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Abstract

SuiteSparse:GraphBLAS is a full implementation of the Graph-
BLAS standard, which defines a set of sparse matrix operations on
an extended algebra of semirings using an almost unlimited variety
of operators and types. When applied to sparse adjacency matrices,
these algebraic operations are equivalent to computations on graphs.
GraphBLAS provides a powerful and expressive framework for cre-
ating graph algorithms based on the elegant mathematics of sparse
matrix operations on a semiring.
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1 Introduction

The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Sup-
pose A and B are sparse n-by-n Boolean adjacency matrices of two undi-
rected graphs. If the matrix multiplication is redefined to use logical AND
instead of scalar multiply, and if it uses the logical OR instead of add, then
the matrix C is the sparse Boolean adjacency matrix of a graph that has an
edge (i, 7) if node 7 in A and node j in B share any neighbor in common. The
OR-~AND pair forms an algebraic semiring, and many graph operations like
this one can be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides a wide range
of built-in types and operators, and allows the user application to create new
types and operators without needing to recompile the GraphBLAS library.

See [Dav19] for a journal article on SuiteSparse:GraphBLAS, and [Dav18§]
for a more recent conference paper. A full and precise definition of the
GraphBLAS specification is provided in The GraphBLAS C API Specifica-
tion by Aydin Bulug, Timothy Mattson, Scott McMillan, José Moreira, and
Carl Yang [BMM™17a, BMM™17b], based on GraphBLAS Mathematics by
Jeremy Kepner [Kepl17]. The GraphBLAS C API Specification is available at
http://graphblas.org. This version of SuiteSparse:GraphBLAS fully conforms
to Version 1.2.0 (May 18, 2018) of that specification. In this User Guide,
aspects of the GraphBLAS specification that would be true for any Graph-
BLAS implementation are simply called “GraphBLAS.” Details unique to
this particular implementation are referred to as SuiteSparse:GraphBLAS.

SPEC: See the tag SPEC: for SuiteSparse extensions to the spec. They
are also placed in text boxes like this one. All functions, objects, and
macros with a name of the form GxB_x* are extensions to the spec.



http://graphblas.org

1.1 Release Notes:

e Version 2.3 (Feb 2019) improves the performance of many GraphBLAS
operations, including an early-exit for built-in monoids. These changes
have a significant impact on the breadth-first-search demos ( perfor-
mance bug was also fixed in these two Demo codes). The matrix and
vector import/export functions are added (Section 4.9), in support of
the new LAGraph project (https://github.com/GraphBLAS/LAGraph,
see also Section 10.1). LAGraph includes a faster BF'S based on Graph-
BLAS.

e Version 2.2 (Nov 2018) adds user-defined objects at compile-time, via
user *.m4 files placed in GraphBLAS/User, which use the GxB_x_define
macros described in Section 9. The default matrix format is now
GxB_BY_ROW. Also added are the GxB_*print methods for printing the
contents of each GraphBLAS object (Section 8). PageRank demos have
been added to the Demos folder. Prior versions required GraphBLAS to
be compiled with OpenMP, for it to be thread-safe. It can now be com-
piled with POSIX pthreads. The cmake script automatically detects
if OpenMP and/or POSIX pthreads are available. Demos have been
added to show how GraphBLAS can be called from a multi-threaded
user application.

e Version 2.1 (Oct 2018) was a major update with support for new matrix
formats (by row or column, and hypersparse matrices), and MATLAB-
like colon notation (I=begin:end or I=begin:inc:end). Some graph
algorithms are more naturally expressed with matrices stored by row,
and this version includes the new GxB_BY_ROW format. The default
format in Version 2.1 and prior versions is by column. New exten-
sions to GraphBLAS in this version include GxB_get, GxB_set, and
GxB_AxB_METHOD, GxB_RANGE, GxB_STRIDE, and GxB_BACKWARDS, and
their related definitions, described in Sections 4.10, 5, and 6.

e Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added GxB_kron and GxB_resize.

e Version 1.1 (Dec 2017) primarily improved the performance.

e Version 1.0 was released on Nov 25, 2017.
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2 Basic Concepts

Since the GraphBLAS C API Specification provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the GraphBLAS C API Specification.
However, including them here is not essential and the additional information
on the page might detract from a clearer view of the essential features of the
GraphBLAS functions.

This User Guide also assumes the reader is familiar with the MATLAB
language, created by Cleve Moler. MATLAB supports only the conventional
plus-times semiring on sparse double and complex matrices, but a MATLAB-
like notation easily extends to the arbitrary semirings used in GraphBLAS.
The matrix multiplication in the example in the Introduction can be written
in MATLAB notation as C=A*B, if the Boolean OR-AND semiring is under-
stood. Relying on a MATLAB-like notation allows the description in this
User Guide to be expressive, easy to understand, and terse at the same time.
The GraphBLAS C API Specification also makes use of some MATLAB-like
language, such as the colon notation.

MATLAB notation will always appear here in fixed-width font, such as
C=A*B(:,j). In standard mathematical notation it would be written as the
matrix-vector multiplication C = Ab; where b, is the jth column of the ma-
trix B. The GraphBLAS standard is a C API and SuiteSparse:GraphBLAS
is written in C, and so a great deal of C syntax appears here as well, also
in fixed-width font. This User Guide alternates between all three styles as
needed.

2.1 Graphs and sparse matrices

Graphs can be huge, with many nodes and edges. A dense adjacency matrix
A for a graph of n nodes takes O(n?) memory, which is impossible if n is,
say, a million. Most graphs arising in practice are sparse, however, with only
|A| = O(n) edges, where |A| denotes the number of edges in the graph, or
the number of explicit entries present in the data structure for the matrix A.
Sparse graphs with millions of nodes and edges can easily be created by repre-
senting them as sparse matrices, where only explicit values need to be stored.
Some graphs are hypersparse, with |A| << n. SuiteSparse:GraphBLAS sup-



ports two kinds of sparse matrix formats: a regular sparse format, taking
O(n + |AJ) space, and a hypersparse format taking only O(|A]) space. As
a result, creating a sparse matrix of size n-by-n where n = 2% (about 10'®)
can be done on quite easily on a commodity laptop, limited only by |A].

A sparse matrix data structure only stores a subset of the possible n?
entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it differs
with different semirings. Explicit values are called entries and they appear in
the data structure. The pattern of a matrix defines where its explicit entries
appear. It will be referenced in one of two equivalent ways. It can be viewed
as a set of indices (i, j), where (7, j) is in the pattern of a matrix A if A(7, 7)
is an explicit value. It can also be viewed as a Boolean matrix S where
S(i,7) is true if (i,7) is an explicit entry and false otherwise. In MATLAB
notation, S=spones(A) or S=(A~=0), if the implicit value is zero. The (i, j)
pairs, and their values, can also be extracted from the matrix via the MAT-
LAB expression [I,J,X]=find(A), where the kth tuple (I(k),J(k),X(k))
represents the explicit entry A(I(k),J(k)), with numerical value X (k) equal
to a;;, with row index ¢=I(k) and column index j=J (k).

The entries in the pattern of A can take on any value, including the
implicit value, whatever it happens to be. This differs slightly from MAT-
LAB, which always drops all explicit zeros from its sparse matrices. This
is a minor difference but it cannot be done in GraphBLAS. For example, in
the max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that
no explicit entries are ever dropped because their explicit value happens to
match the implicit value.

Graph Algorithms in the Language on Linear Algebra, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations [KG11]. For additional background on
sparse matrix algorithms, see also [Dav06] and [DRSL16].

2.2 Overview of GraphBLAS methods and operations

GraphBLAS provides a collection of methods to create, query, and free its
of objects: sparse matrices, sparse vectors, types, operators, monoids, semir-
ings, and a descriptor object used for parameter settings. Details are given
in Section 4. Once these objects are created they can be used in math-
ematical operations (not to be confused with the how the term operator is
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used in GraphBLAS). A short summary of these operations and their nearest
MATLAB analog is given in the table below.

operation approximate MATLAB analog
matrix multiplication C=A*B

element-wise operations C=A+B and C=A.*B

reduction to a vector or scalar s=sum(A)

apply unary operator C=-A

transpose C=A

submatrix extraction C=A(I,J)

submatrix assignment C(I,J)=A

GraphBLAS can do far more than what MATLAB can do in these rough
analogs, but the list provides a first step in describing what GraphBLAS can
do. Details of each GraphBLAS operation are given in Section 7. With this
brief overview, the full scope of GraphBLAS extensions of these operations
can now be described.

GraphBLAS has 11 built-in scalar types: Boolean, single and double
precision floating-point, and 8, 16, 32, and 64-bit signed and unsigned inte-
gers. In addition, user-defined scalar types can be created from nearly any
C typedef, as long as the entire type fits in a fixed-size contiguous block of
memory (of arbitrary size). All of these types can be used to create Graph-
BLAS sparse matrices or vectors.

The scalar addition of conventional matrix multiplication is replaced with
a monoid. A monoid is an associative and commutative binary operator
z=f (x,y) where all three domains are the same (the types of x, y, and z), and
where the operator has an identity value id such that f(x,id)=f(id,x)=x.
Performing matrix multiplication with a semiring uses a monoid in place of
the “add” operator, scalar addition being just one of many possible monoids.
The identity value of addition is zero, since z + 0 = 0 + z = x. GraphBLAS
includes eight built-in operators suitable for use as a monoid: min (with an
identity value of positive infinity), max (whose identity is negative infinity),
add (identity is zero) multiply (with an identity of one), and four logical oper-
ators: AND, OR, exclusive-OR, and Boolean equality. User-created monoids
can be defined with any associative and commutative operator that has an
identity value.

Finally, a semiring can use any built-in or user-defined binary operator
z=f (x,y) as its “multiply” operator, as long as the type of its output, z
matches the type of the semiring’s monoid. The user application can create

11



any semiring based on any types, monoids, and multiply operators, as long
these few rules are followed.

Just considering built-in types and operators, GraphBLAS can perform
C=A*B in 960 unique semirings. With typecasting, any of these 960 semirings
can be applied to matrices C, A, and B of any of the 11 types, in any com-
bination. This gives 960 x 113 = 1,277, 760 possible kinds of sparse matrix
multiplication supported by GraphBLAS, and this is counting just built-in
types and operators. By contrast, MATLAB provides just two semirings
for its sparse matrix multiplication C=A*B: plus-times-double and plus-times-
complex, not counting the typecasting that MATLAB does when multiplying
a real matrix times a complex matrix. All of the 1.3 million forms of ma-
trix multiplication methods in SuiteSparse:GraphBLAS are typically just as
fast as computing C=A*B in MATLAB using its own native sparse matrix
multiplication methods, and sometimes faster.

A monoid can also be used in a reduction operation, like s=sum(A) in
MATLAB. MATLAB provides the plus, times, min, and max reductions of
a real or complex sparse matrix as s=sum(A), s=prod(A), s=min(A), and
s=max (A), respectively. In GraphBLAS, any monoid can be used (min, max,
plus, times, AND, OR, exclusive-OR, equality, or any user-defined monoid,
on any user-defined type).

Element-wise operations are also expanded from what can be done in
MATLAB. Consider matrix addition, C=A+B in MATLAB. The pattern of
the result is the set union of the pattern of A and B. In GraphBLAS, any
binary operator can be used in this set-union “addition.” The operator is
applied to entries in the intersection. Entries in A but not B, or visa-versa,
are copied directly into C, without any application of the binary operator.
The accumulator operation for Z = C ® T described in Section 2.3 is one
example of this set-union application of an arbitrary binary operator.

Consider element-wise multiplication, C=A.*B in MATLAB. The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of C just this set intersection. Entries in A but not B, or visa-versa,
do not appear in C. In GraphBLAS, any binary operator can be used in this
manner, not just scalar multiplication. The difference between element-wise
“add” and “multiply” is not the operators, but whether or not the pattern of
the result is the set union or the set intersection. In both cases, the operator
is only applied to the set intersection.

Finally, GraphBLAS includes a non-blocking mode where operations can
be left pending, and saved for later. This is very useful for submatrix as-
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signment (C(I,J)=A where I and J are integer vectors), or scalar assignment
(C(i,j)=x where i and j are scalar integers). Because of how MATLAB
stores its matrices, adding and deleting individual entries is very costly. For
example, this is very slow in MATLAB, taking O(nz?) time:

A = sparse (m,n) ; % an empty sparse matrix

for k = 1:nz
compute a value x, row index i, and column index j
A (1,j) =x;

end

The above code is very easy read and simple to write, but exceedingly
slow. In MATLAB, the method below is preferred and is far faster, taking
only O(|A]) time. It can easily be a million times faster than the method
above. Unfortunately the second method below is a little harder to read and
a little less natural to write:

I = zeros (nz,1) ;
J = zeros (nz,1) ;
X = zeros (nz,1) ;

for k = 1:nz

compute a value x, row index i, and column index j
I (k) =1;
J (&) =3 ;
X (k) = x;

end
A = sparse (I,J,X,m,n) ;

GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its
matrices in a format that allows for pending computations, which are done
later in bulk, and as a result it can do both methods above equally as fast
as the MATLAB sparse function, allowing the user to write simpler code.

2.3 The accumulator and the mask

Most GraphBLAS operations can be modified via transposing input matrices,
using an accumulator operator, applying a mask or its complement, and by
clear all entries the matrix C after using it in the accumulator operator but
before the final results are written back into it. All of these steps are optional,
and are controlled by a descriptor object that holds parameter settings (see
Section 4.10) that control the following options:
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e the input matrices A and/or B can be transposed first.

e an accumulator operator can be used, like the plus in the statement
C=C+Ax*B. The accumulator operator can be any binary operator, and
an element-wise “add” (set union) is performed using the operator.

e an optional mask can be used to selectively write the results to the
output. The mask is a sparse Boolean matrix Mask whose size is the
same size as the result. If Mask(i,j) is true, then the corresponding
entry in the output can be modified by the computation. If Mask(i, j)
is false, then the corresponding in the output is protected and cannot
be modified by the computation. The Mask matrix acts exactly like
logical matrix indexing in MATLAB, with one minor difference: in
GraphBLAS notation, the mask operation is C(M) = Z, where the
mask M appears only on the left-hand side. In MATLAB, it would
appear on both sides as C(Mask)=Z(Mask). If no mask is provided, the
Mask matrix is implicitly all true. This is indicated by passing the value
GrB_NULL in place of the Mask argument in GraphBLAS operations.

