
Math. Program., Ser. A (2008) 112:275–301
DOI 10.1007/s10107-006-0017-0

F U L L L E N G T H PA P E R

A sparse proximal implementation of the LP dual
active set algorithm

Timothy A. Davis · William W. Hager

Received: 13 August 2003 / Accepted: 21 June 2006 / Published online: 18 August 2006
© Springer-Verlag 2006

Abstract We present an implementation of the LP Dual Active Set Algorithm
(LP DASA) based on a quadratic proximal approximation, a strategy for drop-
ping inactive equations from the constraints, and recently developed algorithms
for updating a sparse Cholesky factorization after a low-rank change. Although
our main focus is linear programming, the first and second-order proximal tech-
niques that we develop are applicable to general concave–convex Lagrangians
and to linear equality and inequality constraints. We use Netlib LP test prob-
lems to compare our proximal implementation of LP DASA to Simplex and
Barrier algorithms as implemented in CPLEX.

Keywords Dual active set algorithm · Linear programming · Simplex
method · Barrier method · Interior point method · Equation dropping

Mathematics Subject Classification (2000) 90C05 · 90C06 · 65Y20

This material is based upon work supported by the National Science Foundation under Grant
No. 0203270.

T. A. Davis
Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, PO Box 116120, FL 32611-6120, USA
e-mail: davis@cise.ufl.edu
URL: http://www.cise.ufl.edu/∼davis

W. W. Hager(B)
Department of Mathematics, University of Florida,
Gainesville, PO Box 118105, FL 32611-8105, USA
e-mail: hager@math.ufl.edu
URL: http://www.math.ufl.edu/∼hager

276 T. A. Davis, W. W. Hager

1 Introduction

We present an implementation of the LP Dual Active Set Algorithm (LP
DASA) [23] for solving linear programming problems. Global convergence
is established and comparisons with Simplex and Barrier algorithms, as imple-
mented in CPLEX, are reported. Since our quadratic proximal approach can
be applied to general concave–convex Lagrangians, we develop the theory in
an abstract setting, and then apply it to the linear programming problem.

Given a function L : � × X �→ R, where � ⊂ R
m and X ⊂ R

n are closed and
convex, we consider the problem

sup
λ∈�

inf
x∈X

L(λ, x). (1)

We refer to L in (1) as the “Lagrangian,” while the “dual function,” defined on
�, is given by

L(λ) = inf
x∈X

L(λ, x). (2)

Hence, the maximin problem (1) is equivalent to the maximization of the dual
function.

Let cT denote the transpose of a vector c. The primal linear program (LP)

min cTx subject to Ax = b, x ≥ 0, (3)

where A is m by n and all vectors are of compatible size, corresponds to the
following choices in the dual formulation (1):

X = {x ∈ R
n : x ≥ 0}, � = R

m, and (4)

L(λ, x) = cTx + λT(b − Ax). (5)

Any LP can be written in the canonical form (3) [37]. If the primal problem (3)
has a solution x∗, then dual problem (1) has a solution; if λ∗ is a solution of (1),
then x∗ minimizes L(λ∗, ·) over X.

Since the dual function for an LP is nonsmooth, we introduce the following
“proximal” regularization of the Lagrangian:

Lε(λ; y) = min
x∈X

L(λ, x) + ε

2
‖x − y‖2, (6)

where ε > 0 is a scalar and y ∈ R
n. First and second-order algorithms for solv-

ing (1) are presented. The first-order algorithm corresponds to the following
iteration:

λk = arg max
λ∈�

Lε(λ; yk), (7)

yk+1 = arg min
x∈X

L(λk, x) + ε

2
‖x − yk‖2. (8)

A sparse proximal implementation of the LP dual active set algorithm 277

The dual active set algorithm (DASA) [20,21,23–25,27] is used to evaluate the
maximum in (7). We show that the first-order algorithm amounts to steepest
descent along the negative gradient of the function

�(y) = sup
λ∈�

Lε(λ; y).

Moreover, the iteration (7), (8) converges to a saddle point (λ∗, x∗) of the
Lagrangian L and x∗ minimizes � over R

n.
The second-order algorithm, based on a quadratic approximation to �, con-

verges in a finite number of iterations, while the first-order algorithm (7),
(8) converges in the limit, as k tends to infinity. The second-order algorithm
requires fewer iterations than the first-order algorithm; however, our current
implementation of the first-order algorithm is faster, in terms of CPU time, than
the second-order algorithm.

In [23] we develop the LPDASA a finitely convergent algorithm for solving
a linear programming problem based on a series of orthogonal projections. In
[24, (4.4)] we show that if a proximal regularization is applied to the LP and
the resulting quadratic programming problem is solved by the Dual Active Set
Algorithm, then the search directions generated by the proximal DASA closely
approximate the orthogonal projections generated by LP DASA. In this paper, a
complete algorithm based on this proximal approach is developed and analyzed.

Our numerical results use factorization-based sparse matrix techniques [9,10,
12] to solve the linear systems that arise in each step of DASA. In contrast, [24]
gives numerical results based on an SSOR iterative solver [22]. This iterative
implementation is attractive in cases where the constraint matrix A is sparse,
while the Cholesky factorization of AAT is relatively dense. We saw in [24] that
this iterative approach could solve large LPs connected with lower bounds to the
quadratic assignment problem, which were intractable for factorization-based
simplex, barrier, or dual active set methods.

The iterative approach, however, is not as efficient as a factorization-based
approach when both A and the Cholesky factorization of AAT are sparse. In
this case, where the time required to solve a factored linear system may be
comparable to the time required to multiply A by a vector, direct methods are
superior to iterative methods. We compare the efficiency of our factorization-
based LP DASA scheme to Simplex and Barrier algorithms as implemented in
the commercial code CPLEX [3].

Besides developing our proximal LP DASA algorithm, we also develop an
important simplification that we call “equation dropping.” The basic idea is that
as the iterations progress, we seek to identify equations that can be dropped
without affecting the solution. We drop these inactive inequalities and solve
a simpler problem with fewer constraints. This dynamic strategy for dropping
inactive equations is more aggressive than presolve techniques that drop con-
straints that must always be satisfied.

We remark that another variation of LP DASA, also based on orthogonal
projection, appears in [35]. There the bound-constrained least squares problem
appearing in the first step of the LP DASA algorithm [21,23] is replaced by an

278 T. A. Davis, W. W. Hager

unconstrained least squares problem. As a result, a nondegeneracy assumption
is needed to ensure convergence, while we obtain in [23] convergence without
any assumptions on the problem. Previous applications of DASA have been
to classes of bound-constrained control problems [2,26,41] and to quadratic
network optimization [25].

We briefly compare LP DASA [23] to both simplex and barrier approaches.
In the dual active set approach, we start with a guess for the dual multiplier
associated with the constraint Ax = b, and we ascend the dual function, even-
tually obtaining a subset of the columns of A that contains b in its span. Either
b is a nonnegative combination of these columns of A, and we have obtained
an optimal solution of the LP, or some of the columns are discarded, and the
iteration repeats. Since the algorithm constantly ascends the dual function, the
collection of columns obtained in each iteration does not repeat, and conver-
gence is obtained in a finite number of steps. This finite convergence property
is similar to that of the Simplex method, where the iterates travel along edges
of the feasible set, descending the cost function in a finite number of steps.
Unlike the Simplex method, neither rank nor nondegeneracy assumptions are
either invoked or facilitate the analysis. In essence, one is able to prove finite
convergence without any assumptions. In the Simplex method, typically one
constraint is activated and one constraint is deactivated in each iteration. In
contrast, many constraints may change in an LP DASA iteration.

In Barrier methods, the iterates move through the relative interior of the fea-
sible region. In LP DASA, the iterates are infeasible, and the algorithm seeks
to identify the columns of A associated with an optimal basis. Each iteration of
the Barrier method computes a scaled projection of the cost vector into the null
space of A. LP DASA projects the constraint violation vector into the space
orthogonal to the “free” columns of A. Consequently, a Barrier method solves
symmetric linear systems involving a matrix whose sparsity pattern coincides
with that of AAT; LP DASA solves symmetric linear systems with the matrix
AFAT

F , where AF is the submatrix of A corresponding to the current free vari-
ables (primal variables not at a bound). In a sparse setting, the LP DASA matrix
AFAT

F is often much more sparse than the barrier matrix associated with AAT.
Thus storage requirements and solution times associated with the LP DASA
solves can be less than those for Barrier methods.

