matrix C, again using a
row-wise GrB_reduce with GrB_PLUS_FP64. The maxi-
mum possible number of edges between w neighbors is
w · (w − 1), which is captured as a GrB_UnaryOp oper-
ator and is applied on w using GrB_apply, resulting in
vector p. Finally, lcc = t/p gives the LCC values.

4.6 Benchmark Matrices To demonstrate Graph-
BLAS on the aforementioned algorithms, we chose
six large matrices as input (see Table 3). The first
two matrices are generated from the LDBC Datagen
component configured to produce undirected simple
graphs for LDBC Graphalytics [8], while the latter
four are from the HPEC ’18 Graph Challenge (https:
//graphchallenge.mit.edu/).

Copyright © 2020
Copyright for this paper is retained by authors

https://graphchallenge.mit.edu/
https://graphchallenge.mit.edu/

Matrix Name Nodes Edges Description

datagen-8 9-fb 10,572,901 848,681,908 LDBC Datagen
datagen-9 2-zf 12,857,671 1,049,527,225 LDBC Datagen
cit-Patents 3,774,768 33,037,894 Citation network among US patents
g-1073643522-268435456 1,073,643,522 268,435,456 Synthetic image grid benchmark matrix
graph500-scale25-ef16 33,554,432 536,870,912 Synthetic graph500 network of scale 25
MAWI/201512020330 226,196,185 480,047,894 Packet trace from WIDE internet backbone

Table 3: The six matrices used for all benchmarks except sparse deep neural network.

4.7 Sparse Deep Neural Network Forward
Propagation The sparse deep neural network prob-
lem involves computing an output vector (Yn) based
on an input vector (Y0) and a deep neural network
consisting of n layers of a fixed number of neurons in
each layer. The connections between each layer of neu-
rons are sparse, where the connections have zero weight
[11–13]. The values of each layer are computed using a
rectified linear unit (ReLU) computation. The Sparse
Deep Neural Network Graph Challenge describes several
instances of the sparse deep neural network problem,
which we solved using GraphBLAS in a prior paper, [9].

Figure 1 presents the entire algorithm in Graph-
BLAS. A prototype of the code, without the ymax step,
took only 20 minutes to write, and compiled and ran
correctly the first time it was compiled. It is almost as
elegant as the MATLAB reference implementation; even
more so for the step that applies the bias. Applying the
bias adds a negative value to each nonzero column of
Y, leaving zeros unchanged. In the MATLAB reference,
the line is:

Y = Z + (double(logical(Z)) .* bias {layer}) ;

In GraphBLAS, this is a simple diagonal scal-
ing, Y=Y*Bias[layer], using the PLUS_PLUS semiring
(shown in Figure 1).

On the same system used for the other experiments
reported in this paper, the smallest problem took 179
seconds in MATLAB R2018a. Using a single thread,
GraphBLAS took 21 seconds, and 1.5 seconds with 40
threads, a speedup of over 100x. The largest problem
required exactly 3 days for MATLAB, but only a
little over an hour for GraphBLAS, with 40 threads,
a speedup of 70x. This gain in performance came at no
extra cost in development time, since writing the code
in Figure 1 is just as fast as writing the corresponding
MATLAB code.

5 Performance results

Experiments were performed on an Intel® Xeon® E5-
2698 v4 CPU system with 20 cores running at 2.2
Ghz, 256 GB of RAM and the Intel® icc compiler
(19.0.3.199). Two-way simultaneous multithreading

#include "GraphBLAS.h"
void ymax_fp32 (float *z, const float *x)
{

(*z) = fminf ((*x), (float) 32.0) ;
}
void dnn // solve a sparse deep neural network
(

GrB_Matrix *Yhandle, // Y, created on output
GrB_Matrix *W, // W [0..nlayers-1]
GrB_Matrix *Bias, // Bias [0..nlayers-1]
int nlayers, // # of layers
GrB_Matrix Y0 // nfeatures-by-nneurons