This process can be described in mathematical notation as:

A = AT, if requested via descriptor (first input option)

B = B', if requested via descriptor (second input option)

T is computed according to the specific operation

C(M) = C © T, accumulating and writing the results back via the mask

The application of the mask and the accumulator operator is written as
C(M) =C® T where Z = C ® T denotes the application of the accumu-
lator operator, and C(M) = Z denotes the mask operator via the Boolean
matrix M. The Accumulator Phase, Z = C ® T, is performed as follows:

Accumulator Phase: compute Z = C o T:
if accum is NULL
Z=T
else
Z=CoT

The accumulator operator is ® in GraphBLAS notation, or accum in the
code. The pattern of C ® T is the set union of the patterns of C and T, and
the operator is applied only on the set intersection of C and T. Entries in
neither the pattern of C nor T do not appear in the pattern of Z. That is:
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for all entries (4,j) in CN T (that is, entries in both C and T)
Zij = Cij O b
for all entries (4,7) in C\ T (that is, entries in C but not T)

Zij = Cij
for all entries (7,7) in T \ C (that is, entries in T but not C)
zij = lij

The Accumulator Phase is followed by the Mask /Replace Phase, C(M) = Z
as controlled by the GrB_REPLACE and GrB_SCMP descriptor options:

Mask/Replace Phase: compute C(M) = Z:
if (GrB_REPLACE) delete all entries in C
if Mask is NULL

if (GrB_SCMP)
C is not modified
else
C=1%7
else
if (GrB_SCMP)
C(-M) = Z
else
CM) =2

Both phases of the accum/mask process are illustrated in MATLAB no-
tation in Figure 1. A GraphBLAS operation starts with its primary compu-
tation, producing a result T; for matrix multiply, T=A*B, or if A is transposed
first, T=A’*B, for example. Applying the accumulator, mask (or its comple-
ment) to obtain the final result matrix C can be expressed in the MATLAB
accum_mask function shown in the figure. This function is an exact, fully
functional, and nearly-complete description of the GraphBLAS accumula-
tor/mask operation. The only aspects it does not consider are typecasting
(see Section 2.4), and the value of the implicit identity (for those, see another
version in the Test folder).

One aspect of GraphBLAS cannot be as easily expressed in a MATLAB
sparse matrix: namely, what is the implicit value of entries not in the pat-
tern? To accommodate this difference in the accum_mask MATLAB func-
tion, each sparse matrix A is represented with its values A.matrix and its
pattern, A.pattern. The latter could be expressed as the sparse matrix
A.pattern=spones(A) or A.pattern=(A"=0) in MATLAB, if the implicit
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function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)
[m n] = size (C.matrix) ;
Z.matrix = zeros (m, n) ;
Z.pattern = false (m, n) ;

if (isempty (accum))
Z =T, % no accum operator
else
% Z = accum (C,T), like Z=C+T but with an binary operator, accum
C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));
C.pattern & “T.pattern ; Z.matrix (p) = C.matrix (p) ;
“C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;
.pattern = C.pattern | T.pattern ;

NT T T
]

end

% apply the mask to the values and pattern

C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;
C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;
end

function C = mask (C, Mask, Z, C_replace, Mask_complement)

% replace C if requested

if (C_replace)
C (:,:) =0 ;

end

if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)
% implicitly, Mask = ones (size (C))
if ("Mask_complement)

C=7Z; % this is the default
else

C=¢C; % Z need never have been computed
end

else
% apply the mask
if ("Mask_complement)
C (Mask) = Z (Mask) ;
else
C ("Mask) = Z (“Mask) ;
end
end
end

Figure 1: Applying the mask and accumulator, C(M) = C® T
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value is zero. With different semirings, entries not in the pattern can be 1,
+Inf, -Inf, or whatever is the identity value of the monoid. As a result,
Figure 1 performs its computations on two MATLAB matrices: the values in
A matrix and the pattern in the logical matrix A.pattern. Implicit values
are untouched.

The final computation in Figure 1 with a complemented Mask is easily
expressed in MATLAB as C("Mask)=Z("Mask) but this is costly if Mask is
very sparse (the typical case). It can be computed much faster in MATLAB
without complementing the sparse Mask via:

R=Z; R (Mask) = C (Mask) ; C =R ;

A set of MATLAB functions that precisely compute the CIM) =C o T
operation according to the full GraphBLAS specification is provided in Suite-
Sparse:GraphBLAS as GB_spec_accum.m, which computes Z = C ® T, and
GB_spec_mask.m, which computes C(M) = Z. SuiteSparse:GraphBLAS in-
cludes a complete list of GB_spec_* functions that illustrate every Graph-
BLAS operation; these are discussed in in Section 7.1.

The methods in Figure 1 rely heavily on MATLAB’s logical matrix in-
dexing. For those unfamiliar with logical indexing in MATLAB, here is short
summary. Logical matrix indexing in MATLAB is written as A(Mask) where
A is any matrix and Mask is a logical matrix the same size as A. The expression
x=A(Mask) produces a column vector x consisting of the entries of A where
Mask is true. On the left-hand side, logical submatrix assignment A (Mask)=x
does the opposite, copying the components of the vector x into the places in
A where Mask is true. For example, to negate all values greater than 10 using
logical indexing in MATLAB:

>> A = magic (4)
A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> A (A>10) = - A (A>10)
A =
-16 2 3 -13
5 -11 10 8
9 7 6 -12
4 -14 -15 1
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In MATLAB, logical indexing with a sparse matrix A and sparse logical
matrix Mask is very efficient since MATLAB supports sparse logical matrices.
The Mask operator in GraphBLAS works identically as sparse logical index-
ing in MATLAB, and is equally as fast (or faster) in SuiteSparse:GraphBLAS.

2.4 Typecasting

If an operator z=f (x) or z=f(x,y) is used with inputs that do not match
its inputs x or y, or if its result z does not match the type of the matrix it
is being stored into, then the values are typecasted. Typecasting in Graph-
BLAS extends beyond just operators. Almost all GraphBLAS methods and
operations are able to typecast their results, as needed.

If one type can be typecasted into the other, they are said to be compat-
ible. All built-in types are compatible with each other. GraphBLAS cannot
typecast user-defined types thus any user-defined type is only compatible
with itself. When GraphBLAS requires inputs of a specific type, or when
one type cannot be typecast to another, the GraphBLAS function returns an
error code, GrB_DOMAIN_MISMATCH (refer to Section 3.4 for a complete list of
error codes). Typecasting can only be done between built-in types, and it
follows the rules of the ANSI C language (not MATLAB) wherever the rules
of ANSI C are well-defined. In particular, a large integer outside the range
of a smaller one is wrapped, modulo style. This differs from MATLAB.

However, unlike MATLAB, the C language specification states that the
results of typecasting a float or double to an integer type is not always
defined. In SuiteSparse:GraphBLAS, whenever C leaves the result undefined
the rules used in MATLAB are followed. In particular +Inf converts to
the largest integer value, -Inf converts to the smallest (zero for unsigned
integers), and NaN converts to zero. Other than these special cases, Suite-
Sparse:GraphBLAS trusts the C compiler for the rest of its typecasting.

Typecasting to bool is fully defined in the C language specification, even
for NaN. The result is false if the value compares equal to zero, and true
otherwise. Thus NaN converts to true.

SPEC: the GraphBLAS API states that typecasting follows the rules of
ANSI C. Yet C leaves some typecasting undefined. SuiteSparse:GraphBLAS$
provides a precise definition for all typecasting as an extension to the
spec.
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2.5 Notation and list of GraphBLAS operations

As a summary of what GraphBLAS can do, the following table lists all Graph-
BLAS operations (where GxB_# are in SuiteSparse:GraphBLAS only). Upper
case letters denote a matrix, lower case letters are vectors, and AB denote

the multiplication of two matrices over a semiring.

GrB_mxm matrix-matrix multiply C(M)=C0oAB
GrB_vxm vector-matrix multiply wim™) =wlouTA
GrB_mxv matrix-vector multiply w(m) =w ©® Au
GrB_eWiseMult element-wise, CM)=C0o (A®B)
set union wm)=w0o (u®v)
GrB_eWiseAdd  element-wise, CM)=C0o(AaB)
set intersection w(m) =wQ® (udv)
GrB_extract extract submatrix CM)=C0oA(LJ)
w(m) =w ©u(i)
GxB_subassign assign submatrix CLJ)M)=CIJ)eoA
(with submask for C(I,J)) w(i)(m)=w(i)Ou
GrB_assign assign submatrix CM)(LJ)=CIJ) e A
(with mask for C) w{m)(i) =w({i) O u
GrB_apply apply unary operator C(M) =Cof(A)
w{m) = wo i (u)
GxB_select apply select operator C(M) = Cof(Ak)
w(m) = wOf(u,k)
GrB_reduce reduce to vector w(m) = wO[P;A(:, J)]

reduce to scalar

§=50 [@ijA(I, J)]

GrB_transpose

transpose

CM)=CoAT

GxB_kron Kronecker product C(M) = C ® kron(A,B)

Each operation takes an optional GrB_Descriptor argument that modi-
fies the operation. The input matrices A and B can be optionally transposed,
the mask M can be complemented, and C can be cleared of its entries after
it is used in Z = C ® T but before the C(M) = Z assignment. Vectors are
never transposed via the descriptor.

Let A & B denote the element-wise operator that produces a set union
pattern (like A+B in MATLAB). Any binary operator can be used this way
in GraphBLAS, not just plus. Let A ® B denote the element-wise operator
that produces a set intersection pattern (like A.*B in MATLAB); any binary
operator can be used this way, not just times.

Reduction of a matrix A to a vector reduces the ith row of A to a scalar
w;. This is like w=sum(A’) since by default, MATLAB reduces down the

columns, not across the rows.
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3 GraphBLAS Context and Sequence

A user application that directly relies on GraphBLAS must include the
GraphBLAS.h header file:

#include "GraphBLAS.h"

The GraphBLAS.h file defines functions, types, and macros prefixed with
GrB_ and GxB_ that may be used in user applications. The prefix GrB_ denote
items that appear in the official GraphBLAS C API Specification. The prefix
GxB_ refers to SuiteSparse-specific extensions to the GraphBLAS API. Both
may be used in user applications but be aware that items with prefixes GxB_
will not appear in other implementations of the GraphBLAS standard.

SPEC: The following macros are extensions to the spec.

The GraphBLAS.h file includes all the definitions required to use Graph-
BLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.

There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the GraphBLAS C API Specification it conforms to, and the
version of the implementation itself. These can be used in the following
manner in a user application:

#if GxB >= GxB_VERSION (2,0,3)

. use features in GraphBLAS specification 2.0.3 ...
#else

. only use features in early specifications
#endif

#if GxB_IMPLEMENTATION > GxB_VERSION (1,4,0)

. use features from version 1.4.0 of a specific GraphBLAS implementation

#endif

SuiteSparse:GraphBLAS also defines the following strings with #define.
Refer to the GraphBLAS . h file for details.

Macro purpose

GxB_ABOUT this particular implementation, copyright, and URL
GxB_DATE the date of this implementation

GxB_SPEC the GraphBLAS specification for this implementation

GxB_SPEC_DATE the date of the GraphBLAS specification
GxB_LICENSE the license for this particular implementation
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Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
GxB_SUITESPARSE_GRAPHBLAS that the user application can use in #ifdef
tests. This is helpful in case a particular implementation provides non-
standard features that extend the GraphBLAS specification, such as ad-
ditional predefined built-in operators, or if a GraphBLAS implementation
does not yet fully implement all of the GraphBLAS specification. The Suite-
Sparse:GraphBLAS name is provided in its GraphBLAS.h file as:

#define GxB_SUITESPARSE_GRAPHBLAS

For example, SuiteSparse:GraphBLAS predefines additional built-in op-
erators not in the specification. If the user application wishes to use these
in any GraphBLAS implementation, an #ifdef can control when they are
used. Refer to the examples in the GraphBLAS/Demo folder.

As another example, the GraphBLAS API states that an implementa-
tion need not define the order in which GrB_Matrix_build assembles dupli-
cate tuples in its [I,J,X] input arrays. As a result, no particular ordering
should be relied upon in general. However, SuiteSparse:GraphBLAS does
guarantee an ordering, and this guarantee will be kept in future versions of
SuiteSparse:GraphBLAS as well. Since not all implementations will ensure a
particular ordering, the following can be used to exploit the ordering returned
by SuiteSparse:GraphBLAS.

#ifdef GxB_SUITESPARSE_GRAPHBLAS

// duplicates in I, J, X assembled in a specific order;

// results are well-defined even if op is not associative.
GrB_Matrix_build (C, I, J, X, nvals, op) ;

#else

// duplicates in I, J, X assembled in no particular order;
// results are undefined if op is not associative.
GrB_Matrix_build (C, I, J, X, nvals, op) ;

#endif

The remainder of this section describes GraphBLAS functions that create,
modify, and destroy the GraphBLAS context, or provide utility methods for
dealing with errors:

GraphBLAS function purpose Section
GrB_init start up GraphBLAS 3.1
GrB_wait force completion of pending operations 3.2
GrB_Info status code returned by GraphBLAS functions 3.3
GrB_error get more details on the last error 3.4
GrB_finalize finish GraphBLAS 3.5
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3.1 GrB.init: initialize GraphBLAS

typedef enum

{
GrB_NONBLOCKING, // methods may return with pending computations
GrB_BLOCKING // no computations are ever left pending

}

GrB_Mode ;

GrB_Info GrB_init // start up GraphBLAS

(
const GrB_Mode mode // blocking or non-blocking mode

)

GrB_init must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user applica-
tion. With non-blocking mode, operations can be left pending, and are
computed only when needed. Non-blocking mode can be much faster than
blocking mode, by many orders of magnitude in extreme cases. Blocking
mode should be used only when debugging a user application. The mode
cannot be changed once it is set by GrB_init.

GraphBLAS objects are opaque to the user application. This allows
GraphBLAS to postpone operations and then do them later in a more efficient
manner by rearranging them and grouping them together. In non-blocking
mode, the computations required to construct an opaque GraphBLAS object
might not be finished when the GraphBLAS method or operation returns to
the user. However, user-provided arrays are not opaque, and GraphBLAS
methods and operations that read them (such as GrB_Matrix_build) or write
to them (such as GrB_Matrix_extractTuples) always finish reading them,
or creating them, when the method or operation returns to the user applica-
tion.

In addition, all methods and operations that extract values from a Graph-
BLAS object and return them into non-opaque user arrays always ensure that
the computations for that object are completed when the method returns,
namely: GrB_*_nvals, GrB_*_extractElement, GrB_x*_extractTuples, and
GrB_*_reduce (to scalar). These methods only ensure that the computations
for a single object are completed. Use GrB_wait to ensure that all computa-
tions are completed (see Section 3.2).
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SuiteSparse:GraphBLAS is not yet multithreaded, but it is safe to use in a
multithreaded user application. SuiteSparse:GraphBLAS must be compiled
for each specific user threading model; see Section 11 for details.

User threads must not operate on the same matrices at the same time,
with one exception. Multiple threads can use the same matrices or vectors
as read-only inputs to GraphBLAS operations or methods, but only if they
have no pending operations (use GrB_Matrix_nvals or GrB_wait first). User
threads cannot simultaneously modify a matrix or vector via any GraphBLAS
operation or method.

With multiple user threads, exactly one user thread must call GrB_init
before any user thread may call any GrB_* or GxB_x function. When the
user application is finished, exactly one user thread must call GrB_finalize,
after which no user thread may call any GrB_* or GxB_x* function.