Our paper is organized as follows: in Sect. 2 we prove convergence of the
first-order algorithm (7), (8), and we present the dual active set algorithm that
we use to solve (7). Section 3 explores the relationship between primal and dual
iterates, and reveals that the algorithm (7), (8) is a gradient descent method
applied to �. The second-order algorithm is presented in Sect. 4. In Sect. 5, we
develop a strategy for deleting “inactive equations” when using DASA. Numer-
ical comparisons with Simplex and Barrier codes in CPLEX are given in Sect. 6.

1.1 Notation

The following notation is used throughout the paper: The gradient of a real-
valued function � is a row vector denoted ∇�. For a function of two variables,

A sparse proximal implementation of the LP dual active set algorithm 279

say L(λ, x), the gradient with respect λ is ∇λL(λ, x). The Euclidean norm of a
vector x is denoted ‖x‖, while xT denotes the transpose of x. The subscript k
is often used to denote an iteration number in an algorithm, while xkj stands
for the j-th component of the iterate xk. If F ⊂ {1, 2, . . . , n}, then AF is the
submatrix of A associated with columns corresponding to indices in F. The
complement of F is denoted Fc. The set of integers F is often associated with
components of the primal variable x that are “free” in the sense that xj > 0.
A set B of integers is often associated with bound primal components; that is,
components for which xj = 0. Since the “basic variables” in LP are typically
free, the bound set B set is essentially the opposite of the “basic variables” in LP.

2 The first-order proximal update and DASA

In this section we observe that the iteration (7), (8) is convergent to a saddle
point of L when one exists, and we review DASA. If L(λ, ·) is convex, then the
extremand in (6) is strongly convex in x, and the minimizing argument, denoted
x(λ), is unique. As a consequence of [5, Theorem 2.1], if the derivative ∇λL(λ, x)

is continuous with respect to λ and x, then Lε(· ; y) is differentiable and

∇λLε(λ; y) = ∇λL(λ, x(λ)). (9)

If the mixed derivative ∇x∇λL(λ, x) is continuous, then by [18, Lemma 2.2]
or [19, Theorem 4.1], x(λ) is Lipschitz continuous in λ, and by (9), Lε(λ; y) is
Lipschitz continuously differentiable in λ. Hence, by introducing the ε term in
(6), we are able to transform a (possibly) nonsmooth extremand in (1) into a
smooth function Lε(·; y).

We now make a simplifying assumption: the Lagrangian L(λ, x) is strongly
concave in λ. That is, there exists δ > 0, independent of x, such that

L(λ, x) ≤ L(µ, x) + ∇λL(µ, x)(λ − µ) − δ

2
‖λ − µ‖2 (10)

for each λ, µ ∈ �. In this case, the maximizer λk in (7) is unique. Technically, an
LP does not satisfy this strong concavity condition. On the other hand, similar
to the regularization in x done in (6), we could augment L with a small concave
term of the form −δ‖λ‖2 in order to satisfy this condition. From a practical view-
point, this small term is insignificant in the computations. From a theoretical
viewpoint, this small term yields a bound on the iterates generated by (7), (8),
from which convergence follows. Alternatively, for an LP, a similar bound on the
iterates can be achieved by letting λk be the minimum-norm maximizer in (7).

2.1 Global convergence

Recall that (λ∗, x∗) ∈ � × X is a saddle point of L if

L(λ, x∗) ≤ L(λ∗, x∗) ≤ L(λ∗, x) for all λ ∈ � and x ∈ X. (11)

280 T. A. Davis, W. W. Hager

The second inequality implies that

L(λ∗, x∗) = inf
x∈X

L(λ∗, x),

while the first inequality implies that

L(λ∗, x∗) ≥ inf
x∈X

L(λ, x).

Hence, a saddle point is a solution of (1).

Theorem 1 Suppose the Lagrangian L(·, ·) is continuously differentiable, L(· , x)

is uniformly, strongly concave for each fixed x ∈ X, and L(λ, ·) is convex for
each fixed λ ∈ �. If L has a saddle point (λ∗, x∗) ∈ � × X, then the λk generated
by (7), (8) converge to the maximizer λ∗ of (1) and the associated yk converge to
a minimizer y∗ of the function

�(x) = sup
λ∈�

L(λ, x).

The pair (λ∗, y∗) ∈ � × X is a saddle point of L, and for each k, we have

Lε(λk+1; yk+1) ≤ Lε(λk; yk) − δ

2
‖λk+1 − λk‖2 − ε

2
‖yk+1 − yk‖2. (12)

Proof We focus on the iterates associated with k = 1 and k = 2. Putting x = y2
in (6) when λ = λ2 and y = y2, and exploiting the uniform, strong concavity of
L(· , x), gives

Lε(λ2; y2) = min
x∈X

L(λ2, x) + ε

2
‖x − y2‖2 ≤ L(λ2, y2)

≤ L(λ1, y2) + ∇λL(λ1, y2)(λ2 − λ1) − δ

2
‖λ2 − λ1‖2. (13)

Also, by the first-order optimality conditions at the maximizer in (7) and by (9),
it follows that

∇λL(λk, yk+1)(λ − λk) ≤ 0 (14)

for all λ ∈ �. By the definition of y2,

Lε(λ1; y1) = L(λ1, y2) + ε

2
‖y2 − y1‖2. (15)

We combine (13), (14) with k = 1, and (15) to obtain

Lε(λ2; y2) ≤ Lε(λ1; y1) − δ

2
‖λ2 − λ1‖2 − ε

2
‖y2 − y1‖2. (16)

A sparse proximal implementation of the LP dual active set algorithm 281

Analogous to (16), the iterates (λk+1, yk+1) and (λk, yk) satisfy (12), which
establishes monotone descent.

The function

L(λ, x) + ε

2
‖x − y‖2

is strongly convex in x for each fixed λ and strongly concave in λ for each fixed x.
Hence, we have the following identity (see [15, p. 173]):

max
λ∈�

inf
x∈X

L(λ, x) + ε

2
‖x − yk‖2 = min

x∈X
sup
λ∈�

L(λ, x) + ε

2
‖x − yk‖2

= min
x∈X

�(x) + ε

2
‖x − yk‖2. (17)

Moreover, by [15, p. 167], if λk and yk+1 achieve the maximum and the minimum
in (17) respectively, then (λk, yk+1) is a saddle point:

L(λ, yk+1) + ε

2
‖yk+1 − yk‖2 ≤ L(λk, yk+1) + ε

2
‖yk+1 − yk‖2

≤ L(λk, x) + ε

2
‖x − yk‖2

for all λ ∈ � and x ∈ X. It follows that

yk+1 = arg min
x∈X

L(λk, x) + ε

2
‖x − yk‖2.

Hence, the x achieving the minimum in (17), denoted yk+1 above, coincides
with the iterate yk+1 given in (8), and the iteration (7), (8) is equivalent to the
proximal point iteration

yk+1 = arg min
x∈X

�(x) + ε

2
‖x − yk‖2.

Since L(λ, ·) is convex, � is convex; that is, take θ ∈ [0, 1] and x1 and x2 ∈ X
to obtain

�(θx1 + (1 − θ)x2) = sup
λ∈�

L(λ, θx1 + (1 − θ)x2)

≤ sup
λ∈�

{θL(λ, x1) + (1 − θ)L(λ, x2)}
≤ θ�(x1) + (1 − θ)�(x2). (18)

Due to the saddle point assumption (11), we have (see [15, p. 167])

x∗ ∈ arg min
x∈X

�(x).