)
{

GrB_Matrix Y = NULL ;
GrB_UnaryOp ymax = NULL ;
GrB_Index nfeatures, nneurons ;
GrB_Matrix_nrows (&nfeatures, Y0) ;
GrB_Matrix_ncols (&nneurons, Y0) ;
GrB_Matrix_new (&Y, type, nfeatures, nneurons) ;
GrB_UnaryOp_new (&ymax, ymax_fp32, GrB_FP32, GrB_FP32) ;
// propagate the features through the neuron layers
for (int layer = 0 ; layer < nlayers ; layer++)
{

// Y = Y * W [layer]
GrB_mxm (Y, NULL, NULL, GxB_PLUS_TIMES_FP32,

((layer == 0) ? Y0 : Y), W [layer], NULL) ;
// Y(i,j) += Bias [layer] (j,j) for each Y(i,j)
GrB_mxm (Y, NULL, NULL, GxB_PLUS_PLUS_FP3

2, Y, Bias [layer], NULL) ;
// delete entries; keep only those > 0
GxB_select (Y, NULL, NULL, GxB_GT_ZERO, Y,

NULL, NULL) ;
// threshold maximum values: Y (Y > 32) = 32
GrB_apply (Y, NULL, NULL, ymax, Y, NULL) ;

}
GrB_free (&ymax) ; // free the unary operator
(*Yhandle) = Y ; // return result

}

Figure 1: A complete solution to the Sparse Deep
Neural Network in GraphBLAS, requiring 20 minutes
to write.

Copyright © 2020
Copyright for this paper is retained by authors

(SMT) was enabled so the system had a total of 40
hardware-threads.

Computational results for solving the various prob-
lems are tabulated in Table 2. GraphBLAS uses the
OpenMP-based parallelism described in Section 3.

This parallel implementation of GraphBLAS gener-
ally scales well, but performance is dependent on the
specific algorithm and matrix.

Results for matrix datagen-9 2-zf are excluded for
breadth-first search and the Bellman-Ford algorithm as
it has many disconnected components (very little of the
graph is explored). 4-truss resulted in a timeout for
the graph500-scale25-ef16 matrix when using a single
thread, so speedup results are not reported. The edge
computation rate for 40 threads is low for this particular
matrix; we are studying our algorithms to determine
why this is the case.

For the sparse deep neural network forward propa-
gation challenge, GraphBLAS provided speedups rang-
ing from 10.1 to 15.3 using 40 threads relative to 1
thread, depending on the size and structure of the net-
works. The edge computation rate ranged from 60.1
million to 275.4 million edges per second when using 40
threads [6]. The bulk of the work for this algorithm is
spent in a parallel GrB_mxm.

The parallel speedups and raw performance of tri-
angle counting and k-truss are mostly very good, except
for the graph500-scale25-ef16 matrix. Both of these
algorithms rely on a parallel matrix-matrix multiply
(GrB_mxm). Breadth-first search and Bellman-Ford both
show modest parallelism; they both rely on a matrix-
vector or vector-matrix multiply, which is harder to
parallelize. The LCC algorithm also relies on a highly-
parallel GrB_mxm, but it does other work as well so its
parallelism is not always as good as the simpler triangle
counting or k-truss methods. We are developing a revi-
sion of this method for which we hope to obtain better
parallelism.

6 Conclusions

These results demonstrate that GraphBLAS can
be an efficient library that allows end users to
write simple yet fast code. All codes used in
this paper appear at http://suitesparse.com or
https://github.com/GraphBLAS/LAGraph.

References

[1] A. Buluç and J. R. Gilbert, On the represen-
tation and multiplication of hypersparse matrices, in
IPDPS08: the IEEE International Symposium on Par-
allel & Distributed Processing, IEEE Computer Soci-
ety, 2008, pp. 1–11.

[2] A. Buluç, T. Mattson, S. McMillan, J. Moreira,
and C. Yang, The GraphBLAS C API specification,
tech. report, http://graphblas.org/, 2017.

[3] J. Cohen, Graph twiddling in a map-reduce world,
Computing in Science and Eng., 11 (2009), pp. 29–41.

[4] T. A. Davis, Graph algorithms via Suite-
Sparse:GraphBLAS: triangle counting and k-truss,
in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC), Sep. 2018, pp. 1–6,
https://doi.org/10.1109/HPEC.2018.8547538.