You can query the mode of a GraphBLAS session with the following (see
Section 5), which returns the mode passed to GrB_init:

GrB_mode mode ;
GxB_get (GxB_MODE, &mode) ;
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3.2 GrB_wait: wait for pending operations to finish

GrB_Info GrB_wait ( ) ; // finish all pending computations

GrB_wait forces all pending operations to complete. Blocking mode acts
as if GrB_wait is called whenever a GraphBLAS method or operation returns
to the user application.

Unless specific rules are followed, non-blocking mode can be unpredictable
if user-defined functions have side effects or if they rely on global variables not
under the control of GraphBLAS. Suppose the user application creates a user-
defined operator that accesses a global variable. That operator is then used
in a GraphBLAS operation, which is left pending. If the user application
then changes the global variable before pending operations complete, the
pending operations will be eventually computed with this different value.

Worse yet, a user-defined operator might be freed before it is needed to
finish a pending operation. This causes undefined behavior.

For best results with GraphBLAS, user-defined functions should not have
side effects, nor should they access global variables outside the control of
GraphBLAS. This allows the non-blocking mode to be used at its fullest
level of performance. However, both of these features can safely be used in
user-defined functions if the following specific rules are followed.

e User-defined functions may be called in any order when used in a
GraphBLAS operation. This order may change in non-obvious ways,
even in the same GraphBLAS operation. For example, SuiteSparse:-
GraphBLAS relies on multiple algorithms for matrix multiplication,
and selects between them automatically. The methods will call user-
defined multiply and add operators in the semiring, in different order.
The user application should not rely on any particular order used in a
specific implementation of GraphBLAS.

e User-defined functions are permitted to access global variables. How-
ever, if they do so, the global variables they rely on should not be
changed if any GraphBLAS methods or operations are still pending,
assuming GraphBLAS is executing in non-blocking mode (see Sec-
tion 3.1). To ensure this, the user application must call GrB_wait
before changing any global variables relied upon by user-defined func-
tions. Alternatively, computations can be forced to complete on se-
lected matrices and vectors via GrB_*_nvals, GrB_*_extractElement,
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GrB_*_extractTuples, and GrB_*_reduce (to scalar) applied to se-
lected matrices and vectors. The GrB_*_nvals function is particularly
well-suited for this purpose since it is otherwise an extremely light-
weight computation in SuiteSparse:GraphBLAS.

o [f any GraphBLAS methods or operations are still pending, freeing
user-defined types, operators, monoids, semirings, vectors, matrices,
or descriptors leads to undefined behavior. A user application must
call GrB_wait before freeing any user-defined object, if a pending op-
eration relies on it, or by selective completion via, say, GrB_x_nvals.
Alternatively, if the user application is about to terminate GraphBLAS
(see GrB_finalize below), then all GraphBLAS objects may be freed
in any order, without calling GrB_wait. Pending computations will
simply be abandoned.

GrB_wait ensures that all computations are completed for all objects. For
specific objects, GrB_*_nvals, GrB_x*_extractElement, GrB_*_extractTuples,
and GrB_*_reduce (to scalar) ensure that the pending operations are com-
pleted just for the matrix or vector they operate on. No other GraphBLAS
method or operation guarantees the completion of pending computations,
even though they may happen to do so in any particular implementation. In
the current version, SuiteSparse:GraphBLAS exploits the non-blocking mode
in the GrB_*_setElement methods and the GrB_assign and GxB_subassign
operations. Future versions of SuiteSparse:GraphBLAS may extend this to
other methods and operations. Refer to the example at the end of Section 2.2.

If multiple user threads have created matrices or vectors, and those have
pending operations, then a single call by one thread to GrB_wait causes all
pending operations left by all threads to be completed. If other user threads
are working on any of those matrices, this would result in a race condition.
Therefore, GrB_wait should be called only when no other user thread is
operating on any other matrix. Functions that cause a specific matrix to
be finalized (GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples,
and GrB_*_reduce (to scalar)) can be safely called by multiple user threads
on different matrices.
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3.3 GrB_Info: status code returned by GraphBLAS

Each GraphBLAS method and operation returns its status to the caller as
its return value, an enumerated type (an enum) called GrB_Info. The first
two values in the following table denote a successful status, the rest are error
codes.

GrB_SUCCESS the method or operation was successful

GrB_NO_VALUE A(i,j) requested but not there. Its value is
implicit.

GrB_UNINITIALIZED_OBJECT object has not been initialized

GrB_INVALID_OBJECT object is corrupted

GrB_NULL_POINTER input pointer is NULL

GrB_INVALID_VALUE generic error code; some value is bad

GrB_INVALID_INDEX a row or column index is out of bounds; for
indices passed as scalars, not in a list.

GrB_DOMAIN_MISMATCH object domains are not compatible

GrB_DIMENSION_MISMATCH matrix dimensions do not match

GrB_OUTPUT_NOT_EMPTY output matrix already has values in it

GrB_0OUT_OF_MEMORY out of memory

GrB_INSUFFICIENT_SPACE output array not large enough

GrB_INDEX_OUT_OF_BOUNDS a row or column index is out of bounds; for
indices in a list of indices.

GrB_PANIC unrecoverable error.

Not all GraphBLAS methods or operations can return all status codes.
Any GraphBLAS method or operation can return an out-of-memory condi-
tion, GrB_OUT_OF_MEMORY, or a panic, GrB_PANIC. These two errors, and the
GrB_INDEX_QUT_OF_BOUNDS error, are called execution errors. The other er-
rors are called API errors. An API error is detecting immediately, regardless
of the blocking mode. The detection of an execution error may be deferred
until the pending operations complete.

In the discussions of each method and operation in this User Guide, most
of the obvious error code returns are not discussed. For example, if a required
input is a NULL pointer, then GrB_NULL_POINTER is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to The GraphBLAS C' API Specification [BMM™17b].
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3.4 GrB_error: get more details on the last error

const char *GrB_error ( ) ; // return a string describing the last error

Each GraphBLAS method and operation returns a GrB_Info error code.
The GrB_error function returns additional information on the error in a
thread-safe null-terminated string. The string returned by GrB_error is
allocated in thread local storage and must not be freed or modified. Each
user thread has its own error status. The simplest way to use it is just to
print it out, such as:

info = GrB_some_method_here (...) ;
if (info != GrB_SUCCESS)
{

printf ("%s\n", GrB_error ( )) ;
}

SuiteSparse:GraphBLAS reports many helpful details. For example, if a
row or column index is out of bounds, the report will state what those bounds
are. If a matrix dimension is incorrect, the mismatching dimensions will be
provided. GrB_BinaryOp_new, GrB_UnaryOp_new, and GxB_SelectOp_new
record the name the function passed to them, and GrB_Type_new records the
name of its type parameter, and these are printed if the user-defined types and
operators are used incorrectly. Refer to the output of the example programs
in the Demo folder, which intentionally generate errors to illustrate the use
of GrB_error. Successful GraphBLAS methods do not modify this error
message. If a GraphBLAS method fails and then subsequent GraphBLAS
method succeeds, the error message is not modified from the last failure.
Only a subsequent failure will cause GrB_error to return a different error
message.
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3.5 GrB_finalize: finish GraphBLAS

GrB_Info GrB_finalize ( ) ; // finish GraphBLAS

GrB_finalize must be called as the last GraphBLAS operation, even af-
ter all calls to GrB_free. All GraphBLAS objects created by the user appli-
cation should be freed first, before calling GrB_finalize since GrB_finalize
will not free those objects. In non-blocking mode, GraphBLAS may leave
some computations as pending. These computations can be safely abandoned
if the user application frees all GraphBLAS objects it has created and then
calls GrB_finalize. There is no need to call GrB_wait in this case. When the
user application is finished, exactly one user thread must call GrB_finalize.

28



4 GraphBLAS Objects and their Methods

GraphBLAS defines eight different objects to represent matrices and vectors,
their scalar data type (or domain), binary and unary operators on scalar
types, monoids, semirings, and a descriptor object used to specify optional
parameters that modify the behavior of a GraphBLAS operation. Suite-
Sparse:GraphBLAS adds an operator for selecting entries from a matrix or
vector.

The GraphBLAS API makes a distinction between methods and opera-
tions. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.

GrB_Type a scalar data type
GrB_UnaryOp a unary operator z = f(z), where z and z are scalars
GrB_BinaryOp a binary operator z = f(x,y), where z, x, and y are scalars
GxB_SelectOp a select operator
GrB_Monoid an associative and commutative binary operator
and its identity value
GrB_Semiring a monoid that defines the “plus” and a binary operator
that defines the “multiply” for an algebraic semiring
GrB_Matrix a 2D sparse matrix of any type
GrB_Vector a 1D sparse column vector of any type

GrB_Descriptor a collection of parameters that modify an operation

Each of these objects is implemented in C as an opaque handle, which
is a pointer to a data structure held by GraphBLAS. User applications may
not examine the content of the object directly; instead, they can pass the
handle back to GraphBLAS which will do the work. Assigning one handle
to another is valid but it does not make a copy of the underlying object.

GraphBLAS provides 11 built-in types and 256 built-in operators. With
these, 44 unique monoids and 960 unique semirings can be constructed.

SPEC: SuiteSparse:GraphBLAS predefines all unique monoids and semir-
ings that can be constructed from built-in types and operators, as an ex-
tension to the spec. They appear in GraphBLAS.h. The GxB_SelectOp
object is an extension to GraphBLAS.
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4.1 The GraphBLAS type: GrB_Type

A GraphBLAS GrB_Type defines the type of scalar values that a matrix
or vector contains, and the type of scalar operands for a unary or binary
operator. There are eleven built-in types, and a user application can define
any types of its own as well. The built-in types correspond to built-in types
in C (#include <stdbool.h> and #include <stdint.h>), and the classes
in MATLAB, as listed in the following table.

GraphBLAS C type MATLAB  description range

type class

GrB_BOOL bool logical Boolean true (1), false (0)
GrB_INTS8 int8_t int8 8-bit signed integer -128 to 127
GrB_UINT8 uint8_t  uint8 8-bit unsigned integer 0 to 255
GrB_INT16  int16_t  int16 16-bit integer —2B t0 215 — 1
GrB_UINT16 wuint16_t uinti6 16-bit unsigned integer 0 to 2'6 — 1
GrB_INT32  int32_t  int32 32-bit integer —23T 40 231 — 1
GrB_UINT32 uint32_t uint32 32-bit unsigned integer 0 to 232 — 1
GrB_INT64  int64_t  int64 64-bit integer —203 t0 203 — 1
GrB_UINT64 uint64_t uint64 64-bit unsigned integer 0 to 264 —1
GrB_FP32 float single 32-bit IEEE 754 -Inf to +Inf
GrB_FP64 double double 64-bit IEEE 754 -Inf to +Inf

The user application can also define new types based on any typedef in
the C language whose values are held in a contiguous region of memory. For
example, a user-defined GrB_Type could be created to hold any C struct
whose content is self-contained. A C struct containing pointers might be
problematic because GraphBLAS would not know to dereference the pointers
to traverse the entire “scalar” entry, but this can be done if the objects ref-
erenced by these pointers are not moved. A user-defined complex type with
real and imaginary types can be defined, or even a “scalar” type containing
a fixed-sized dense matrix (see Section 4.1.1). The possibilities are endless.
GraphBLAS can create and operate on sparse matrices and vectors in any of
these types, including any user-defined ones. For user-defined types, Graph-
BLAS simply moves the data around itself (via memcpy), and then passes the
values back to user-defined functions when it needs to do any computations
on the type. The next sections describe the methods for the GrB_Type object:

GrB_Type_new
GxB_Type_size
GrB_Type_free

create a user-defined type
return the size of a type
free a user-defined type
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4.1.1 GrB_Type_new: create a user-defined type

GrB_Info GrB_Type_new // create a new GraphBLAS type
(
GrB_Type *type, // handle of user type to create
size_t sizeof_ctype // size = sizeof (ctype) of the C type
)

GrB_Type_new creates a new user-defined type. The type is a handle, or
a pointer to an opaque object. The handle itself must not be NULL on input,
but the content of the handle can be undefined. On output, the handle
contains a pointer to a newly created type. The ctype is the type in C
that will be used to construct the new GraphBLAS type. It can be either
a built-in C type, or defined by a typedef. The second parameter should
be passed as sizeof (ctype). The only requirement on the C type is that
sizeof (ctype) is valid in C, and that the type reside in a contiguous block
of memory so that it can be moved with memcpy. For example, to create a
user-defined type called Complex for double-precision complex values using
the ANSI C11 double complex type, the following can be used. A complete
example can be found in the usercomplex.c and usercomplex.h files in the
Demo folder.

#include <math.h>

#include <complex.h>

GrB_Type Complex ;

GrB_Type_new (&Complex, sizeof (double complex)) ;

To demonstrate the flexibility of the GrB_Type, consider a “scalar” con-
sisting of 4-by-4 floating-point matrix and a string. This type might be useful
for the 4-by-4 translation/rotation/scaling matrices that arise in computer
graphics, along with a string containing a description or even a regular ex-
pression that can be parsed and executed in a user-defined operator. All that
is required is a fixed-size type, where sizeof (ctype) is a constant.

typedef struct

{
float stuff [4][4] ;
char whatstuff [64] ;
}
wildtype ;

GrB_Type WildType ;
GrB_Type_new (&WildType, sizeof (wildtype)) ;
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With this type a sparse matrix can be created in which each entry con-
sists of a 4-by-4 dense matrix stuff and a 64-character string whatstuff.
GraphBLAS treats this 4-by-4 as a “scalar.” Any GraphBLAS method or
operation that simply moves data can be used with this type without any
further information from the user application. For example, entries of this
type can be assigned to and extracted from a matrix or vector, and matrices
containing this type can be transposed. A working example (wildtype.c
in the Demo folder) creates matrices and multiplies them with a user-defined
semiring with this type.

Performing arithmetic on matrices and vectors with user-defined types
requires operators to be defined. For example, the user application can de-
fine its own type for complex numbers, but then transposing the matrix with
GraphBLAS will not compute the complex conjugate transpose. This corre-
sponds to the array transpose in MATLAB (C=A.’) instead of the complex
conjugate transpose (C=A’). To compute the complex conjugate transpose,
the application would need to create a user-defined unary operator to con-
jugate a user-defined complex scalar, and then apply it to the matrix before
or after the transpose, via GrB_apply. An extensive set of complex opera-
tors are provided in the usercomplex.c example in the Demo folder, along
with an include file, usercomplex.h, that is suitable for inclusion in any user
application. Thus, while GraphBLAS does not include any complex types
or operators, SuiteSparse:GraphBLAS provides them in two simple “user”
files in the Demo folder. Refer to Section 10.9 for more details on these two
example user-defined types.

4.1.2 GxB_Type_size: return the size of a type

GrB_Info GxB_Type_size // determine the size of the type
(

size_t *size, // the sizeof the type

GrB_Type type // type to determine the sizeof
)

This function acts just like sizeof (type) in the C language. For example
GxB_Type_size (&s, GrB_INT32) sets s to 4, the same as sizeof (int32_t).