282 T. A. Davis, W. W. Hager

By the convexity of � and the existence of a minimizer, the convergence theory
for the proximal point method (see [32,33,36, Theorem 1]) tells us that the yk
approach a minimizer y∗ of �; obviously,

�(x∗) = �(y∗). (19)

By the saddle point assumption (11), we have

�(y∗) = sup
λ∈�

L(λ, y∗) ≥ L(λ∗, y∗) ≥ L(λ∗, x∗) = �(x∗). (20)

Since �(y∗) = �(x∗), the inequalities in (20) are equalities. Hence,

λ∗ = arg max
λ∈�

L(λ, y∗). (21)

By (20) and the saddle point condition (11), it follows that

L(λ∗, y∗) = L(λ∗, x∗) ≤ L(λ∗, x) (22)

for all x ∈ X. Together, (21) and (22) imply that (λ∗, y∗) is a saddle point of L.
We now show that the λk approach λ∗. By (21) and the first-order optimality

conditions for λ∗, we have

∇λL(λ∗, y∗)(λ − λ∗) ≤ 0 for all λ ∈ �. (23)

Adding (23) with λ = λk to (14) with λ = λ∗ gives

(
∇λL(λ∗, y∗) − ∇λL(λk, yk+1)

)
(λk − λ∗) ≤ 0. (24)

By the uniform strong convexity assumption, we have

(
∇λL(λ∗, yk+1) − ∇λL(λk, yk+1)

)
(λk − λ∗) ≥ δ‖λk − λ∗‖2. (25)

Combining (24) and (25) yields the following:

δ‖λk − λ∗‖2 ≤
(

∇λL(λ∗, yk+1) − ∇λL(λ∗, y∗)
)

(λk − λ∗)

We apply the Schwarz inequality to obtain

‖λk − λ∗‖ ≤ ‖∇λL(λ∗, yk+1) − ∇λL(λ∗, y∗)‖/δ.

Since the yk approach y∗, the continuity of ∇λL implies that the λk
approach λ∗. ��

A sparse proximal implementation of the LP dual active set algorithm 283

Remark 1 Although ε is independent of k in the statement of Theorem 1, it
could depend on k without any changes in the analysis. When ε depends on k,
(12) becomes:

Lεk+1(λk+1; yk+1) ≤ Lεk(λk; yk) − δ

2
‖λk+1 − λk‖2 − εk

2
‖yk+1 − yk‖2.

2.2 Dual active set algorithm

Let us assume that the primal constraint set X is the nonnegative cone (4). The
statement of the dual active set algorithm (DASA) for solving (1), appearing in
Algorithm 1, uses the following notation: Given a bound set B ⊂ {1, 2, . . . , n},
let xB be the subvector of x consisting of those components xj associated with
j ∈ B. We define the functions

LB+(λ) = min{L(λ, x) : x ∈ R
n, xB ≥ 0}, (26)

and
LB0(λ) = min{L(λ, x) : x ∈ R

n, xB = 0}. (27)

The components of x in (26) and (27) corresponding to indices in the com-
plement of B are unconstrained during the minimizations. Assuming L(λ, x) is
strongly convex in x, there exists a unique minimizer x(λ, B) in (26) for each
choice of λ and B. Let x(λ) denote x(λ, B) in the case B = {1, 2, . . . , n}.

In Algorithm 1, there is an outer loop indexed by l, and an inner loop indexed
by k. In the inner loop, indices are deleted from Bk to obtain Bk+1; that is, Bk+1
is a subset of Bk consisting of those indices for which xj(νk+1, Bk) = 0. When
the inner loop terminates, we reinitialize B0 by solving the problem

Algorithm 1 Dual Active Set Algorithm

l = 0
λ0 = starting guess
while ∇L(λl) = 0

ν0 = λl
B0 = {j ∈ [1, n] : xj(λl) = 0}.
for k = 0, 1, . . .

ωk = arg max {LB0
k
(λ) : λ ∈ R

m}
νk+1 = arg max {LB+

k
(λ) : λ ∈ [νk, ωk]}.

Bk+1 = {
j ∈ Bk : xj(νk+1, Bk) = 0

}
if νk+1 = ωk break

end
l = l + 1
λl = ωk

end

284 T. A. Davis, W. W. Hager

min
x≥0

L(λl, x)

to obtain x(λl). Those j for which xj(λl) = 0 form the new B0. In the LP setting
studied here, or in the networks studied in [25], the indices contained in the
final Bk of the subiteration are included in the initial B0 of the next iteration.
Hence, the initialization of B0 adds indices to the current bound set, while the
evaluation of Bk+1 frees bound indices. The proof [23, Theorem 1] that DASA
solves (1) in a finite number of iterations is based on the fact that the subitera-
tion strictly increases the value of the dual function; as a result, the final set Bk
generated in the subiteration cannot repeat. Since the sets Bk are chosen from
a finite set, convergence occurs in a finite number of steps.

We use DASA to solve (7). We now explain each step of Algorithm 1 in the
case where the dual function is the regularized function Lε(λ; y) associated with
the LP (3):

1. In the outer loop of Algorithm 1, the iteration continues until the gradient
of the dual function vanishes. As in (9), this gradient can be expressed

∇Lε(λ) = b − Ax(λ), (28)

where x(λ) achieves the minimum in (6) corresponding to the LP-dual
function (5):

xj(λ) = max{0, zj(λ)}, z(λ) = y − c − ATλ

ε
. (29)

2. Before the inner loop, B0 is initialized to be the indices j for which xj(λl) = 0,
where x(λ) is given in (29).

3. In the first step of the inner iteration, we maximize LB0
k
. This amounts to

solving the problem

max
λ

min{cTx + λT(b − Ax) + ε

2
‖x − y‖2 : x ∈ R

n, xBk = 0}. (30)

If F = Bc
k is the complement of Bk, then the maximun problem (30) is

equivalent to the following equations:

(AFAT
F)λ = AFcF + ε(b − AFyF), and (31)

xF = yF − 1
ε
(cF − AT

Fλ), (32)

where AF denotes the submatrix of A associated with columns correspond-
ing to indices in F. The solution λ of (31) is the ωk of Algorithm 1. The xF
given in (32) is the associated primal minimizer in (30).

A sparse proximal implementation of the LP dual active set algorithm 285

4. The computation of νk+1 represents a line search in which the piecewise
quadratic LB+

k
(λ) is maximized along the line segment connecting the cur-

rent subiterate νk and the maximizer ωk (the solution of (31)). For any λ

and B, we have

LB+(λ) = cTx + λT(b − Ax) + ε

2
‖x − y‖2, (33)

where

xj(λ) =
{

max{0, zj(λ)} if j ∈ F = Bc,
0 if j ∈ B,

(34)

As λ moves along the line segment [νk, ωk], z(λ) in (29) changes linearly
with λ and xj(λ) in (34) changes in a piecewise linear fashion. Hence, LB+
in (33) is a convex, piecewise quadratic function.

5. By the definition of xj in (34), Bk+1 is obtained by pruning from Bk those
indices j ∈ Bk for which xj(νk+1) > 0.

6. If xk
j (νk+1) = 0 for all j ∈ Bk, then the subiteration terminates and the

set B0 is reinitialized to be the final Bk of the subiteration plus all indices
j ∈ F = Bc

k for which zj(ωk) ≤ 0.

Numerical details connected with our DASA implementation are given in
Sect. 6. Briefly, we maintain a Cholesky factorization of the matrix AFAT

F + σ I,
which is updated as the free set F changes. Here the columns of A are nor-
malized to be unit vectors and σ , a multiple of the machine epsilon, is chosen
to ensure numerical stability in the evaluation of the Cholesky factorization.
In our numerical experiments, σ was around 200 times the machine epsilon.
Sparse numerical linear algebra techniques for updating this factorization are
developed in [9,10,12]. Typically, several indices are dropped from Bk in each
subiteration (step 5 above); also, the initial set B0 (constructed in step 6) often
has many more indices than the final set Bk of the previous iteration. Hence,
multiple-rank updates of AFAT

F are used in step 5, and multiple-rank down-
dates are used in step 6. If the rank of the update or the downdate is large
enough, then it can be more efficient to completely reform the matrix AFAT

F
and compute its Cholesky factorization directly.

Remark 2 It was pointed out by a referee that (31), (32) is equivalent to the
following symmetric indefinite system

(√
εI AT

F
AF 0

) (−√
εxF
λ

)
=

(
cF − εyF
−√

εb

)
. (35)

If the 0 block is replaced by −σ I, then the matrix in (35) becomes quasi-definite,
as defined by Vanderbei [40]. Some theory in papers by Golub and Van Loan
[17] and by Gill et al. [16] is used by Saunders [38, Result 3, p. 94]) to show that
an indefinite LDLT factorization exists for any symmetric permutation. More-
over, the factorization is sufficiently stable if σ � u‖AF‖2 (u = unit roundoff

286 T. A. Davis, W. W. Hager

or machine epsilon), in the sense that it behaves like a stable factorization on a
matrix with condition number ‖AF‖2/σ . For sparse A, the Cholesky factor of
this matrix can be much sparser than that of AFAT

F . In particular, when AF has a
dense column, the matrix AFAT

F +σ I and its factorization become dense; on the
other hand, the augmented matrix (35) has sparsity comparable to that of AF ,
and with a suitable permutation of rows and columns, the Cholesky factoriza-
tion of the augmented matrix may be relatively sparse. Hence, the augmented
matrix (35) would allow for the treatment of dense columns in a natural way,
without having to resort to Sherman–Morrison–Woodbury techniques.