[5] T. A. Davis, Algorithm 9xx: SuiteSparse:GraphBLAS:
graph algorithms in the language of sparse linear alge-
bra, ACM Trans. Math. Softw., to appear (2019).

[6] T. A. Davis, M. Aznaveh, and S. Kolodziej, Write
quick, run fast: Sparse deep neural network in 20 min-
utes of development time via SuiteSparse:GraphBLAS,
in 2019 IEEE High Performance extreme Computing
Conference (HPEC), 2019 (submitted), pp. –.

[7] F. G. Gustavson, Two fast algorithms for sparse
matrices: Multiplication and permuted transposition,
ACM Trans. Math. Softw., 4 (1978), pp. 250–269,
https://doi.org/10.1145/355791.355796.

[8] A. Iosup et al., LDBC Graphalytics: A benchmark
for large-scale graph analysis on parallel and distributed
platforms, VLDB, 9 (2016), pp. 1317–1328.

[9] J. Kepner, S. Alford, V. Gadepally, M. Jones,
L. Milechin, R. Robinett, and S. Samsi,
Sparse deep neural network graph challenge, tech.
report, MIT Lincoln Laboratory Supercomput-
ing Center, 2019. http://graphchallenge.

mit.edu/sites/default/files/documents/

SparseDNN-GraphChallenge-2019-06-13-DRAFT.pdf.
[10] J. Kepner and J. Gilbert, Graph Algorithms in the

Language of Linear Algebra, SIAM, Philadelphia, PA,
2011.

[11] X. Liu, J. Pool, S. Han, and W. J. Dally, Efficient
sparse-winograd convolutional neural networks, arXiv
preprint arXiv:1802.06367, (2018).

[12] H. Mao, S. Han, J. Pool, W. Li, X. Liu,
Y. Wang, and W. J. Dally, Exploring the regularity
of sparse structure in convolutional neural networks,
arXiv preprint arXiv:1705.08922, (2017).

[13] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. Emer, S. W.
Keckler, and W. J. Dally, SCNN: An accelerator
for compressed-sparse convolutional neural networks, in
2017 ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA), IEEE, 2017,
pp. 27–40.

[14] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Ham-
mond, and S. Rajamanickam, Fast linear algebra-
based triangle counting with KokkosKernels, in 2017
IEEE High Performance Extreme Computing Confer-
ence (HPEC), Sept 2017, pp. 1–7, https://doi.org/
10.1109/HPEC.2017.8091043.

Copyright © 2020
Copyright for this paper is retained by authors

http://suitesparse.com
https://github.com/GraphBLAS/LAGraph
https://doi.org/10.1109/HPEC.2018.8547538
https://doi.org/10.1145/355791.355796
http://graphchallenge.mit.edu/sites/default/files/documents/SparseDNN-GraphChallenge-2019-06-13-DRAFT.pdf
http://graphchallenge.mit.edu/sites/default/files/documents/SparseDNN-GraphChallenge-2019-06-13-DRAFT.pdf
http://graphchallenge.mit.edu/sites/default/files/documents/SparseDNN-GraphChallenge-2019-06-13-DRAFT.pdf
https://doi.org/10.1109/HPEC.2017.8091043
https://doi.org/10.1109/HPEC.2017.8091043

	Introduction
	Overview of GraphBLAS objects, methods, and operations
	Non-blocking mode
	The accumulator and the mask

	Parallelism in SuiteSparse:GraphBLAS
	GrB_mxm: Parallel matrix multiplication
	GrB_eWiseAdd and GrB_eWiseMult: Parallel element-wise operations
	GrB_extract: Parallel submatrix extraction
	GrB_assign: Parallel submatrix assignment
	GrB_apply: Parallel unary operators
	GxB_select: Parallel selection operators
	GrB_reduce: Parallel reduction
	GrB_transpose: Parallel transpose
	GrB_*_build: Parallel matrix and vector build

	Problem Descriptions
	Triangle Counting
	4-Truss
	Breadth-First Search
	Bellman-Ford Shortest Path
	Local Clustering Coefficient
	Benchmark Matrices
	Sparse Deep Neural Network Forward Propagation

	Performance results
	Conclusions