SPEC: The GxB_Type_size function is an extension to the spec.
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4.1.3 GrB_Type_free: free a user-defined type

GrB_Info GrB_free // free a user-defined type
(

GrB_Type *type // handle of user-defined type to free
)

GrB_Type_free frees a user-defined type. Either usage:

GrB_Type_free (&type) ;
GrB_free (&type) ;

frees the user-defined type and sets type to NULL. It safely does nothing if
passed a NULL handle, or if type == NULL on input.

It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS
silently ignores the request and returns GrB_SUCCESS. A user-defined type
should not be freed until all operations using the type are completed. Suite-
Sparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended. Oper-
ations on such objects whose type has been freed leads to undefined behavior.

It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.

Note the function signature of GrB_Type_free, above. It is illustrated
with the generic name, GrB_free. Any GraphBLAS object can be freed
with the single function, GrB_free. Refer to Section 4.11 for more details.

GraphBLAS includes many such generic functions. When describing a
specific variation, a function is described with its specific name in this User
Guide (such as GrB_Type_free). When discussing features applicable to all
specific forms, the generic name is used instead (such as GrB_free).
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4.2 GraphBLAS unary operators: GrB_UnaryOp, z =
f(z)

A unary operator is a scalar function of the form z = f(x). The domain
(type) of z and z need not be the same.

There are six kinds of built-in unary operators: one, identity, additive in-
verse, absolute value, multiplicative inverse, and logical negation. In the no-
tation in the table below, T" is any of the 11 built-in types and is a place-holder
for BOOL, INT8, UINTS, ... FP32, or FP64. For example, GrB_AINV_INT32 is a
unary operator that computes z=-x for two values x and z of type GrB_INT32.

The logical negation operator GrB_LNOT only works on Boolean types.
The GxB_LNOT_T functions operate on inputs of type T', implicitly typecast-
ing their input to Boolean and returning result of type 7', with a value 1 for
true and 0 for false. The operators GxB_LNOT_BOOL and GrB_LNOT are identi-
cal. Considering all combinations, there are thus 67 built-in unary operators
((6 kinds of operators) x (11 types), and GrB_LNOT).

GraphBLAS name types (domains) expression description

2= f(z)
GxB_ONE_T T—-T z=1 one
GrB_IDENTITY_T T—T z=x identity
GrB_AINV_T T—=T z=— additive inverse
GxB_ABS_T T—-T z = || absolute value
GrB_MINV_T T—->T z=1/x multiplicative inverse
GxB_LNOT_T T—->T z=—(x #0) logical negation
GrB_LNOT bool — bool z =" logical negation

SPEC: GxB_ONE_T', GxB_ABS_T and GxB_LNOT_T are extensions to the
spec.

Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary GrB_DIV_T
operators.

SPEC: The definition of integer division by zero is an extension to the
spec.

The next sections define the following methods for the GrB_UnaryOp ob-
ject:
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GrB_UnaryOp_new create a user-defined unary operator
GxB_UnaryOp_ztype return the type of the output z for z = f(z)
GxB_UnaryOp_xtype return the type of the input z for z = f(x)
GrB_UnaryOp_free  free a user-defined unary operator

4.2.1 GrB_UnaryOp_new: create a user-defined unary operator

GrB_Info GrB_UnaryOp_new // create a new user—defined unary operator
(

GrB_UnaryOp *unaryop, // handle for the new unary operator

void *function, // pointer to the unary function

const GrB_Type ztype, // type of output z

const GrB_Type xtype // type of input x

)

GrB_UnaryOp_new creates a new unary operator. The new operator is
returned in the unaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new unary operator.

The two types xtype and ztype are the GraphBLAS types of the input
x and output z of the user-defined function z = f(x). These types may be
built-in types or user-defined types, in any combination. The two types need
not be the same, but they must be previously defined before passing them
to GrB_UnaryOp_new.

The function argument to GrB_UnaryOp_new is a pointer to a user-
defined function with the following signature:

void (*f) (void *z, const void *x) ;

When the function f is called, the arguments z and x are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype and xtype, respectively, when the operator was created.
NOTE: Currently, the pointers will be unique. That is, the user function
is not called with pointers that point to the same space. Future versions
of SuiteSparse:GraphBLAS may call the function with the pointers z and x
equal to one another, in which case z=f (z) should be computed.
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4.2.2 GxB_UnaryOp_ztype: return the type of =

GrB_Info GxB_UnaryOp_ztype // return the type of z

(
GrB_Type *ztype, // return type of output z
const GrB_UnaryOp unaryop // unary operator

)

GxB_UnaryOp_ztype returns the ztype of the unary operator, which is
the type of z in the function z = f(x).

SPEC: The GxB_UnaryOp_ztype function is an extension to the spec.

4.2.3 GxB_UnaryOp_xtype: return the type of z

GrB_Info GxB_UnaryOp_xtype // return the type of x

(
GrB_Type *xtype, // return type of input x
const GrB_UnaryOp unaryop // unary operator

)

GxB_UnaryOp_xtype returns the xtype of the unary operator, which is
the type of z in the function z = f(x).

SPEC: The GxB_UnaryOp_xtype function is an extension to the spec.

4.2.4 GrB_UnaryOp_free: free a user-defined unary operator

GrB_Info GrB_free // free a user-created unary operator

(
GrB_UnaryOp *unaryop // handle of unary operator to free

)

GrB_UnaryOp_free frees a user-defined unary operator. Either usage:

GrB_UnaryOp_free (&unaryop) ;
GrB_free (&unaryop) ;

frees the unaryop and sets unaryop to NULL. It safely does nothing if passed
a NULL handle, or if unaryop == NULL on input. It does nothing at all if
passed a built-in unary operator.
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4.3 GraphBLAS binary operators:
f(z,y)

A binary operator is a scalar function of the form z = f(z,y). The types of
z, x, and y need not be the same.

SuiteSparse:GraphBLAS has 17 kinds of built-in binary operators of the
form T x T"— T that work on all 11 of the built-in types, T, for a total of
187 binary operators of this form. These are listed in the table below. For
each of these operators, all domains (types) of the three operands are the
same. The six comparison operators and three logical operators all return
a result one for true and zero for false, in the same domain 7' as their in-
puts. These six comparison operators are useful as “multiply” operators for
creating semirings with non-Boolean monoids.

GrB_BinaryOp, 2z

GraphBLAS types (domains) expression description

name z = f(z,y)

GrB_FIRST.T T xT—T z=x first argument
GrB_SECOND_T" T xXT —T z=1 second argument
GrB_MIN_T TxT—T z = min(z,y) minimum
GrB_MAX_T TxT—T z = max(z,y) maximum
GrB_PLUS_T TxT—>T z=x+y addition
GrB_MINUS_.T T xT —>T z=x—y subtraction
GrB_TIMES.T T xT —T z=2ay multiplication
GrB_DIV_T TxT—T z=ua/y division
GxB_ISEQ_T TxT—T z=(z==y) equal
GxB_ISNE_T TxT—T z=(x#vy) not equal
GxB_ISGT_T TxT—T z=(x>y) greater than
GxB_ISLT_T TxT—T z=(x <y) less than
GxB_ISGE_T TxT—T z=(zx>vy) greater than or equal
GxB_ISLE_T TxT—T z=(z<y) less than or equal
GxB_LOR_T TxT—T z=(x#0)V(y#0) logical OR
GxB_LAND_T TxT—T z=(x#0)A(y#0) logical AND
GxB_LXOR_T TxT—T z=(x#0)Y(y#0) logical XOR

SPEC: The GxB_IS*_T operators and the Boolean GxB_L*_T are ex-
tensions to the spec.

Another set of six kinds of built-in comparison operators have the form
T x T —bool. They are defined for all eleven built-in types, for a total of 66
binary operators. Note that when 7' is bool, the six operators give the same
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results as the six GxB_IS*_BOOL operators in the table above. These six com-
parison operators are useful as “multiply” operators for creating semirings
with Boolean monoids.

GraphBLAS  types (domains) expression description
name z = f(x,y)
GrB_EQ_T T x T —bool z=(r==y) equal

GrB_NE_T T x T —bool z=( ) not equal

GrB_GT_T T x T —bool z=( ) greater than
GrB_LT_T T x T —bool z=(x<vy) less than

GrB_GE_T T x T —bool z=(z>vy) greater than or equal
GrB_LE_T T x T —bool z=(x<vy) less than or equal

Finally, GraphBLAS has three built-in binary operators that operate
purely in the Boolean domain. These three are identical to the GxB_L*_B0OOL
operators described above, just with a shorter name.

GraphBLAS  types (domains) expression  description
name z= f(z,y)
GrB_LOR bool X bool — bool z=2xVy logical OR

GrB_LAND bool X bool — bool z=xAy logical AND
GrB_LXOR bool X bool — bool z=zxVy logical XOR

This gives a total of 256 built-in binary operators listed in the tables
above: 187 of the form T'x T — T, 66 of the form T' x T" — bool, and three
purely Boolean. There are 240 unique operators since 16 of the 26 Boolean
operators are redundant.

There are two sets of built-in comparison operators in SuiteSparse: Graph-
BLAS, but they are not redundant. They are identical except for the type
(domain) of their output, z. The GrB_EQ_T and related operators compare
their inputs of type T and produce a Boolean result of true or false. The
GxB_ISEQ_T and related operators do the same comparison and produce a re-
sult with same type T as their input operands, returning one for true or zero
for false. The IS* comparison operators are useful when combining compar-
isons with other non-Boolean operators. For example, a PLUS-ISEQ semiring
counts how many terms of the comparison are true. With this semiring,
matrix multiplication C = AB for two weighted undirected graphs A and B
computes ¢;; as the number of edges node 7 and j have in common that have
identical edge weights. Since the output type of the “multiplier” operator
in a semiring must match the type of its monoid, the Boolean EQ cannot be
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combined with a non-Boolean PLUS monoid to perform this operation.

Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and
XOR operators. Without the _T suffix, the three operators GrB_LOR, GrB_LAND,
and GrB_LXOR operate purely in the Boolean domain, where all input and
output types are GrB_BOOL. The second set (GxB_LOR_7 GxB_LAND_T and
GxB_LXOR_T') provides Boolean operators to all 11 domains, implicitly type-
casting their inputs from type T to Boolean and returning a value of type T’
that is 1 for true or zero for false. The set of GxB_L*_T operators are useful
since they can be combined with non-Boolean monoids in a semiring.

SPEC: The definition of integer division by zero is an extension to the
spec.

Floating-point operations follow the IEEE 754 standard. Thus, comput-
ing x/0 for a floating-point « results in +Inf if = is positive, -Inf if x is
negative, and NaN if x is zero. The application is not terminated. How-
ever, integer division by zero normally terminates an application. Suite-
Sparse:GraphBLAS avoids this by adopting the same rules as MATLAB,
which are analogous to how the IEEE standard handles floating-point di-
vision by zero. For integers, when z is positive, /0 is the largest positive
integer, for negative z it is the minimum integer, and 0/0 results in zero.
For example, for an integer = of type GrB_INT32, 1/0 is 23! — 1 and (-1)/0 is
—231 Refer to Section 4.1 for a list of integer ranges.

The next sections define the following methods for the GrB_BinaryOp
object:

GrB_BinaryOp_new create a user-defined binary operator
GxB_BinaryOp_ztype return the type of the output z for z = f(x,y)
GxB_BinaryOp_xtype return the type of the input x for z = f(z,y)
GxB_BinaryOp_ytype return the type of the input y for z = f(z,y)
GrB_BinaryOp_free  free a user-defined binary operator
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4.3.1 GrB_BinaryOp_new: create a user-defined binary operator

GrB_Info GrB_BinaryOp_new
(

GrB_BinaryOp *binaryop, // handle for the new binary operator
void *function, // pointer to the binary function
const GrB_Type ztype, // type of output z

const GrB_Type xtype, // type of input x

const GrB_Type ytype // type of input y

)

GrB_BinaryOp_new creates a new binary operator. The new operator is
returned in the binaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new binary operator.

The three types xtype, ytype, and ztype are the GraphBLAS types of
the inputs = and y, and output z of the user-defined function z = f(z,y).
These types may be built-in types or user-defined types, in any combination.
The three types need not be the same, but they must be previously defined
before passing them to GrB_BinaryOp_new.

The final argument to GrB_BinaryOp_new is a pointer to a user-defined
function with the following signature:

void (*f) (void *z, const void *x, const void *y) ;

When the function f is called, the arguments z, x, and y are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype, xtype, and ytype, respectively, when the operator was
created. NOTE: SuiteSparse:GraphBLAS may call the function with the
pointers z and x equal to one another, in which case z=f(z,y) should be
computed. Future versions may use additional pointer aliasing.

4.3.2 GxB_BinaryOp_ztype: return the type of =

GrB_Info GxB_BinaryOp_ztype // return the type of z
(
GrB_Type *ztype, // return type of output z
const GrB_BinaryOp binaryop // binary operator to query
)

GxB_BinaryOp_ztype returns the ztype of the binary operator, which is
the type of z in the function z = f(z,y).
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SPEC: The GxB_BinaryOp_ztype function is an extension to the spec.

4.3.3 GxB_BinaryOp_xtype: return the type of z

GrB_Info GxB_BinaryOp_xtype // return the type of x

(
GrB_Type *xtype, // return type of input x
const GrB_BinaryOp binaryop // binary operator to query

)

GxB_BinaryOp_xtype returns the xtype of the binary operator, which is
the type of z in the function z = f(x,y).

SPEC: The GxB_BinaryOp_xtype function is an extension to the spec.

4.3.4 GxB_BinaryOp_ytype: return the type of y

GrB_Info GxB_BinaryOp_ytype // return the type of y

(
GrB_Type *ytype, // return type of input y
const GrB_BinaryOp binaryop // binary operator to query

)

GxB_BinaryOp_ytype returns the ytype of the binary operator, which is
the type of y in the function z = f(z,y).

SPEC: The GxB_BinaryOp_ytype function is an extension to the spec.

4.3.5 GrB_BinaryOp_free: free a user-defined binary operator

GrB_Info GrB_free // free a user-created binary operator
(

GrB_BinaryOp *binaryop // handle of binary operator to free
)

GrB_BinaryOp_free frees a user-defined binary operator. Either usage:

GrB_BinaryOp_free (&op) ;
GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL
handle, or if op == NULL on input. It does nothing at all if passed a built-in
binary operator.
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4.4 SuiteSparse:GraphBLAS select operators: GxB_SelectOp

A select operator is a scalar function of the form z = f(i, j, m, n, a;;, thunk)
that is applied to the entries a;; of an m-by-n matrix. The domain (type)
of z is always boolean. The domain (type) of a;; can be any built-in or
user-defined type, or it can be GrB_NULL if the operator is type-generic.

The GxB_SelectOp operator is used by GxB_select (see Section 7.13)
to select entries from a matrix. Each entry A(i,j) is evaluated with the
operator, which returns true if the entry is to be kept in the output, or false
if it is not to appear in the output. The signature of the select function f is
as follows:

bool f // returns true if A(i,j) is kept
(

const GrB_Index i, // row index of A(i,j)

const GrB_Index j, // column index of A(i,j)

const GrB_Index nrows, // number of rows of A

const GrB_Index ncols, // number of columns of A

const void *x, // value of A(i,j), or NULL if f is type-generic
const void *thunk // user-defined auxiliary data

There are five built-in select operators listed in the table below. For the
first four operators, thunk is a pointer to a single scalar of type int64_t,
which holds the value of k. Each operator can be used on any type, including
user-defined types. User-defined select operators can also be created.