3 Primal and dual relationships

Let � be defined by

�(y) = sup
λ∈�

inf
x∈X

{
L(λ, x) + ε

2
‖x − y‖2

}
= sup

λ∈�

Lε(λ; y). (36)

Observe that the first step (7) of the first-order proximal algorithm is equivalent
to evaluating �(yk). Under the assumptions of Theorem 1, it follows from [5,
Theorem 2.1] that the function � is differentiable and

∇�(y) = ε(y − x(y)), (37)

where x(y) is the minimizing x in (36) corresponding to the maximizing λ. Thus
the update (8) corresponds to a step of length 1/ε along the negative gradient
of �:

yk+1 = yk −
(

1
ε

)
∇�(yk).

In Theorem 1, we show that

�(yk+1) ≤ �(yk) − δ

2
‖λk+1 − λk‖2 − ε

2
‖yk+1 − yk‖2.

Hence, each iteration of (7) and (8) generates descent for the function �; we
can think of (7), (8) as a first-order gradient algorithm applied to � with a
fixed stepsize of length 1/ε. The following theorem shows that the first-order
algorithm, under the hypotheses of Theorem 1, converges to a minimizer of �.

Theorem 2 If L(· , x) is concave for each fixed x ∈ X and L(λ, ·) is convex for
each fixed λ ∈ �, where X ⊂ R

n and � ⊂ R
m are convex, then � is convex on

R
n. If L has a saddle point (λ∗, x∗) ∈ � × X, then (λ∗, x∗) is a saddle point of Lε ,

x∗ minimizes � over R
n, and

�(x∗) = Lε(λ
∗, x∗) = L(λ∗, x∗) = L(λ∗). (38)

A sparse proximal implementation of the LP dual active set algorithm 287

If y∗ ∈ X is any minimizer of �, then (λ∗, y∗) is a saddle point of Lε , and y∗
minimizes L(λ∗, ·) over X.

Proof For any fixed x ∈ X and y ∈ R
n, the function

L(λ, x, y) = L(λ, x) + ε

2
‖x − y‖2

is concave in λ by assumption. Similar to the analysis (18), but with convexity
replaced by concavity, Lε(· ; y) is concave. We now show that for any fixed
λ, Lε(λ; ·) is convex. First, observe that the function L(λ, x, y), for fixed λ, is
convex with respect to the pair (x, y) because the Lagrangian L(λ, ·) is convex
by assumption while the term ‖x − y‖2 is convex with respect to the pair (x, y).
Given any xi, yi ∈ X, i = 1, 2, and θ ∈ [0, 1], the convexity of L(λ, ·, ·) yields

Lε(λ; θy1 + (1 − θ)y2) = min
x∈X

L(λ, x, θy1 + (1 − θ)y2)

≤ L(λ, θx1 + (1 − θ)x2, θy1 + (1 − θ)y2)

≤ θL(λ, x1, y1) + (1 − θ)L(λ, x2, y2).

Minimizing over x1 and x2 ∈ X gives

Lε(λ; θy1 + (1 − θ)y2) ≤ θLε(λ; y1) + (1 − θ)Lε(λ; y2).

Hence, Lε(λ; ·) is convex on R
n. As in (18), � is convex on R

n.
For any λ ∈ �, the first inequality in the saddle point condition (11) and the

definition of Lε give

L(λ∗, x∗) ≥ L(λ, x∗) ≥ inf
x∈X

L(λ, x) + ε

2
‖x − x∗‖2 = Lε(λ; x∗). (39)

From the second inequality in (11), we have, for any y ∈ R
n,

L(λ∗, x∗) = inf
x∈X

L(λ∗, x) ≤ inf
x∈X

L(λ∗, x) + ε

2
‖y − x‖2 = Lε(λ

∗; y). (40)

Combining (39) and (40) gives

Lε(λ; x∗) ≤ Lε(λ
∗; x∗) ≤ Lε(λ

∗; y) for all λ ∈ �, y ∈ R
n. (41)

Since � is given by a maximum over λ in (36), we have, for any λ ∈ � and
y ∈ R

n,

�(y) ≥ inf
x∈X

L(λ, x) + ε

2
‖x − y‖2 ≥ L(λ). (42)

Again, by the saddle point assumption (11),

L(λ∗) = max {L(λ) : λ ∈ �}.

288 T. A. Davis, W. W. Hager

Combining this with (42) gives

�(y) ≥ L(λ∗) for all y ∈ R
n. (43)

By the definition of �, the new saddle point condition (41), and (43), we have

�(x∗) = sup
λ∈�

Lε(λ; x∗) = Lε(λ
∗; x∗) = inf

y∈X
Lε(λ

∗; y)

= inf
x,y∈X

L(λ∗, x) + ε

2
‖x − y‖2 = L(λ∗) ≤ �(y). (44)

Hence, x∗ minimizes � over R
n. Putting y = x∗ in (44), we conclude that the

inequalities are equalities, and �(x∗) = Lε(λ
∗; x∗) = L(λ∗). Also, L(λ∗, x∗) =

L(λ∗) since (λ∗, x∗) is a saddle point of L. This establishes (38).
If y∗ minimizes � over X, then by the saddle point condition (41) and by

(44), we have

�(y∗) = sup
λ∈�

Lε(λ; y∗) ≥ Lε(λ
∗; y∗) ≥ Lε(λ

∗; x∗) = �(x∗). (45)

Since �(y∗) = �(x∗), the inequalities in (45) are equalities, and Lε(λ
∗; y∗) =

Lε(λ
∗; x∗). Again, by the saddle point condition (41), we have

Lε(λ
∗; y∗) = Lε(λ

∗; x∗) ≤ Lε(λ
∗; x) (46)

for all x ∈ X. Together, (45) and (46) imply that (λ∗, y∗) is a saddle point of Lε .
Combining (38) with (46) gives

L(λ∗, x∗) = Lε(λ
∗; x∗) = Lε(λ

∗; y∗) = min
x∈X

L(λ∗, x) + ε

2
‖x − y∗‖2. (47)

If the minimum in (47) is attained at x̄, then

L(λ∗, x∗) = L(λ∗, x̄) + ε

2
‖x̄ − y∗‖2. (48)

If x̄ = y∗, then (48) implies that L(λ∗, x̄) < L(λ∗, x∗). This violates the saddle
point condition (11). Hence, the minimum in (47) is achieved at x = y∗, and
L(λ∗, x∗) = L(λ∗, y∗). Since x∗ minimizes L(λ∗, ·) over X, it follows that y∗
minimizes L(λ∗, ·) over X. ��

4 A second-order proximal update

In this section we present a second-order algorithm, first in a general setting,
and then in the LP setting. An attractive feature of the second-order algorithm
is that it converges in a finite number of iterations, while Theorem 1 yields con-
vergence of the first-order algorithm in the limit, as k tends to ∞. On the other

A sparse proximal implementation of the LP dual active set algorithm 289

Algorithm 2 Second-order proximal update for the case where X = {x ∈ R
n : x ≥ 0}

l = 0
y0 = starting guess
while ∇�(yl) = 0

η0 = yl
B0 = {j ∈ [1, n] : xj(yl) = 0}.
for k = 0, 1, . . .

Case 1. xj(η̄, Bk) ≥ 0 for all j ∈ Bc
k where

η̄ = arg min {�Bk
(y) : y ∈ R

n}
set ηk+1 = η̄ and break

Case 2. for some j ∈ Bc
k and η̄ ∈ R

n,
�Bk

(η̄) < �Bk
(ηk) and xj(η̄, Bk) < 0

set ηk+1 = η(α) where
η(α) = ηk + α(η̄ − ηk)

α = min{β ∈ [0, 1] : xj(η(β), Bk) = 0 for some j ∈ Bc
k}

set Bk+1 = {j ∈ [1, n] : xj(ηk+1, Bk) = 0}
end
l = l + 1
ylj = max{0, η̄j}, 1 ≤ j ≤ n

end

hand, our implementation of the second-order algorithm is currently less effi-
cient than our implementations of the first-order algorithm. Later we explain
the reason for slower performance of the second-order algorithm.