GraphBLAS name MATLAB description

analog
GxB_TRIL C=tril(4,k) true for A(i, ) if (j-i) <= k
GxB_TRIU C=triu(A,k) true for A(i,j) if (j-i) >= k
GxB_DIAG C=diag(A,k) true for A(i,j) if (j-1) == k
GxB_OFFDIAG C=A-diag(A,k) true for A(4i,j) if (j-1) !'=k
GxB_NONZERO C=A(A"=0) true if A(i, j) is nonzero

SPEC: GxB_SelectOp and the table above are extensions to the spec.

The built-in GxB_NONZERO select operator is unique in that it is a function
of the value of the entry a;;, but it is still type-generic. It does this by simply
returning false if all bits in the value are zero, or true otherwise. This gives
the proper result for any built-in type, since integer and floating-point zeros
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are represented this way. For user-defined types, the function returns the
same thing. This action is well-defined but its suitability for any particular
user-defined type must be determined according to how the user application
defines the type, and what a value with all bits zero means for this type.
Whatever it means, if the bits of a value with a user-defined type are all zero,
the function returns false, and if any bit is one, the GxB_NONZERO function
returns true.
The following methods operate on the GxB_SelectOp object:

GxB_SelectOp_new create a user-defined select operator
GxB_SelectOp_xtype return the type of the input =
GxB_SelectOp_free  free a user-defined select operator

4.4.1 GxB_SelectOp_new: create a user-defined select operator

GrB_Info GxB_SelectOp_new // create a new user-defined select operator
(

GxB_SelectOp *selectop, // handle for the new select operator

void *function, // pointer to the select function

const GrB_Type xtype // type of input x, or NULL if type-generic
)

GxB_SelectOp_new creates a new select operator. The new operator is
returned in the selectop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new select operator.

The function argument to GxB_SelectOp_new is a pointer to a user-
defined function whose signature is given at the beginning of Section 4.4.
Given the properties of an entry a;; in an m-by-n matrix, the function
should return true if the entry should be kept in the output of GxB_select,
or false if it should not appear in the output.

The type xtype is the GraphBLAS type of the input = of the user-defined
function z = f(i, j, m, n, x, thunk). The type may be built-in or user-defined,
or it may even be GrB_NULL. If the xtype is GrB_NULL, then the selectop is
type-generic. The GxB_select operation does not pass the value of z = a;;
to the select function, but passes GrB_NULL for the input x to the user-defined
select function.

For example, to delete all entries in a matrix equal to the additive identity
of a monoid, create a user-defined GxB_SelectOp with a function that com-
pares its input value x with the value of the identity, passed in to it via the
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thunk parameter of type void *. The user-defined function should return
false if x is equal the value (*thunk), and true otherwise.

4.4.2 GxB_SelectOp xtype: return the type of z

GrB_Info GxB_SelectOp_xtype // return the type of x

(
GrB_Type *xtype, // return type of input x
const GxB_SelectOp selectop // select operator

GxB_SelectOp_xtype returns the xtype of the select operator, which is
the type of z in the function z = f(i, j, m, n, x, thunk). If the select operator
is type-generic, xtype is returned as GrB_NULL. This is not an error condition,
but simply indicates that the GxB_Select0Op is type-generic.

4.4.3 GxB_SelectOp_free: free a user-defined select operator

GrB_Info GxB_free // free a user-created select operator
(

GxB_SelectOp *selectop // handle of select operator to free
)

GxB_SelectOp_free frees a user-defined select operator. Either usage:

GxB_SelectOp_free (&selectop) ;
GrB_free (&selectop) ;

frees the selectop and sets selectop to NULL. It safely does nothing if passed
a NULL handle, or if selectop == NULL on input. It does nothing at all if
passed a built-in select operator.
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4.5 GraphBLAS monoids: GrB_Monoid

A monoid is defined on a single domain (that is, a single type), T'. It consists
of an associative binary operator z = f(x,y) whose three operands z, v,
and z are all in this same domain T (that is T'x T" — T). The associative
operator must also have an identity element, or “zero” in this domain, such
that f(z,0) = f(0,z2) = 0. Recall that an associative operator f(z,y) is one
for which the condition f(a, f(b,c)) = f(f(a,b),c) always holds. That is,
operator can be applied in any order and the results remain the same.

Four kinds of built-in operators (MIN, MAX, PLUS, TIMES) can be used to
form monoids for each of the ten non-Boolean built-in types, and 12 can be
used for Boolean monoids, all of which are listed in the table below. This is
a total of 52 valid monoids that can be constructed from built-in types and
operators, although 8 of the 12 Boolean monoids are redundant (the four
remaining being OR, AND, XOR, and EQ). There are thus a total of 44 unique
monoids that can be constructed using built-in binary operators. Since the
built-in monoids are also commutative, all of them can be used to create
a semiring. Recall that a commutative operator f(z,y) is one for which
the condition f(a,b) = f(b,a) always holds. That is, the two operands can
be swapped and the results remain the same. One of the components of a
semiring is a commutative monoid.

GraphBLAS types (domains) expression identity
name z = f(z,y)

GrB_MIN_T TxT—T z =min(z,y) +oo
GrB_MAX_T TxT—T z = max(z,y) —o0
GrB_PLUS_T TxT—T z=z+y 0
GrB_TIMES_T TxT—T z=uxy 1
GrB_LOR, GxB_LOR_BOOL bool X bool — bool z=zxVy false
GrB_LAND, GxB_LAND_BOOL bool X bool — bool z=x Ay true
GrB_LXOR, GxB_LXOR_BOOL bool X bool — bool z=2xzYy false

GrB_EQ_BOOL, GxB_ISEQ_BOOL bool X bool — bool z=(x==y) true

The next sections define the following methods for the GrB_Monoid object:

GrB_Monoid_new create a monoid
GxB_Monoid_operator return the monoid operator
GxB_Monoid_identity return the monoid identity value
GrB_Monoid_free free a monoid
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SPEC: The predefined monoids are an extension to the spec.

4.5.1 GrB_Monoid_new: create a monoid

GrB_Info GrB_Monoid_new // create a monoid

(
GrB_Monoid *monoid, // handle of monoid to create
const GrB_BinaryOp op, // binary operator of the monoid
const <type> identity // identity value of the monoid

)

GrB_Monoid_new creates a monoid. The operator, op, must be an asso-
ciative binary operator, either built-in or user-defined.

In the definition above, <type> is a place-holder for the specific type of
the monoid. For built-in types, it is the C type corresponding to the built-in
type (see Section 4.1), such as bool, int32_t, float, or double. In this case,
identity is a const scalar value of the particular type, not a pointer. For
user-defined types, <type> is void *, and thus identity is a not a scalar
itself but a void * pointer to a memory location containing the identity value
of the user-defined operator, op.

4.5.2 GxB_Monoid_operator: return the monoid operator

GrB_Info GxB_Monoid_operator // return the monoid operator

(
GrB_BinaryOp *op, // returns the binary op of the monoid
const GrB_Monoid monoid // monoid to query

)

GxB_Monoid_operator returns the binary operator of the monoid.

SPEC: The GxB_Monoid_operator function is an extension to the spec.
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4.5.3 GxB_Monoid_identity: return the monoid identity

GrB_Info GxB_Monoid_identity // return the monoid identity

(
void *identity, // returns the identity of the monoid
const GrB_Monoid monoid // monoid to query

)

GxB_Monoid_identity returns the identity value of the monoid. The
void * pointer, identity, must be non-NULL and must point to a memory
space of size at least equal to the size of the type of the monoid. The type
size can be obtained via GxB_Monoid_operator to return the monoid addi-
tive operator, then GxB_BinaryOp_ztype to obtain the ztype, followed by
GxB_Type_size to get its size.

SPEC: The GxB_Monoid_identity function is an extension to the spec.

4.5.4 GrB_Monoid_free: free a monoid

GrB_Info GrB_free // free a user-created monoid
(
GrB_Monoid *monoid // handle of monoid to free

)

GrB_Monoid_frees frees a monoid. Either usage:

GrB_Monoid_free (&monoid) ;
GrB_free (&monoid) ;

frees the monoid and sets monoid to NULL. It safely does nothing if passed a
NULL handle, or if monoid == NULL on input. It does nothing at all if passed
a built-in monoid.
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4.6 GraphBLAS semirings: GrB_Semiring

A semiring defines all the operators required to define the multiplication
of two sparse matrices in GraphBLAS, C = AB. The “add” operator is
a commutative and associative monoid, and the binary “multiply” opera-
tor defines a function z = fmult(z,y) where the type of z matches the
exactly with the monoid type. SuiteSparse:GraphBLAS includes 960 pre-
defined built-in semirings, which are all those that can be constructed from
built-in types and operators. The next sections define the following methods
for the GrB_Semiring object:

GrB_Semiring_new create a semiring

GxB_Semiring_add return the additive monoid of a semiring
GxB_Semiring_multiply return the binary operator of a semiring
GrB_Semiring free free a semiring

4.6.1 GrB_Semiring_new: create a semiring

GrB_Info GrB_Semiring_new // create a semiring
(
GrB_Semiring *semiring, // handle of semiring to create
const GrB_Monoid add, // add monoid of the semiring
const GrB_BinaryOp multiply // multiply operator of the semiring
)

GrB_Semiring_new creates a new semiring, with add being the additive
monoid and multiply being the binary “multiply” operator. In addition to
the standard error cases, the function returns GrB_DOMAIN_MISMATCH if the
output (ztype) domain of multiply does not match the domain of the add
monoid.

Using built-in types and operators, 960 unique semirings can be built.
This count excludes redundant Boolean operators (for example GrB_TIMES_B0OOL
and GxB_LAND_BOOL are different operators but they are redundant since they
always return the same result).

e 680 semirings with a multiplier T" x T" — T where T is non-Boolean,
from the complete cross product of:

— 4 add monoids (MIN, MAX, PLUS, TIMES)
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— 17 multiply operators (FIRST, SECOND, MIN, MAX, PLUS, MINUS,
TIMES, DIV, ISEQ, ISNE, ISGT, ISLT, ISGE, ISLE, LOR, LAND, LXOR)

— 10 non-Boolean types, T'
e 240 semirings with a comparison operator 7' x T" — bool, where T' is
non-Boolean, from the complete cross product of:
— 4 Boolean add monoids (LAND, LOR, LXOR, EQ)
— 6 multiply operators (EQ, NE, GT, LT, GE, LE)
— 10 non-Boolean types, T’

e 40 semirings with purely Boolean types, bool X bool — bool, from
the complete cross product of:

— 4 Boolean add monoids (LAND, LOR, LXOR, EQ)

— 10 multiply operators (FIRST, SECOND, LOR, LAND, LXOR, EQ, GT,
LT, GE, LE)

SPEC: SuiteSparse:GraphBLAS pre-defines all 960 semirings that can
be constructed from built-in types and operators, as an extension to the
spec.

4.6.2 GxB_Semiring_add: return the additive monoid of a semiring

GrB_Info GxB_Semiring_add // return the add monoid of a semiring
(
GrB_Monoid *add, // returns add monoid of the semiring
const GrB_Semiring semiring // semiring to query

)

GxB_Semiring_add returns the additive monoid of a semiring.

SPEC: The GxB_Semiring_add function is an extension to the spec.
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4.6.3 GxB_Semiring_multiply: return multiply operator of a semiring

GrB_Info GxB_Semiring_multiply // return multiply operator of a semiring

(
GrB_BinaryOp *multiply, // returns multiply operator of the semiring
const GrB_Semiring semiring // semiring to query

)

GxB_Semiring_multiply returns the binary multiplicative operator of a
semiring.

SPEC: The GxB_Semiring multiply function is an extension to the
spec.

4.6.4 GrB_Semiring_free: free a semiring

GrB_Info GrB_free // free a user-created semiring
(

GrB_Semiring *semiring // handle of semiring to free
)

GrB_Semiring_ free frees a semiring. Either usage:

GrB_Semiring_free (&semiring) ;
GrB_free (&semiring) ;

frees the semiring and sets semiring to NULL. It safely does nothing if passed
a NULL handle, or if semiring == NULL on input. It does nothing at all if
passed a built-in semiring.
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4.7 GraphBLAS vectors: GrB_Vector

Many of the methods for GraphBLAS vectors require a row index or a size.
Many methods for matrices require both a row and column index, or a row
and column dimension. These are all integers of a specific type, GrB_Index,
which is defined in GraphBLAS.h as

typedef uint64_t GrB_Index ;

Row and column indices of an nrows-by-ncols matrix range from zero
to the nrows-1 for the rows, and zero to ncols-1 for the columns. In-
dices are zero-based, like C, and not one-based, like MATLAB. In Suite-
Sparse:GraphBLAS, the largest size permitted for any integer of GrB_Index
is 260, The largest GrB_Matrix that SuiteSparse:GraphBLAS can construct
is thus 209-by-2%0. An n-by-n matrix A that size can easily be constructed in
practice with O(|A|) memory requirements, where |A| denotes the number
of entries that explicitly appear in the pattern of A. The time and memory
required to construct a matrix that large does not depend on n, since Suite-
Sparse:GraphBLAS can represent A in hypersparse form (see Section 5.2).
The largest GrB_Vector that can be constructed is 2°0-by-1.

If compiled for use in MATLAB, this maximum size is reduced to match
the MATLAB maximum index size, which is 248 — 1.

This section describes a set of methods that create, modify, query, and
destroy a GraphBLAS sparse vector, GrB_Vector:

GrB_Vector_new create a vector

GrB_Vector_dup copy a vector

GrB_Vector_clear clear a vector of all entries
GrB_Vector_size return the size of a vector
GrB_Vector_nvals return the number of entries in a vector
GxB_Vector_type return the type of a vector
GrB_Vector_build build a vector from a set of tuples
GrB_Vector_setElement add a single entry to a vector

GrB_Vector_extractElement get a single entry from a vector
GrB_Vector_extractTuples  get all entries from a vector

GxB_Vector_resize resize a vector
GrB_Vector_free free a vector
GxB_Vector_import import a vector (see Section 4.9)
GxB_Vector_export export a vector (see Section 4.9)
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4.7.1 GrB_Vector_new: create a vector

GrB_Info GrB_Vector_new // create a new vector with no entries
(

GrB_Vector *v, // handle of vector to create

const GrB_Type type, // type of vector to create

const GrB_Index n // vector dimension is n-by-1
)

GrB_Vector_new creates a new n-by-1 sparse vector with no entries in it,
of the given type. This is analogous to MATLAB statement v = sparse (n,1),
except that GraphBLAS can create sparse vectors any type. The pattern of
the new vector is empty.