We consider the specific case where X is the nonnegative cone (4) and � =
R

m. In the statement of Algorithm 2, we use the following notation: For any
B ⊂ {1, 2, . . . , n}, define

�B(y) = max
λ∈�

min
xB=0

L(λ, x) + ε

2
‖x − y‖2. (49)

We let x(y, B) denote the x that achieves the minimum in (49) corresponding to
the maximizing λ, assuming it exists.

Algorithm 2 involves two cases. In Case 1, ηk+1 is an unconstrained minimizer
of �Bk and the inner iteration terminates. In Case 2, there is no unconstrained
minimizer which lies in X. In this case, we take any infeasible point with a smaller
function value and perform a line search. For a concave/convex Lagrangian, it
can be shown that Algorithm 2 converges in a finite number of iterations.1

For an LP, �B is a quadratic. Hence, in Algorithm 2, the iterates are generated
by minimizing quadratics, while in Algorithm 1, the iterates are generated by
taking of step of length 1/ε along −∇�. For this reason, we regard Algorithm 2
as a second-order algorithm.

For an LP, Cases 1 and 2 greatly simplify.1 In particular, if the quadratic �Bk

has a finite lower bound, then in an LP it can be shown that there exists a
minimizer η̄ with xj(η̄) ≥ 0 for all j ∈ Bc

k. If F denotes Bc
k, then the new iterate

can be expressed in the following way:

1 See the appendix to this paper at http://www.math.ufl.edu/∼hager/papers/LPDASA.

290 T. A. Davis, W. W. Hager

ηk+1,F = ηk,F +
η,

where
η is a solution to

min

η

‖
η‖ subject to AF
η = b − AFηk,F .

Case 2 corresponds to the situation where the quadratic �Bk has no lower bound.
The iterates, which move in the null space of the Hessian, can be expressed

ηk+1,F = ηk,F + α(AT
Fz − cF),

where z is a solution to the least squares problem

min
z

‖AT
Fz − cF‖,

and α is chosen as large as possible, subject to the constraint

ηk+1,F − 1
ε
(cF − AT

Fλk) ≥ 0.

Here λk is the maximizer in (49) corresponding to y = ηk and B = Bk. If α can
be chosen infinitely large, then the optimal LP cost is −∞.

In our numerical experiments, the first-order algorithm is more efficient than
the second-order algorithm for the following reason: In the inner loop of Algo-
rithm 1, each iteration typically removes many indices from Bk. As a result,
fast techniques we have developed [10] for updating a Cholesky factorization
after a multiple-rank change can be exploited. In contrast, in the inner loop of
Algorithm 2, Case 2, each iteration typically adds one index to Bk. Hence, the
less efficient rank 1 techniques in [9] are utilized. Thus, for the second-order
algorithm to surpass the first-order algorithm, it appears that a line search must
be developed that allows Bk to change more rapidly.

5 Equation dropping

In this section, we focus on a strategy that we call “equation dropping.”
Although we apply the strategy to linear programs, our strategy is applica-
ble to problems that contain a variable appearing in only one equation; this
variable should appear linearly in both the equation and the cost function. An
important situation where this occurs is the following: An inequality is con-
verted to an equality by introducing a slack variable. The slack variable appears
in precisely one equation, while it is absent from the objective function.

Given an optimal solution x of the LP, we say that equation i is inactive if
there exists a column j of A that is completely zero except for an element aij
for which xj > 0. In this case, it follows from complementary slackness that at
a corresponding solution to the dual problem, λiaij = cj. Thus, if the inactive

A sparse proximal implementation of the LP dual active set algorithm 291

equations were known, we could hold the associated multipliers λi = cj/aij
fixed during the solution of the dual problem, and solve an equivalent reduced
problem with the inactive rows removed.

Since we do not know the inactive equations when we start to solve the dual
problem, the solution algorithm must dynamically identify the inactive equa-
tions. Our approach is roughly the following: Initially, we locate all the column
singletons and we compute associated multipliers λi = cj/aij. In the line search
of Algorithm 1, any component of λi that reaches the value cj/aij, associated
with a column singleton, is held fixed and equation i is dropped from the prob-
lem. Thus in the inner loop of DASA, rows are dropped and columns are freed.
In the initialization step of DASA, where B0 is defined, we also check whether
any dropped rows should be restored to the problem. Row i is restored if the
value of the dual function can be increased with a small change in the previously
fixed value of λi. These steps are now explained in more detail.

Let S denote the set of column indices j corresponding to column singletons.
That is, for each j ∈ S, there is precisely one i such that aij = 0. Let I(j) denote
the row index associated with column singleton j; hence, I−1(i) is the set of
column singletons in row i. If j, k ∈ I−1(i) and cj/aij = ck/aik, then the variables
xj and xk can be combined together into a single variable [1]. To simplify the
exposition, we assume that the LP has been presolved so that cj/aij = ck/aik

for all j, k ∈ I−1(i).
When column singletons are present, we delete the regularization terms in

(6) associated with the set S:

Lε(λ; y) = min
x∈X

L(λ, x) + ε

2

∑
j∈Sc

(xj − yj)
2

For an LP, the Lagrangian (5) is a separable function of λ, and we have

Lε(λ; y) =
n∑

j=1

Lj(λ),

where

Lj(λ) =

⎧⎪⎪⎨
⎪⎪⎩

min
xj≥0

(cj − λiaij)xj, i = I(j), if j ∈ S,

min
xj≥0

(cj −
m∑

i=1

aijλi)xj + ε

2
(xj − yj)

2 otherwise.

If j ∈ S, then

Lj(λ) =
{

0 if aijλi ≤ cj,
−∞ if aijλi > cj.

292 T. A. Davis, W. W. Hager

Since the dual function is being maximized, we should never allow aijλi > cj;
in the case that aijλi ≤ cj, we have Lj(λ) = 0. In other words, the terms in
the Lagrangian associated with column singletons can be ignored as long as we
satisfy the dual constraint aijλi ≤ cj for i = I(j).

With these insights, the equation dropping version of LP DASA is organized
in the following way: Within the subiteration, we maintain two sets: Bk, the
indices of bound columns, and Dk, the indices of dropped equations. In the line
search where νk+1 is computed, we enforce the constraint aijλi ≤ cj, i = I(j),
in the following way: If aijλi reaches cj at some point along the line segment
[νk, ωk], then we add i to the dropped equation set, and we fix λi = cj/aij. More
precisely, in the line search of Algorithm 1, we replace the segment [νk, ωk] by
a projected segment:

P[νk, ωk] = {Pω : ω ∈ [νk, ωk]},

where

(Pλ)i =
{

cj/aij if aijλi ≥ cj and i = I(j),
λi otherwise.

Once a row drops during the subiteration, it remains dropped for all the
subsequent subiterations. At the start of the next iteration, before the k-loop,
we initialize both B0 and D0. In this initialization phase, we check whether a
fixed dual variable λi = cj/aij, i = I(j), should be freed. We free λi if the dual
function value increases after a small change in λi. This local behavior of the
dual function is determined from the sign of the i-th component of the gradient
(28). If aij > 0 and the i-th component of the gradient is < 0, then a small
decrease in λi preserves dual feasibility (aijλi ≤ cj) and increases the value of
the dual function. If aij < 0 and the i-th component of the gradient is > 0, then a
small increase in λi preserves dual feasibility and increases the value of the dual
function. Algorithm 3 provides a complete statement of the equation dropping
version of LP DASA.