4.7.2 GrB_Vector_dup: copy a vector

GrB_Info GrB_Vector_dup // make an exact copy of a vector

(
GrB_Vector *w, // handle of output vector to create
const GrB_Vector u // input vector to copy

)

GrB_Vector_dup makes a deep copy of a sparse vector, like w=u in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:

GrB_Vector u, w ;
GrB_Vector_new (&u, GrB_FP64, n) ;
W= ; // w is a shallow copy of u

Then w and u can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different vectors are needed, then this should be used instead:

GrB_Vector u, w ;
GrB_Vector_new (&u, GrB_FP64, n) ;
GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy

Then w and u are two different vectors that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.
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4.7.3 GrB_Vector_clear: clear a vector of all entries

GrB_Info GrB_Vector_clear // clear a vector of all entries;
( // type and dimension remain unchanged.
GrB_Vector v // vector to clear

)

GrB_Vector_clear clears all entries from a vector. All values v(i) are
now equal to the implicit value, depending on what semiring ring is used to
perform computations on the vector. The pattern of v is empty, just as if
it were created fresh with GrB_Vector_new. Analogous with v (:) = 0 in
MATLAB. The type and dimension of v do not change. In SuiteSparse:GraphBLAS,
any pending updates to the vector are discarded.

4.7.4 GrB_Vector_size: return the size of a vector

GrB_Info GrB_Vector_size // get the dimension of a vector
(
GrB_Index *n, // vector dimension is n-by-1
const GrB_Vector v // vector to query
)

GrB_Vector_size returns the size of a vector (the number of rows). Anal-
ogous ton = length(v) orn = size(v,1) in MATLAB.
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4.7.5 GrB_Vector_nvals: return the number of entries in a vector

GrB_Info GrB_Vector_nvals // get the number of entries in a vector
(

GrB_Index *nvals, // vector has nvals entries

const GrB_Vector v // vector to query

)

GrB_Vector_nvals returns the number of entries in a vector. Roughly
analogous to nvals = nnz(v) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”) in
MATLAB is better described as “number of explicit entries” in GraphBLAS.

Forced completion: All computations for the vector v are guaranteed
to be finished when GrB_Vector_nvals method returns. That is, it acts
like an object-specific GrB_wait for just this particular vector v, which is
a side-effect useful in its own right. For example, suppose the computa-
tions required for v rely upon a user-defined operator that accesses a user-
controlled global variable outside the scope or control of GraphBLAS. If
the user-application needs to modify or free the variable, GrB_Vector_nvals
can be used to force all pending operations for this vector v to complete.
The user application can then safely modify the global variable. A call to
GrB_Vector_nvals(&nvals,v) only ensures that the computations require
to compute v are finished; other pending computations for other objects
may remain. To ensure that all pending computations are complete for all
GraphBLAS objects, use GrB_wait instead.

4.7.6 GxB_Vector_type: return the type of a vector

GrB_Info GxB_Vector_type // get the type of a vector

(
GrB_Type *type, // returns the type of the vector
const GrB_Vector v // vector to query

)

GxB_Vector_type returns the type of a vector. Analogous to type = class (v)
in MATLAB.

SPEC: The GxB_Vector_type function is an extension to the spec.
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4.7.7 GrB_Vector_build: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,X) tuples
(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

const <type> *X, // array of values of tuples

const GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates
)

GrB_Vector_build constructs a sparse vector w from a set of tuples, I
and X, each of length nvals. The vector w must have already been initial-
ized with GrB_Vector_new, and it must have no entries in it before calling
GrB_Vector_build.

This function is just like GrB_Matrix_build (see Section 4.8.8), except
that it builds a sparse vector instead of a sparse matrix. For a description
of what GrB_Vector_build does, refer to GrB_Matrix_build. For a vector,
the list of column indices J in GrB_Matrix_build is implicitly a vector of
length nvals all equal to zero. Otherwise the methods are identical.

SPEC: As an extension to the spec, results are defined even if dup is
non-associative.

4.7.8 GrB_Vector_setElement: add a single entry to a vector

GrB_Info GrB_Vector_setElement // w(i) = x

(
GrB_Vector w, // vector to modify
const <type> x, // scalar to assign to w(i)
const GrB_Index i // row index

)

GrB_Vector_setElement sets a single entry in a vector, w(i) = x. The
operation is exactly like setting a single entry in an n-by-1 matrix, A(i,0) = x,
where the column index for a vector is implicitly j=0. For further details of
this function, see GrB_Matrix_setElement in Section 4.8.9.
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4.7.9 GrB_Vector_extractElement: get a single entry from a vector

GrB_Info GrB_Vector_extractElement // x = v(i)

(
<type> *x, // scalar extracted
const GrB_Vector v, // vector to extract an entry from
const GrB_Index i // row index

)

GrB_Vector_extractElement extracts a single entry from a vector, x = v(i).
The method is identical to extracting a single entry x = A(i,0) from an n-
by-1 matrix, so further details of this method are discussed in Section 4.8.10,
which discusses GrB_Matrix_extractElement. In this case, the column in-
dex is implicitly j=0. NOTE: if no entry is present at v(i), then x
is not modified, and the return value of GrB_Vector_extractElement is
GrB_NO_VALUE.

Forced completion: All computations for the vector v are guaranteed to
be finished when the method returns.

4.7.10 GrB_Vector_extractTuples: get all entries from a vector

GrB_Info GrB_Vector_extractTuples // [I,7,X] = find (v)

(
GrB_Index *I, // array for returning row indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I, X size on input; # tuples on output
const GrB_Vector v // vector to extract tuples from

)

GrB_Vector_extractTuples extracts all tuples from a sparse vector,
analogous to [I,7,X] = find(v) in MATLAB. This function is identical
to its GrB_Matrix_extractTuples counterpart, except that the array of col-
umn indices J does not appear in this function. Refer to Section 4.8.11 where
further details of this function are described.

Forced completion: All computations for the vector v are guaranteed to
be finished when the method returns.
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4.7.11 GxB_Vector_resize: resize a vector

GrB_Info GxB_Vector_resize
(
GrB_Vector u,
const GrB_Index nrows_new

)

// change the size of a vector

// vector to modify
// new number of rows in vector

GxB_Vector_resize changes the size of a vector. If the dimension de-
creases, entries that fall outside the resized vector are deleted.

4.7.12 GrB_Vector_free: free a vector

GrB_Info GrB_free
(

// free a vector

GrB_Vector *v

)

// handle of vector to free

GrB_Vector_free frees a vector. Either usage:

GrB_Vector_free (&v) ;
GrB_free (&v) ;

frees the vector v and sets v to NULL. It safely does nothing if passed a NULL

handle, or if v == NULL on input. In SuiteSparse:GraphBLAS, any pending
updates to the vector are abandoned.
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4.8 GraphBLAS matrices: GrB_Matrix

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse matrix, GrB_Matrix:

GrB_Matrix_new
GrB_Matrix_dup
GrB_Matrix_clear
GrB_Matrix_nrows
GrB_Matrix_ncols
GrB_Matrix_nvals
GxB_Matrix_type
GrB_Matrix_build
GrB_Matrix_setElement
GrB_Matrix_extractElement
GrB_Matrix_extractTuples
GxB_Matrix_resize
GrB_Matrix_free

create a matrix

copy a matrix

clear a matrix of all entries

return the number of rows of a matrix
return the number of columns of a matrix
return the number of entries in a matrix
return the type of a matrix

build a matrix from a set of tuples

add a single entry to a matrix

get a single entry from a matrix

get all entries from a matrix

resize a matrix

free a matrix

GxB_Matrix_import_CSR
GxB_Matrix_import_CSC
GxB_Matrix_import_HyperCSR
GxB_Matrix_import_HyperCSC
GxB_Matrix_export_CSR
GxB_Matrix_export_CSC
GxB_Matrix_export_HyperCSR
GxB_Matrix_export_HyperCSC

import a matrix in CSR form (see Section 4.9)
import a matrix in CSC form (see Section 4.9)
import a matrix in HyperCSR form (see Section 4.9)
import a matrix in HyperCSC form (see Section 4.9)
export a matrix in CSR form (see Section 4.9)
export a matrix in CSC form (see Section 4.9)
export a matrix in HyperCSR form (see Section 4.9)
export a matrix in HyperCSC form (see Section 4.9)

4.8.1 GrB_Matrix_.new: create a matrix

GrB_Info GrB_Matrix_new // create a new matrix with no entries
(

GrB_Matrix *A, // handle of matrix to create

const GrB_Type type, // type of matrix to create

const GrB_Index nrows, // matrix dimension is nrows-by-ncols

const GrB_Index ncols

GrB_Matrix_new creates a new nrows-by-ncols sparse matrix with no
entries in it, of the given type. This is analogous to the MATLAB statement
A = sparse (nrows, ncols), except that GraphBLAS can create sparse

matrices of any type.
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4.8.2 GrB_Matrix_dup: copy a matrix

GrB_Info GrB_Matrix_dup // make an exact copy of a matrix

(
GrB_Matrix *C, // handle of output matrix to create
const GrB_Matrix A // input matrix to copy

)

GrB_Matrix_dup makes a deep copy of a sparse matrix, like C=A in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:

GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
C=A4; // C is a shallow copy of A

Then C and A can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:

GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy

Then C and A are two different matrices that currently have the same set

of values, but they do not depend on each other. Modifying one has no effect
on the other.

4.8.3 GrB_Matrix_clear: clear a matrix of all entries

GrB_Info GrB_Matrix_clear // clear a matrix of all entries;
( // type and dimensions remain unchanged
GrB_Matrix A // matrix to clear

)

GrB_Matrix_clear clears all entries from a matrix. All values A(i,j)
are now equal to the implicit value, depending on what semiring ring is used
to perform computations on the matrix. The pattern of A is empty, just as if
it were created fresh with GrB_Matrix_new. Analogous with A (:,:) = 0in
MATLAB. The type and dimensions of A do not change. In SuiteSparse:Graph-
BLAS, any pending updates to the matrix are discarded.

59



4.8.4 GrB_Matrix_nrows: return the number of rows of a matrix

GrB_Info GrB_Matrix_nrows
(
GrB_Index *nrows,
const GrB_Matrix A

)

// get the number of rows of a matrix

// matrix has nrows rows
// matrix to query

GrB_Matrix_nrows returns the number of rows of a matrix (nrow=size (A, 1)

in MATLAB).

4.8.5 GrB_Matrix_ncols: return the number of columns of a matrix

GrB_Info GrB_Matrix_ncols
(
GrB_Index *ncols,
const GrB_Matrix A

)

// get the number of columns of a matrix

// matrix has ncols columns
// matrix to query

GrB_Matrix_ncols returns the number of columns of a matrix (ncols=size(A,2)

in MATLAB).

4.8.6 GrB_Matrix_nvals: return the number of entries in a matrix

GrB_Info GrB_Matrix_nvals
(
GrB_Index *nvals,
const GrB_Matrix A

)

// get the number of entries in a matrix

// matrix has nvals entries
// matrix to query

GrB_Matrix_nvals returns the number of entries in a matrix, like nnz (A)

in MATLAB.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns. That is, it acts like an object-specific
GrB_wait for just this particular matrix A. Other pending computations for
other objects may remain. To ensure that all pending computations are
complete for all GraphBLAS objects, used GrB_wait instead.

4.8.7 GxB_Matrix_type: return the type of a matrix
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GrB_Info GxB_Matrix_type // get the type of a matrix

(
GrB_Type *type, // returns the type of the matrix
const GrB_Matrix A // matrix to query

)

GxB_Matrix_type returns the type of a matrix, like type=class(A) in
MATLAB.

SPEC: The GxB_Matrix_type function is an extension to the spec.
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4.8.8 GrB_Matrix_build: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Index *I, // array of row indices of tuples
const GrB_Index *J, // array of column indices of tuples
const <type> *X, // array of values of tuples
const GrB_Index nvals, // number of tuples
const GrB_BinaryOp dup // binary function to assemble duplicates
)

GrB_Matrix_build constructs a sparse matrix C from a set of tuples, I,
J, and X, each of length nvals. The matrix C must have already been initial-
ized with GrB_Matrix_new, and it must have no entries in it before calling
GrB_Matrix_build. Thus the dimensions and type of C are not changed by
this function, but are inherited from the prior call to GrB_Matrix_new or
GrB_matrix_dup.

An error is returned (GrB_INDEX_OUT_OF_BOUNDS) if any row index in I
is greater than or equal to the number of rows of C, or if any column index
in J is greater than or equal to the number of columns of C

Any duplicate entries with identical indices are assembled using the bi-
nary dup operator provided on input. All three types (x, y, z for z=dup (x,y))
must be identical. The types of dup, C and X must all be compatible. See
Section 2.4 regarding typecasting and compatibility. The values in X are type-
casted, if needed, into the type of dup. Duplicates are then assembled into a
matrix T of the same type as dup, using T(i,j) = dup (T (i,j), X (k)).
After T is constructed, it is typecasted into the result C. That is, typecasting
does not occur at the same time as the assembly of duplicates.

SPEC: As an extension to the spec, results are defined even if dup is
non-associative.

The GraphBLAS API requires dup to be associative so that entries can
be assembled in any order, and states that the result is undefined if dup is
not associative. However, SuiteSparse:GraphBLAS guarantees a well-defined
order of assembly. Entries in the tuples [I,J,X] are first sorted in increasing
order of row and column index, with ties broken by the position of the tuple
in the [I,J,X] list. If duplicates appear, they are assembled in the order
they appear in the [I,J,X] input. That is, if the same indices i and j appear
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in positions k1, k2, k3, and k4 in [I,J,X], where k1 < k2 < k3 < k4, then
the following operations will occur in order:

T (i,j) = X &1) ;

T (i,j) = dup (T (i,j), X (k2)) ;
T (i,j) = dup (T (i,3), X (k3)) ;
T (i,j) = dup (T (i,j), X (k4)) ;

This is a well-defined order but the user should not depend upon it when
using other GraphBLAS implementations since the GraphBLAS API does
not require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, and with this
well-defined order, several operators become very useful. In particular, the
SECOND operator results in the last tuple overwriting the earlier ones. The
FIRST operator means the value of the first tuple is used and the others are
discarded.

The acronym dup is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the _dup suffix
in the name of the function GrB_Matrix_dup. The latter function does not
apply any operator at all, nor any typecasting, but simply makes a pure deep
copy of a matrix.

The parameter X is a pointer to any C equivalent built-in type, or a
void * pointer. The GrB_Matrix_build function uses the _Generic feature
of ANSI C11 to detect the type of pointer passed as the parameter X. If X is
a pointer to a built-in type, then the function can do the right typecasting.
If X is a void * pointer, then it can only assume X to be a pointer to a user-
defined type that is the same user-defined type of C and dup. This function
has no way of checking this condition that the void * X pointer points to
an array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The GrB_Matrix_build method is analogous to C = sparse (I,J,X)
in MATLAB, with several important extensions that go beyond that which
MATLAB can do. In particular, the MATLAB sparse function only provides
one option for assembling duplicates (summation), and it can only build
double, double complex, and logical sparse matrices.
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4.8.9 GrB_Matrix_setElement: add a single entry to a matrix

GrB_Info GrB_Matrix_setElement // C (1,)) = x
(
GrB_Matrix C, // matrix to modify
const <type> x, // scalar to assign to C(i,j)
const GrB_Index i, // row index
const GrB_Index j // column index
)

GrB_Matrix_setElement sets a single entry in a matrix, C(i, j)=x. If the
entry is already present in the pattern of C, it is overwritten with the new
value. If the entry is not present, it is added to C. In either case, no entry
is ever deleted by this function. Passing in a value of x=0 simply creates an
explicit entry at position (i, j) whose value is zero, even if the implicit value
is assumed to be zero.