The proof (e.g. [20,23,25]) of finite convergence for Algorithm 1 also works
for Algorithm 3. Finite convergence is due to the fact that certain sets can-
not repeat. For Algorithm 3, the entity that cannot repeat is the pair (Bk, Dk)

associated with the final dual subiteration.
The equation dropping strategy that we have developed can be implemented

recursively. That is, when an equation is removed from A, additional column
singletons may be generated, leading to new equations that could drop. We did
not implement this recursive procedure, but many of the test problems could
be solved much faster using such an implementation. For example, in the Netlib
test problems scagr7 and osa, every single equation would drop in a recursive
implementation. With agg2, 505 out of 516 rows would drop, with sctap3, 1,365
out of 1,480 rows would drop, and with bnl2, 1,358 out of 2,265 rows would
drop. Problems might also be presolved to expose additional column singletons.
That is, a multiple of one equation could be subtracted from another equation

A sparse proximal implementation of the LP dual active set algorithm 293

Algorithm 3 DASA with equation dropping

l = 0
λ0 = starting guess
while ∇L(λl) = 0

ν0 = λl
S = {j ∈ [1, n] : (ν0)i = cj/aij, i = I(j)}
D0 = {i ∈ [1, m] : i = I(j) for some j ∈ S, aij∇L(ν0)i ≥ 0}
B0 = {j ∈ S : xj(λl) = 0} ∪ {j ∈ S : I(j) ∈ D0}
for k = 0, 1, . . .

ωk = arg max {LB0
k
(λ) : λDk

= (νk)Dk
}

νk+1 = arg max {LB+
k

(λ) : λ ∈ P[νk, ωk]}.
Bk+1 = {

j ∈ Bk : xj(νk+1, Bk) = 0
}

Dk+1 = {i : (νk+1)i = cj/aij, j ∈ I−1(i)}
if νk+1 = ωk break

end
l = l + 1
λl = ωk

end

in order to create a column singleton. During the solution process, the row
associated with the newly created column singleton could drop.

6 Numerical comparisons

In this section, we compare the performance of LP DASA to that of Simplex
and Barrier methods as implemented in the commercial code CPLEX Version
9.1.3 [3], focusing on problems from the Netlib LP test set. Since the CPLEX
Barrier code automatically applies a presolver to the input problem, we use the
CPLEX presolved problem as input to our code. All the codes, both CPLEX
and LP DASA, are written in C.

Both the first-order and second-order updates were implemented. Since the
first-order update was generally more efficient than the second-order update,
the numerical experiments, reported below, are based on the first-order update.
Although Theorem 1 establishes convergence of the iteration (7), (8) for any
choice of ε, it is observed numerically that for any fixed ε, convergence can
be very slow; much faster convergence is achieved by decreasing ε after each
iteration of (7), (8). The initial choice for ε and the factor used to reduce the size
of ε after each proximal iteration were based on the number of rows m of A:

initial ε =
⎧⎨
⎩

2−6, decay factor 1/16, if m < 100,
2−3, decay factor 1/8, if 100 ≤ m < 2, 500,
1, decay factor 1/4, otherwise.

Qualitatively, we find that as the problem size increases, ε should increase. For
any specific problem, ε can be fine-tuned to achieve faster convergence. For

294 T. A. Davis, W. W. Hager

example, the pds test problems can be solved more quickly using a smaller
initial ε than the choices given above.

Before starting the iteration (7), (8), we reorder the rows of A by applying
a nested dissection ordering to minimize fill during a Cholesky factorization
of AAT. We use CHOLMOD’s nested dissection method [9,10,12,13], which
uses METIS [28–30] to find node separators at each level in the nested dis-
section recursion, followed by a constrained column minimum degree ordering
(a constrained version of COLAMD [7,8]).

If exact numerical cancellation is ignored, the fill-in associated with the matrix
AFAT

F appearing in LP DASA is a subset of the fill-in associated with AAT.
Hence, by minimizing the fill for AAT, we minimize the worst possible fill that
could occur with AFAT

F for any choice of F.
To enhance numerical stability, we factorize the matrix AFAT

F + σ I, where
σ = 2−44 and the columns of A are scaled to be unit vectors. Since this value
for σ is about 200 times the machine precision, the results of Saunders [38]
suggest that solves should yield at least 2 correct digits. The factorization is
implemented using routines from CHOLMOD. These routines use either a
supernodal Cholesky factorization [34] or a row-oriented sparse Cholesky fac-
torization algorithm [6,31], if the factorization is very sparse. The selection is
made automatically; the supernodal factorization is used if the floating point
operation count divided by the number of nonzeros in L is greater than 40. Our
factorization routines are incorporated in MATLAB 7.2 as chol.

After a column is freed or a row is dropped, we use the sparse modifica-
tion techniques developed in [9,10,12] to modify the factorization. The codes
for modifying a factorization after column updates take advantage of speedup
associated with multiple-rank updates. As a result, a rank 16 update of a sparse
matrix achieves flop rates comparable to those of a BLAS dot product, and
about 1/3 the speed of a BLAS matrix-matrix multiply [14], in the experiments
given in [10]. Moreover, in the CHOLMOD versions of the update/downdate
routine, we obtain further speedup by exploiting supernodes which are detected
dynamically [13].

Our starting guesses for an optimal dual multiplier and primal solution are
always λ = 0 and x = 0 respectively. Our convergence test is based on the LP
optimality conditions. The primal approximation x(λ) in (29) always satisfies
the bound constraints x ≥ 0. The column indices are expressed as B ∪ F where
F = Bc. For all j ∈ B, xj(λ) = 0 and (c − ATλ)j ≥ 0. Hence, the optimality
conditions would be satisfied if the primal and dual linear systems, Ax = b and
AT

Fλ = cF , were satisfied. Our convergence criterion is to stop when the relative
residuals in the primal and dual systems satisfy the following condition:

‖b − Ax‖∞
1 + ‖x‖∞

+ ‖cF − AT
Fλ‖∞

1 + ‖λ‖∞
≤ 10−8 (50)

Here ‖ · ‖∞ denotes the maximum absolute component of a vector. Since the
test problems are given in MPS format, for which data oftenhas only 5 digit

A sparse proximal implementation of the LP dual active set algorithm 295

Table 1 Numerical comparisons

LP DASA error CPU time (s)

Problem b-error c-error LP DASA Simplex Barrier

perold 3.0e-09 3.5e-13 1.16 0.15 0.12
25fv47 3.9e-09 8.0e-14 0.18 0.32 0.12
nug07 2.7e-15 2.9e-18 0.30 0.29 0.12
pilot_we 4.1e-10 3.5e-10 1.53 0.54 0.16
pilotnov 1.6e-10 1.7e-13 1.21 0.23 0.18
cre_c 1.3e-11 6.5e-12 0.44 0.18 0.20
cre_a 8.0e-13 1.9e-15 0.61 0.18 0.25
osa_07 5.4e-10 9.6e-17 0.22 0.23 0.43
nesm 1.7e-10 6.6e-09 0.39 0.35 0.19
d6cube 4.3e-11 1.0e-14 3.53 0.20 0.31
truss 2.8e-10 9.0e-17 1.08 11.62 0.21
fit2p 2.1e-18 3.7e-14 0.23 4.46 0.43
pilot_ja 2.2e-09 7.5e-09 3.72 0.33 0.25
nug08 3.8e-10 1.1e-14 0.71 1.86 0.25
fit2d 1.4e-10 2.7e-15 0.26 0.59 0.71
greenbeb 9.4e-09 4.3e-11 0.59 1.46 0.27
greenbea 4.6e-10 1.1e-09 1.82 1.03 0.28
80bau3b 9.5e-09 9.0e-15 1.60 0.28 0.41
qap8 1.9e-09 1.7e-13 0.84 1.40 0.28
ken_11 4.9e-12 3.7e-16 0.53 0.38 0.55
degen3 6.2e-10 3.2e-14 0.65 0.57 0.43
pds_06 1.3e-11 4.3e-17 1.93 0.50 1.81
osa_14 2.7e-14 7.3e-09 0.76 0.59 1.03
d2q06c 7.7e-10 5.0e-09 2.70 2.81 0.62
maros_r7 2.1e-11 5.4e-12 0.83 3.29 1.37
stocfor3 5.6e-10 3.1e-09 5.24 1.75 1.09
pilot 7.1e-14 9.6e-10 5.30 3.22 1.19
osa_30 2.6e-14 6.6e-09 1.74 1.41 2.56
pds_10 1.3e-11 3.8e-17 5.23 1.43 6.29
ken_13 9.2e-11 1.0e-16 5.57 1.50 1.65
cre_d 7.2e-09 5.4e-16 8.37 1.86 2.54
cre_b 2.8e-11 6.4e-15 8.63 4.24 3.03
pilot87 2.1e-13 4.1e-09 17.69 22.49 3.68
osa_60 3.2e-13 6.9e-09 5.10 4.08 6.58
pds_20 1.1e-11 2.1e-17 34.91 9.16 29.07
ken_18 1.3e-16 3.9e-15 58.53 11.74 11.23
nug12 5.0e-14 2.5e-09 52.86 202.72 11.33
qap12 4.0e-09 5.1e-12 64.22 197.93 12.71
dfl001 5.3e-09 4.6e-09 36.94 22.51 16.04
nug15 1.7e-15 7.1e-09 438.60 2787.11 78.99
qap15 5.2e-09 1.4e-11 339.76 3143.31 85.83
nug20 6.7e-12 7.0e-09 6094.90 – 13755.03
nug30 7.8e-09 1.3e-09 32206.34 – –

accuracy, our 8 digit error tolerance for the equation is, in a sense, much more
accurate than most input data.