An error is returned (GrB_INVALID_INDEX) if the row index i is greater
than or equal to the number of rows of C, or if the column index j is greater
than or equal to the number of columns of C. Note that this error code
differs from the same kind of condition in GrB_Matrix_build, which re-
turns GrB_INDEX_OUT_OF_BOUNDS. This is because GrB_INVALID_INDEX is an
API error, and is caught immediately even in non-blocking mode, whereas
GrB_INDEX_OUT_OF_BOUNDS is an execution error whose detection may wait
until the computation completes sometime later.

The scalar x is typecasted into the type of C. Any value can be passed to
this function and its type will be detected, via the _Generic feature of ANSI
C11. For a user-defined type, x is a void * pointer that points to a memory
space holding a single entry of this user-defined type. This user-defined type
must exactly match the user-defined type of C since no typecasting is done
between user-defined types.

Performance considerations: SuiteSparse:GraphBLAS exploits the non-
blocking mode to greatly improve the performance of this method. Refer to
the example shown in Section 2.2. If the entry exists in the pattern already,
it is updated right away and the work is not left pending. Otherwise, it is
placed in a list of pending updates, and the later on the updates are done
all at once, using the same algorithm used for GrB_Matrix_build. In other
words, setElement in SuiteSparse:GraphBLAS builds its own internal list of
tuples [I,J,X], and then calls GrB_Matrix_build whenever the matrix is
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needed in another computation, or whenever GrB_wait is called.

As a result, if calls to setElement are mixed with calls to most other
methods and operations (even extractElement) then the pending updates
are assembled right away, which will be slow. Performance will be good if
many setElement updates are left pending, and performance will be poor if
the updates are assembled frequently.

A few methods and operations can be intermixed with setElement, in
particular, some forms of the GrB_assign and GxB_subassign operations are
compatible with the pending updates from setElement. Sections 7.11 gives
more details on which GxB_subassign and GrB_assign operations can be in-
terleaved with calls to setElement without forcing updates to be assembled.
Other methods that do not access the existing entries may also be done
without forcing the updates to be assembled, namely GrB_Matrix_clear
(which erases all pending updates), GrB_Matrix_free, GrB_Matrix_ncols,
GrB_Matrix_nrows, GxB_Matrix_type, and of course GrB_Matrix_setElement
itself. All other methods and operations cause the updates to be assembled.
Future versions of SuiteSparse:GraphBLAS may extend this list.

See Section 10.4 for an example of how to use GrB_Matrix_setElement.

4.8.10 GrB_Matrix_extractElement: get a single entry from a matrix

GrB_Info GrB_Matrix_extractElement // x = A(,]))
(
<type> *x, // extracted scalar
const GrB_Matrix A, // matrix to extract a scalar from
const GrB_Index i, // row index
const GrB_Index j // column index
)

GrB_Matrix_extractElement extracts a single entry from a matrix x=A(1i, j).

An error is returned (GrB_INVALID_INDEX) if the row index i is greater
than or equal to the number of rows of C, or if column index j is greater than
or equal to the number of columns of C.

NOTE: if no entry is present at A(i, j), then x is not modified, and the
return value of GrB_Matrix_extractElement is GrB_NO_VALUE.

If the entry is not present then GraphBLAS does not know its value,
since its value depends on the implicit value, which is the identity value
of the additive monoid of the semiring. It is not a characteristic of the
matrix itself, but of the semiring it is used in. A matrix can be used in any

65



compatible semiring, and even a mixture of semirings, so the implicit value
can change as the semiring changes.

As a result, if the entry is present, x=A(i, j) is performed and the scalar
x is returned with this value. The method returns GrB_SUCCESS. If the entry
is not present, x is not modified, and GrB_NO_VALUE is returned to the caller.
What this means is up to the caller.

The function knows the type of the pointer x, so it can do typecasting as
needed, from the type of A into the type of x. User-defined types cannot be
typecasted, so if A has a user-defined type then x must be a void * pointer
that points to a memory space the same size as a single scalar of the type of
A

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns. In particular, this method causes all
pending updates from GrB_setElement, GrB_assign, or GxB_subassign to
be assembled, so its use can have performance implications. Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions. Everything will work correctly and results will be predictable, it
will just be slow.

4.8.11 GrB_Matrix_extractTuples:get all entries from a matrix

GrB_Info GrB_Matrix_extractTuples // [I,3,X] = find (A)

(
GrB_Index *I, // array for returning row indices of tuples
GrB_Index *J, // array for returning col indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I1,J,X size on input; # tuples on output
const GrB_Matrix A // matrix to extract tuples from

)

GrB_Matrix_extractTuples extracts all the entries from the matrix A,
returning them as a list of tuples, analogous to [I,J,X]=find(A) in MAT-
LAB. Entries in the tuples [I,J,X] are unique. No pair of row and column
indices (i,j) appears more than once.

The GraphBLAS API states the tuples can be returned in any order.
SuiteSparse:GraphBLAS chooses to always return them in sorted order, de-
pending on whether the matrix is stored by row or by column.
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The number of tuples in the matrix A is given by GrB_Matrix_nvals(&anvals,A).
If anvals is larger than the size of the arrays (nvals in the parameter list),
an error GrB_INSUFFICIENT_SIZE is returned, and no tuples are extracted. If
nvals is larger than anvals, then only the first anvals entries in the arrays
I J, and X are modified, containing all the tuples of A, and the rest of I J,
and X are left unchanged. On output, nvals contains the number of tuples
extracted.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns.

4.8.12 GxB_Matrix_resize: resize a matrix

GrB_Info GxB_Matrix_resize // change the size of a matrix

(
GrB_Matrix A, // matrix to modify
const GrB_Index nrows_new, // new number of rows in matrix
const GrB_Index ncols_new // new number of columns in matrix

)

GxB_Matrix_resize changes the size of a matrix. If the dimensions de-
crease, entries that fall outside the resized matrix are deleted.
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4.8.13 GrB_Matrix_free: free a matrix

GrB_Info GrB_free // free a matrix

(
GrB_Matrix *A // handle of matrix to free

)

GrB_Matrix_free frees a matrix. Either usage:

GrB_Matrix_free (&A) ;
GrB_free (&A) ;

frees the matrix A and sets A to NULL. It safely does nothing if passed a NULL

handle, or if A == NULL on input. In SuiteSparse:GraphBLAS, any pending
updates to the matrix are abandoned.
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4.9 GraphBLAS matrix and vector import/export

The import/export functions allow the user application to create a GrB_Matrix
or GrB_Vector object, and to extract its contents, faster and with less mem-
ory overhead than the GrB_*_build and GrB_x_extractTuples functions.

The semantics of import/export are the same as the move constructor in
C++. On import, the user provides a set of arrays that have been previously
allocated via the ANSI C malloc function. The arrays define the content
of the matrix or vector. Unlike GrB_*_build, the GraphBLAS library then
takes ownership of the user’s input arrays and may either:

1. incorporate them into its internal data structure for the new GrB_Matrix
or GrB_Vector, potentially creating the GrB_Matrix or GrB_Vector in
constant time with no memory copying performed, or

2. if the library does not support the import format directly, then it may
convert the input to its internal format, and then free the user’s input
arrays.

3. A GraphBLAS implementation may also choose to use a mix of the
two strategies.

SuiteSparse:GraphBLAS takes the first approach, and so the import func-
tions always take O(1) time, and require O(1) memory space to be allocated.

Regardless of the method chosen, as listed above, the input arrays are
no longer owned by the user application. If A is a GrB_Matrix created by
an import, the user input arrays are freed no later than GrB_free(&A), and
may be freed earlier, at the discretion of the GraphBLAS library. The data
structure of the GrB_Matrix and GrB_Vector remain opaque.

The export of a GrB_Matrix or GrB_Vector is symmetric with the im-
port operation. The export changes the ownership of the arrays, where the
GrB_Matrix or GrB_Vector no longer exists when the export completes, and
instead the user is returned several arrays that contain the matrix or vector
in the requested format. Ownership of these arrays is given to the user ap-
plication, which is then responsible for freeing them via the ANSI C free
function (or they can be re-imported into a GrB_Matrix or GrB_Vector).

For a matrix export, if the output format matches the current internal
format of the matrix then these arrays are returned to the user applica-
tion in O(1) time and with no memory copying performed. Otherwise, the
GrB_Matrix is first converted into the requested format, and then exported.
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The vector import /export methods use a single format for a GrB_Vector.
Four different formats are provided for the import/export of a GrB_Matrix.
For each format, the Ax array has a C type corresponding to one of the 11
built-in types in GraphBLAS (bool, int*_t, uint*_t, float, and double),
or that corresponds with the user-defined type. No typecasting is done on
import or export.

The table below lists the methods presented in this section.

method purpose Section
GxB_Vector_import import a vector 4.9.1
GxB_Vector_export export a vector 4.9.2
GxB_Matrix_import_CSR import a matrix in CSR form 4.9.3
GxB_Matrix_import_CSC import a matrix in CSC form 4.94

GxB_Matrix_import_HyperCSR import a matrix in HyperCSR form 4.9.5
GxB_Matrix_import_HyperCSC import a matrix in HyperCSC form 4.9.6
GxB_Matrix_export_CSR export a matrix in CSR form 4.9.7
GxB_Matrix_export_CSC export a matrix in CSC form 4.9.8
GxB_Matrix_export_HyperCSR export a matrix in HyperCSR form  4.9.9
GxB_Matrix_export_HyperCSC export a matrix in HyperCSC form  4.9.10

SPEC: The import/export methods are extensions to the spec. How-
ever, they have been implemented in SuiteSparse:GraphBLAS at the
request of the GraphBLAS C API Committee, as a prototype for fu-
ture consideration for inclusion in a future specification. Their calling
sequence may change if these functions are added to the specification. A
GraphBLAS library need not implement these methods in constant time
and memory. On import, a library may choose to copy the content of
the user arrays into its internal data structure and then free the user
arrays. On export, it may chose to malloc the output arrays, fill them
with the requested data, and then GrB_free the GraphBLAS object be-
ing exported. The semantics of these options are the same as a move
constructor; they just take more time and memory.
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4.9.1 GxB_Vector_import: import a vector

GrB_Info GxB_Vector_import // import a vector in CSC format
(
GrB_Vector *v, // vector to create
const GrB_Type type, // type of vector to create
GrB_Index n, // vector length
GrB_Index nvals, // number of entries in the vector
GrB_Index *x*vi, // indices, size nvals (in sorted order)
void *%VX, // values, size nvals
const GrB_Descriptor desc // currently unused
)

The GxB_Vector_import function is a fast way to construct a GrB_Vector,
always taking just O(1) time. Calling GxB_Vector_import with:

GxB_Vector_import (&v, type, n, nvals, &vi, &vx, desc) ;

is identical to the following:

int64_t *Ap = calloc (2, sizeof (int64_t)) ;
Ap [1] = nvals ;
GxB_Matrix_import_CSC (&A, type, n, 1, nvals, &Ap, &vi, &vx, desc) ;

except that the latter creates an n-by-1 matrix instead. For the vector im-
port, described here, the first argument is a GrB_Vector. The arguments
vi and vx take the place of Ai and Ax, and the Ap array for the CSC ma-
trix import is not provided for a vector import. Refer to the description of
GxB_Matrix_import_CSC for details (Section 4.9.4).

If successful, v is created as a n-by-1 vector. Its entries are the row indices
given by vi, with the corresponding values in vx. The two pointers vi and
vx are returned as NULL, which denotes that they are no longer owned by
the user application. They have instead been moved into the new vector v.
The row indices in vi must appear in sorted order, and no duplicates can
appear. These conditions are not checked, so results are undefined if they
are not met exactly. The user application can check the resulting vector v
with GxB_print, if desired, which will determine if these conditions hold.

If not successful, v is returned as NULL and vi and vx are not modified.

SPEC: GxB_Vector_import is an extension to the spec.
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4.9.2 GxB_Vector_export: export a vector

GrB_Info GxB_Vector_export // export and free a vector

(
GrB_Vector *v, // vector to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *n, // length of the vector
GrB_Index *nvals, // number of entries in the vector
GrB_Index *x*vi, // indices, size nvals
void *%VX, // values, size nvals
const GrB_Descriptor desc // currently unused

)

The GxB_Vector_export function is a fast way to extract the contents
of a GrB_Vector, always taking just O(1) time. Using GxB_Vector_export
with:

GxB_Vector_export (&v, &type, &n, &nvals, &vi, &vx, desc) ;

is analogous to:

GxB_Matrix_export_CSC (&A, &type, &n, &one, &nvals, &Ap, &Ai, &Ax, desc)

if A were an n-by-1 matrix. For the vector export, described here, the first
argument is a GrB_Vector. The arguments vi and vx take the place of Ai
and Ax, and the Ap array for the CSC matrix export is not returned from
a vector export. Refer to the description of GxB_Matrix_export_CSC for
details. (Section 4.9.3).

Exporting a vector forces completion of any pending operations on the
vector.

If successful, v is returned as NULL, and its contents are returned to the
user, with its type, dimension n, and number of entries nvals. A sorted list of
row indices of entries that were in v is returned in vi, and the corresponding
numerical values are returned in vx. If nvals is zero, the vi and vx arrays
are returned as NULL; this is not an error condition.

If not successful, v is unmodified and vi and vx are not modified.

SPEC: GxB_Vector_export is an extension to the spec.
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4.9.3 GxB_Matrix_import_CSR: import a CSR matrix

GrB_Info GxB_Matrix_import_CSR // import a CSR matrix
(
GrB_Matrix *A, // handle of matrix to create
const GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols,
GrB_Index nvals, // number of entries in the matrix
// CSR format:
GrB_Index **Ap, // row pointers, size nrows+1
GrB_Index **Aj, // column indices, size nvals
void *kAX, // values, size nvals
const GrB_Descriptor desc // descriptor for # of threads to use
)

GxB_Matrix_import_CSR imports a matrix from 3 user arrays in CSR
format. In the resulting GrB_Matrix A, the CSR format is a matrix with a
format (GxB_FORMAT) of GxB_BY_ROW, in standard for instead of hypersparse
form (See Section 5.2).

The first four arguments of GxB_Matrix_import_CSR are the same as
all four arguments of GrB_Matrix_new, because this function is similar. It
creates a new GrB_Matrix A, with the given type and dimensions. The
GrB_Matrix A does not exist on input.