The test problems were solved on a 3.2 GHz Pentium 4 with 4GB of main
memory. In Table 1 we compare the execution times in CPU seconds for all
problems in the Netlib LP test set that required at least 0.1 s (based on the fast-
est CPLEX and LP DASA run times). The problems are ordered in accordance

296 T. A. Davis, W. W. Hager

Table 2 LP DASA statistics

Problem Rows Cols Col+ Col− Row+ Row−
perold 503 1,273 6,410 2,037 219 678
25fv47 682 1,732 845 257 40 179
nug07 473 930 378 240 4 6
pilot_we 602 2,526 12,126 1,323 197 1,071
pilotnov 748 1,999 4,124 2,180 336 560
cre_c 2,257 5,293 1,889 209 96 1,284
cre_a 2,684 6,382 1,181 160 135 1,098
osa_07 1,047 24,062 298 249 95 11
nesm 598 2,764 2,023 363 104 638
d6cube 402 5,467 2,123 1,388 0 0
truss 1,000 8,806 2,500 760 0 0
fit2p 3,000 13,525 12 4 494 540
pilot_ja 708 1,684 12,472 6,890 742 1,380
nug08 741 1,631 396 352 6 8
fit2d 25 10,388 940 811 9 17
greenbeb 1,015 3,211 3,437 913 103 469
greenbea 1,015 3,220 12,699 1,731 332 2,194
80bau3b 1,789 9,872 6,339 237 102 2,558
qap8 741 1,631 340 256 16 26
ken_11 5,511 11,984 1,750 1,053 2 5
degen3 1,406 2,503 1,035 427 265 394
pds_06 2,972 18,530 3,656 316 5 142
osa_14 2,266 52,723 602 355 210 31
d2q06c 1,855 5,380 5,731 601 125 1,616
maros_r7 2,152 6,578 25 50 67 74
stocfor3 8,388 15,254 3,725 666 833 5,736
pilot 1,204 4,124 3,291 1,724 275 531
osa_30 4,279 100,396 1,940 522 498 98
pds_10 4,725 33,270 6,552 986 8 230
ken_13 10,962 24,818 17,065 2,302 8 58
cre_d 3,990 28,489 8,205 244 32 1,668
cre_b 5,176 36,222 7,164 371 104 1,426
pilot87 1,811 6,065 5,993 4,187 552 810
osa_60 10,209 234,334 2,235 3,489 1,015 126
pds_20 10,214 81,224 17,679 2,757 25 359
ken_18 39,867 89,439 67,797 7,955 23 188
nug12 2,793 8,855 2,411 1,749 192 291
qap12 2,793 8,855 2,130 2,345 91 86
dfl001 3,861 9,607 2,216 1,722 36 55
nug15 5,697 22,274 3,281 2,034 248 392
qap15 5,697 22,274 4,459 2,993 97 146
nug20 14,097 72,599 9,779 7,884 680 772
nug30 52,260 379,350 – – – –

with the fastest run times as reported in [11]. The first column gives the test prob-
lem name, the next two columns are the relative error terms in (50) associated
with the LP DASA approximation. The final three columns give the execution
time in seconds for the three codes. A dash means the problem cannot be solved
by that method on our computer. The CPLEX Simplex method failed on the
nug20 since the solution time was essentially infinite. For both CPLEX Simplex
and Barrier, there was not enough memory to solve nug30. LP DASA, on the

A sparse proximal implementation of the LP dual active set algorithm 297

Table 3 LP DASA solves and chols, Barrier chols, Simplex iterations

Problem LP DASA LP DASA Barrier Simplex
solves chols chols iterations

perold 3,019 71 44 1,120
25fv47 276 14 24 1,673
nug07 186 6 13 2,071
pilot_we 4,349 154 46 2,546
pilotnov 1,734 28 20 1,250
cre_c 541 41 28 2,053
cre_a 415 46 28 2,255
osa_07 69 6 18 523
nesm 705 28 38 2,266
d6cube 1,602 25 20 450
truss 544 30 18 19,002
fit2p 348 7 20 5,357
pilot_ja 5,031 67 38 1,586
nug08 149 6 9 6,417
fit2d 124 8 18 159
greenbeb 503 27 34 3,652
greenbea 2,299 72 38 3,591
80bau3b 1,592 92 32 3,280
qap8 145 8 10 5,522
ken_11 261 13 20 6,647
degen3 279 8 17 1,453
pds_06 271 48 37 3,088
osa_14 102 9 16 1,066
d2q06c 1,349 38 30 4,160
maros_r7 73 1 10 2,797
stocfor3 1,074 25 31 6,569
pilot 1,389 19 23 3,479
osa_30 106 4 20 2,233
pds_10 329 47 51 5,315
ken_13 1,648 34 23 13,569
cre_d 1,333 73 47 7,006
cre_b 1,094 61 42 10,160
pilot87 2,144 16 26 10,471
osa_60 112 4 23 4740
pds_20 646 65 41 18,025
ken_18 4,576 53 29 49,173
nug12 839 22 14 87,441
qap12 660 15 17 81,099
dfl001 721 44 41 18,927
nug15 610 26 15 430,970
qap15 604 25 16 390,381
nug20 3,849 16 23 –
nug30 – – – –

other hand, switches to an iterative implementation when there is insufficient
memory to factor the matrix. In the iterative approach, developed in [24], (31)
is solved using the SSOR preconditioned conjugate gradient scheme of Björck
and Elfving [4].

At the following web site:

http://www.math.ufl.edu/∼hager/papers/LPDASA

298 T. A. Davis, W. W. Hager

we compare the objective function values obtained using the LP DASA code
and a stopping criteria of the form (50), to the objective function values archived
in Netlib: The 10−8 tolerance (50) often yields more than 8 digits agreement
with the archived objective function values. The principal exceptions to this rule
are the 7 pilot test problems (including perold) for which the agreement with
the archived values ranged between 4 and 11 significant digits. Also, for the 16
test problems of Jeffrey Kennington, the objective function values are given to
8 significant digits, so for these test problems, we match the 8 given digits.

In Table 1, we see that for the 43 test cases, LP DASA was faster than the
Barrier code (with crossover) for 11 problems, and was faster than the Sim-
plex code (by default, dual Simplex) for 17 problems. LP DASA was fastest in
problems where many equations drop. Our code was relatively slow for some
of the pilot problems, where there was significant growth in the error in the
Cholesky factorization during downdates. Errors in the solution to the linear
system increased the solution time since the search directions deviate from the
true search directions.

Tables 2 and 3 give solution statistics for the three methods. The number
of rows and columns given in Table 2 correspond to the presolved problems.
In Table 2, we give the number of column updates (col+), column downdates
(col−), row updates (row+), and row downdates (row−) employed by LP
DASA. By a column update, we mean that we add a column to the current AF
and update the factorization. By a row update, we mean that we add a row to
the current AF and update the factorization. In Table 3 we give the number
of times that LP DASA solved the system (31) or computed the Cholesky fac-
torization of AFAT

F . For comparison, the last two columns of Table 3 give the
number of iterations of the CPLEX Barrier code, and the number of iterations
of the Simplex code. Each iteration of the Barrier code requires the Cholesky
factorization of a matrix with the sparsity pattern of AAT.

The data of Tables 2 and 3 show that LP DASA uses a comparable number
of factorizations to Barrier; for 20 problems, LP DASA used fewer factoriza-
tions, while in 23 problems, Barrier used fewer factorizations. Each factorization
in LP DASA requires less work than a Barrier factorization since LP DASA
factorizes AFAT

F , which can be much sparser than the AD2AT matrix (D is a
diagonal matrix) that CPLEX Barrier must factor. In LP DASA, the matrix
is factored when the rank of the update is relatively large. Hence, there is a
trade-off between factorizations and updates/downdates – by increasing the
number of factorizations, we can reduce the number of updates and downdates.
Generally, LP DASA uses much fewer solves than the Simplex code; also, the
number of solves in LP DASA is often much less than the number of updates
and downdates – in each iteration, the line search can free many variables.

In Fig. 1 we study the convergence towards optimality of the three methods
using Jeffrey Kennington’s test problem pds_10. The horizontal axis is the
relative CPU time (CPU time divided by the total solution time), while the
vertical axis is log10 of the relative error in the cost. For LP DASA, the relative
error is computed for the primal approximation associated with the dual iterate
in (7). The convergence of LP DASA is initially similar to that of the Barrier

A sparse proximal implementation of the LP dual active set algorithm 299

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

10
–LOG (Relative Error)

Barrier

Simplex

LPDASA

Relative Time

Fig. 1 Accuracy of solution versus relative CPU time for pds_10

method. On the other hand, with LP DASA, there are no conditioning problems
in a neighborhood of the solution and a crossover routine is not needed. Full
accuracy, on the order of the machine epsilon, can be computed while barrier
methods typically are limited to accuracy on the order of the square root of
the machine epsilon. With the Simplex method, 2-digit accuracy is not achieved
until the computer run is more than 75% complete. With both Barrier and LP
DASA, 2-digit accuracy is achieved when the run is 30% complete. In a similar
study in [24], we saw that when iterative methods are used to solve (31), we
obtain 2-digit accuracy in a small fraction of the total computing time.

In summary, LP DASA is able to compete with today’s state-of-the-art com-
mercial software. The same LP DASA platform can be run using either an iter-
ative solver or a factorization-based solver to obtain solutions of high relative
accuracy. Equation dropping techniques significantly lower the overall solution
times. Recursive implementations of the equation dropping techniques should
further reduce solution times. Another approach for further reducing solution
times is to implement the algorithm in a multilevel fashion. This multilevel
approach is developed in [11]. The solution times reported in the present paper
were obtained by running the multilevel code using a single level.

Acknowledgments Initial work connected with the application of DASA to linear programming
appears in the thesis of Chun-Liang Shih [39]. Experimentation with a very early version of the
code was done by Erik Lundin, a student participating in an exchange program between the Cen-
ter for Applied Optimization at the University of Florida and the Royal Institute of Technology
(KTH) in Sweden. Constructive comments by the referees led to a much improved presentation.
In particular, the elegant reformulation of the LP version of Algorithm 2 in terms of least squares
problems was suggested by a referee.

300 T. A. Davis, W. W. Hager

References

1. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71, 221–
245 (1995)

2. Bergounioux, M., Kunisch, K.: Primal-dual strategy for state-constrained optimal control prob-
lem. Comput. Optim. Appl. 22, pp. 193–224 (2002)

3. Bixby, R.E.: Progress in linear programming. ORSA J. Comput. 6, 15–22 (1994)
4. Björck, A., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions

of systems of linear equations. BIT 19, 145–163 (1979)
5. Clarke, F.H.:Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)
6. Davis, T.A.: Algorithm 849: a concise sparse Cholesky factorization package. ACM Trans.

Math. Softw. 31, 587–591 (2005)
7. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: Algorithm 836: COLAMD, a column

approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380 (2004)
8. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum degree

ordering algorithm. ACM Trans. Math. Softw. 30, 353–376 (2004)
9. Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal.

Appl. 20, 606–627 (1999)
10. Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization.

SIAM J. Matrix Anal. Appl. 22, 997–1013 (2001)
11. Davis, T.A., Hager, W.W.: Dual multilevel optimization, to appear in Mathematical Program-

ming University of Florida (2004)
12. Davis, T.A., Hager, W.W.: Row modifications of a sparse Cholesky factorization. SIAM J.

Matrix Anal. Appl. 26, 621–639 (2005)
13. Davis, T.A., Hager, W.W., Chen, Y.C., Rajamanickam, S.: CHOLMOD: a sparse Cholesky

factorization and modification package, ACM Trans. Math. Softw. (2006) (in preparation)
14. Dongarra, J.J., Du Croz, J.J., Duff, I.S., Hammarling, S.: A set of level 3 basic linear algebra

subprograms. ACM Trans. Math. Softw. 16, 1–17 (1990)
15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amster-

dam (1976)
16. Gill, P.E., Saunders, M.A., Shinnerl, J.R.: On the stability of cholesky factorization for quasi-

definite systems. SIAM J. Matrix Anal. Appl. 17, 35–46 (1996)
17. Golub, G.H., Loan, C.F.V.: Unsymmetric positive definite linear systems. Linear Algebra Appl.

28, 85–98 (1979)
18. Hager, W.W.: Convex control and dual approximations, part I. Control Cybern. 8, 5–22 (1979)
19. Hager, W.W.: Inequalities and approximation. In: Coffman, C.V., Fix, G.J. (eds.) Constructive

Approaches to Mathematical Models pp. 189–202. (1979)
20. Hager, W.W.: The dual active set algorithm. In: Pardalos, P.M. (ed.) Advances in Optimization

and Parallel Computing pp. 137–142. North Holland, Amsterdam (1992)
21. Hager, W.W.: The LP dual active set algorithm. In: Leone, R.D., Murli, A., Pardalos, P.M.,

Toraldo, G.: (eds.) High Performance Algorithms and Software in Nonlinear Optimization
pp. 243–254. Kluwer, Dordrecht, (1998)

22. Hager, W.W.: Iterative methods for nearly singular linear systems. SIAM J. Sci. Comput. 22,
747–766 (2000)

23. Hager, W.W.: The dual active set algorithm and its application to linear programming. Comput.
Optim. Appl. 21, 263–275 (2002)

24. Hager, W.W.: The dual active set algorithm and the iterative solution of linear programs. In:
Pardalos, P.M., Wolkowicz, H. (eds.) Novel Approaches to Hard Discrete Optimization, vol. 37,
pp. 95–107 Fields Institute Communications, (2003)

25. Hager, W.W., Hearn, D.W.: Application of the dual active set algorithm to quadratic network
optimization. Comput. Optim. Appl. 1, 349–373 (1993)

26. Hager, W.W., Ianculescu, G.: Dual approximations in optimal control. SIAM J. Control Optim.
22, 423–465 (1984)

27. Hager, W.W., Shi, C.-L., Lundin, E.O.: Active set strategies in the LP dual active set algorithm,
tech. report. University of Florida, http://www.math.ufl.edu/∼hager/LPDASA (1996)

28. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

A sparse proximal implementation of the LP dual active set algorithm 301

29. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel
Distrib. Comput. 48, 96–129 (1999)

30. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs.
SIAM Rev. 41, 278–300 (1999)

31. Liu, J.W.H.: A generalized envelope method for sparse factorization by rows. ACM Trans.
Math. Softw. 17, 112–129 (1991)

32. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev.
Francaise Inform. Rech. Oper. Ser. R-3, 4, 154–158 (1970)

33. Martinet, B.: Determination approachée d’un point fixe d’une application pseudo-contractante.
Comptes Rendus des Séances de l’Académie des Sciences, 274, 163–165 (1972)

34. Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor comput-
ers. SIAM J. Sci. Comput. 14, 1034–1056 (1993)

35. Pan, P.Q.: A dual projective pivot algorithm for linear programming. Comput. Optim. Appl.
29, 333–346 (2004)

36. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control,
14, 877–898 (1976)

37. Roos, C., Terlaky, T., Vial, J.-P.: Theory and Algorithms for Linear Optimization: An Interior
Point Approach. Wiley, New York (1997)

38. Saunders, M.A.: Cholesky-based methods for sparse least squares: The benefits of regulariza-
tion. In: Adams, L., Nazareth, J.L. (eds.) Linear and Nonlinear Conjugate Gradient-Related
Methods, pp. 92–100. SIAM, Philadelpha (1996)

39. Shih, C.L.: Active Set Strategies in Optimization. PhD Thesis, University of Florida, Depart-
ment of Mathematics (1995)

40. Vanderbei, R.J.: Symmetric quasi-definite matrices. SIAM J. Optim. 5, 100–113 (1995)
41. Volkwein, S.: Lagrange-SQP techniques for the control constrained optimal boundary control

for Burger’s equation. Comput. Optim. Appl. 26, 253–284 (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