Unlike GrB_Matrix_new, this function also populates the new matrix A
with the three arrays Ap, Aj and Ax, provided by the user, all of which must
have been created with the ANSI C malloc function. These arrays define
the pattern and values of the new matrix A:

e GrB_Index Ap [nrows+1] ; The Ap array is the row “pointer” array.
It does not actual contain pointers. More precisely, it is an integer
array that defines where the column indices and values appear in Aj
and Ax, for each row. The number of entries in row i is given by the
expression Ap [i+1] - Ap [i].

e GrB_Index Aj [nvals] ; The Aj array defines the column indices of
entries in each row.

e ctype Aj [nvals] ; The Ax array defines the values of entries in each
row. It is passed in as a (void *) pointer, but it must point to an array
of size nvals values, each of size sizeof (ctype), where ctype is the
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exact type in C that corresponds to the GrB_Type type parameter.
That is, if type is GrB_INT32, then ctype is int32_t. User types may
be used, just the same as built-in types.

The content of the three arrays Ap Aj, and Ax is very specific. This
content is not checked, since this function takes only O(1) time. Results are
undefined if the following specification is not followed exactly.

The column indices of entries in the ith row of the matrix are held in
Aj [Ap [i] ... Apli+1]], and the corresponding values are held in the
same positions in Ax. Column indices must be in the range 0 to ncols-1, and
must appear in sorted order within each row. No duplicate column indices
may appear in any row. Ap [0] must equal zero, and Ap [nrows] must equal
nvals. The Ap array must be of size nrows+1 (or larger), and the Aj and Ax
arrays must have size at least nvals.

If nvals is zero, then the content of the Aj and Ax arrays is not accessed
and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful).

An example of the CSR format is shown below. Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.

45 0 32 0
31 29 0 0.9
A= 0 1.7 30 0 (1)

35 04 0 1.0

The Ap array has length 5, since the matrix is 4-by-4. The first entry
must always zero, and Ap [5] = 10 is the number of entries. The content
of the arrays is shown below:

int64_t Ap [ ] = { O, 2, 5, 7, 10 }
int64_t Aj [ 1 = {0, 2, 0, 1, 3, 1, 2, 0, 1, 3 1}
double Ax [ ] ={ 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ;

Spaces have been added to the Ap array, just for illustration. Row
zero is in Aj [0..1] (column indices) and Ax [0..1] (values), starting at
Ap [0] = 0 and ending at Ap [0+1]-1 = 1. The list of column indices of
row one is at Aj [2..4] and row two is in Aj [5..6]. The last row (three)
appears Aj [7..9], because Ap [3] = 7 and Ap [4]-1 = 10-1 = 9. The
corresponding numerical values appear in the same positions in Ax.

To iterate over the rows and entries of this matrix, the following code can
be used:
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int64_t nvals = Ap [nrows] ;
for (int64_t i = 0 ; i < nrows ; i++)

{
// get A(i,:)
for (int64_t p = Ap [i] ; p < Ap [i+1] ; p++)
{
// get A(i,j)
int64_t j = Aj [p] ; // column index
double aij = Ax [p] ; // numerical value
}
}

On successful creation of A, the three pointers Ap, Aj, and Ax are set to
NULL on output. This denotes to the user application that it is no longer
responsible for freeing these arrays. Internally, GraphBLAS has moved these
arrays into its internal data structure. They will eventually be freed no later
than when the user does GrB_free(&A), but they may be freed or resized
later, if the matrix changes.

If the matrix A is later exported in CSR form, and GraphBLAS has not
yet reallocated these arrays, then these same three arrays are returned to
the user by GxB_Matrix_export_CSR (see Section 4.9.7). If an export is
performed, the freeing of these three arrays again becomes the responsibility
of the user application.

The GxB_Matrix_import_CSR function will rarely fail, since it allocates
just O(1) space. If it does fail, it returns GrB_0UT_OF_MEMORY, and it leaves
the three user arrays unmodified. They are still owned by the user applica-
tion, which is eventually responsible for freeing them with free (Ap), etc.

SPEC: GxB_Matrix_import_CSR is an extension to the spec.
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4.9.4 GxB_Matrix_import_CSC: import a CSC matrix

GrB_Info GxB_Matrix_import_CSC // import a CSC matrix

(
GrB_Matrix *A, // handle of matrix to create
const GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols,
GrB_Index nvals, // number of entries in the matrix
GrB_Index **Ap, // column pointers, size ncols+l
GrB_Index **Ai, // row indices, size nvals
void *kAX, // values, size nvals
const GrB_Descriptor desc // currently unused

)

GxB_Matrix_import_CSC imports a matrix from 3 user arrays in CSC for-
mat. The GrB_Matrix A is created in the CSC format, which is a GxB_FORMAT
of GxB_BY_COL. The arguments are identical to GxB_Matrix_import_CSR,
except for how the 3 user arrays are interpreted. The column “pointer”
array has size ncols+1. The row indices of the columns are in Ai, and
must appear in ascending order in each column. The corresponding nu-
merical values are held in Ax. The row indices of column j are held in
Ai [Ap [j]...Ap [j+1]-1, and the corresponding numerical values are in
the same locations in Ax.

The same matrix from Equation lin the last section (repeated here):

45 0 32 0
3.1 29 0 09
A= 0 1.7 30 0 (2)

35 04 0 1.0
is held in CSC form as follows:

int64_t Ap [ 1 = { 0O, 3, 6, 8, 10 }
int64_t Ai [ ] = { O, 1, 3, 1, 2, 3, 0, 2, 1, 3 1}
double Ax [ ] ={ 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;

That is, the row indices of column 1 (the second column) are in Ai [3..5],
and the values in the same place in Ax, since Ap [1] = 3 and Ap [2]-1 = 5.

To iterate over the columns and entries of this matrix, the following code
can be used:
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int64_t nvals = Ap [ncols] ;
for (int64_t j = 0 ; j < ncols ; j++)

{
// get A(:,3)
for (int64_t p = Ap [j] ; p < Ap [j+1]1 ; p++)
{
// get A(i,j)
int64_t i = Ai [p] ; // row index
double aij = Ax [p] ; // numerical value
}
}

The method is identical to GxB_Matrix_import_CSR; just the format is
different. That is, if the method is successful, the 3 user arrays are im-
ported into the new GrB_Matrix A, with the given type and dimensions, and
returned as NULL pointers to the user application.

If nvals is zero, then the content of the Ai and Ax arrays is not accessed
and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful).

SPEC: GxB_Matrix_import_CSC is an extension to the spec.
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4.9.5 GxB_Matrix_import_HyperCSR: import a HyperCSR matrix

GrB_Info GxB_Matrix_import_HyperCSR // import a hypersparse CSR matrix
(

GrB_Matrix *A, // handle of matrix to create

const GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols,

GrB_Index nvals, // number of entries in the matrix

GrB_Index nvec, // number of non-empty rows

GrB_Index **Ah, // list of non-empty rows, size nvec

GrB_Index **Ap, // row pointers, size nvec+l

GrB_Index **Aj, // column indices, size nvals

void *kAX, // values, size nvals

const GrB_Descriptor desc // descriptor for # of threads to use
)

GxB_Matrix_import_HyperCSR imports a matrix in hypersparse CSR for-
mat in O(1) time. In the hypersparse format, the Ap array itself becomes
sparse, if the matrix has rows that are completely empty. An array Ah of size
nvec provides a list of rows that appear in the data structure. For example,
consider Equation 3, which is a sparser version of the matrix in Equation 1.
Row 2 and column 1 of this matrix are all zero.

45 0 32 0
310 0 09

A= 0 0 0 O (3)
35 0 0 1.0

The conventional CSR format would appear as follows. Since the third
row (row 2) is all zero, accessing Ai [Ap [2] ... Ap [3]-1] gives an empty
set ([2..1]), and the number of entries in this row is Ap [i+1] - Ap [i]
= Ap [3] - Ap [2] = O.

int64_t Ap [ ] = { 0, 2,2, 4, 513 ;
int64_t Aj [1={0, 2, o0, 3, ©0 3 %
double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

A hypersparse CSR format for this same matrix would discard these du-
plicate integers in Ap. Doing so requires another array, Ah, that keeps track
of the rows that appear in the data structure.
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int64_t nvec

int64_t Ah [ ] = { O, 1, 3 } s
int64_t Ap [ 1 = { 0, 2, 4, 5% ;
inté4_t Aj [ 1 ={0, 2, 0, 3, © 3 %
double Ax [ 1 ={ 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

Note that the Aj and Ax arrays are the same in the standard and hyper-
sparse CSR formats. The row indices in Ah must appear in ascending order,
and no duplicates can appear. To iterate over this data structure:

int64_t nvals = Ap [nvec] ;
for (int64_t k = 0 ; k < nvec ; k++)

{
int64_t i = Ah [k] ; // row index
// get A(i,:)
for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
{
// get A(i,j)
int64_t j = Aj [p] ; // column index
double aij = Ax [p] ; // numerical value
}
}

This data structure is more complex that the standard CSR format, but
it has the advantage of requiring at most O(e) space, where A is m-by-n with
e = nvals entries. The standard CSR format requires O(m + e) space. If
e << m, then the size m + 1 of Ap can dominate the memory required. In
the hypersparse form, Ap takes on size nvec+1, and Ah has size nvec, where
nvec is the number of rows that appear in the data structure. There is no
requirement that all empty rows be removed from the Ap and Ah arrays.

The standard CSR format can be viewed as a dense array (of size nrows)
of sparse row vectors. By contrast, the hypersparse CSR format is a sparse
array (of size nvec) of sparse row vectors.

The import takes O(1) time. If successful, the four arrays Ah, Ap, Aj, and
Ax are returned as NULL, and the hypersparse GrB_Matrix A is created.

If nvals is zero, then the content of the Aj and Ax arrays is not accessed
and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful).

SPEC: GxB_Matrix_import_HyperCSR is an extension to the spec.
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4.9.6 GxB_Matrix_import_HyperCSC: import a HyperCSC matrix

GrB_Info GxB_Matrix_import_HyperCSC // import a hypersparse CSC matrix
(

GrB_Matrix *A, // handle of matrix to create

const GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols,

GrB_Index nvals, // number of entries in the matrix

GrB_Index nvec, // number of non-empty columns

GrB_Index **Ah, // list of non-empty columns, size nvec

GrB_Index **Ap, // column pointers, size nvec+l

GrB_Index **Ai, // row indices, size nvals

void *kAX, // values, size nvals

const GrB_Descriptor desc // descriptor for # of threads to use
)

GxB_Matrix_import_HyperCSC imports a matrix in hypersparse CSC for-
mat in O(1) time. It is identical to GxB_Matrix_import_HyperCSR, except
for the data structure defined by the four arrays Ah, Ap, Ai, and Ax. It is
a sparse array of size nvec of sparse column vectors. The column indices
in Ah must appear in ascending order, and no duplicates can appear. The
following code can be used to iterate over the columns of the matrix, and
each entry within each column.

int64_t nvals = Ap [nvec] ;
for (int64_t k = 0 ; k < nvec ; k++)

{
int64_t j = Ah [k] ; // column index
// get AC:,3)
for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
{
// get A(i,j)
int64_t i = Ai [p] ; // row index
double aij = Ax [p] ; // numerical value
}
}

SPEC: GxB_Matrix_import_HyperCSC is an extension to the spec.
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4.9.7 GxB_Matrix_export_CSR: export a CSR matrix

GrB_Info GxB_Matrix_export_CSR // export and free a CSR matrix

(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *nrols,
GrB_Index *nvals, // number of entries in the matrix
GrB_Index **Ap, // row pointers, size nrows+l
GrB_Index **Aj, // column indices, size nvals
void *kAX, // values, size nvals
const GrB_Descriptor desc // currently unused

)

GxB_Matrix_export_CSR exports a matrix in CSR form:

GxB_Matrix_export_CSR (&A, &type, &nrows, &ncols, &nvals, &Ap, &Aj, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows
and ncols, its number of entries in nvals, and the CSR format is in the three
arrays Ap, Aj, and Ax. If nvals is zero, the Aj and Ax arrays are returned
as NULL; this is not an error, and GxB_Matrix_import_CSR also allows these
two arrays to be NULL on input when nvals is zero. After a successful export,
the user application is responsible for freeing these three arrays via the ANSI
C free. The CSR format is described in Section 4.9.3.

This method takes O(1) time if the matrix is already in standard (non-
hypersparse) CSR format internally. If it is in hypersparse CSR form, the
export must first convert the matrix to standard CSR form, taking O(m)
time and memory, where m = nrows. If the matrix is in CSC format, it is
first transposed to convert it to CSR format, and then exported. This takes
O(m +n+e) or O(m + eloge) time and memory, whichever is less, where
n = ncols and e = nvals.

SPEC: GxB_Matrix_export_CSR is an extension to the spec.
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4.9.8 GxB_Matrix_export_CSC: export a CSC matrix

GrB_Info GxB_Matrix_export_CSC // export and free a CSC matrix

(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *nrols,
GrB_Index *nvals, // number of entries in the matrix
GrB_Index **Ap, // column pointers, size ncols+l
GrB_Index **Ai, // row indices, size nvals
void *kAX, // values, size nvals
const GrB_Descriptor desc // currently unused

)

GxB_Matrix_export_CSC exports a matrix in CSC form:

GxB_Matrix_export_CSC (&A, &type, &nrows, &ncols, &nvals, &Ap, &Ai, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows
and ncols, its number of entries in nvals, and the CSC format is in the three
arrays Ap, Ai, and Ax. If nvals is zero, the Ai and Ax arrays are returned
as NULL; this is not an error, and GxB_Matrix_import_CSC also allows these
two arrays to be NULL on input when nvals is zero. After a successful export,
the user application is responsible for freeing these three arrays via the ANSI
C free. The CSC format is described in Section 4.9.4.

This method takes O(1) time if the matrix is already in standard (non-
hypersparse) CSC format internally. If it is in hypersparse CSC form, the
export must first convert the matrix to standard CSC form, taking O(n)
time and memory, where n = ncols. If the matrix is in CSR format, it is
first transposed to convert it to CSC format, and then exported. This takes
O(m +n+e) or O(n+ eloge) time and memory, whichever is less, where
m = nrows and e = nvals.

SPEC: GxB_Matrix_export_CSC is an extension to the spec.
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4.9.9 GxB_Matrix_export_HyperCSR: export a HyperCSR matrix

GrB_Info GxB_Matrix_export_HyperCSR // export and free a hypersparse CSR matrix
(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *nrols,
GrB_Index *nvals, // number of entries in the matrix
GrB_Index *nvec, // number of non-empty rows
GrB_Index **Ah, // list of non-empty rows, size nvec
GrB_Index **Ap, // row pointers, size nvec+l
GrB_Index **Aj, // column indices, size nvals
void *kAX, // values, size nvals
const GrB_Descriptor desc // currently unused
)

GxB_Matrix_export_HyperCSR exports a matrix in CSR form:

GxB_Matrix_export_HyperCSR (&A, &type, &nrows, &ncols, &nvals, &nvec,
&Ah, &Ap, &Aj, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows
and ncols, its number of entries in nvals, and the number of non-empty
rows in nvec. The hypersparse CSR format is in the four arrays Ah, Ap, Aj,
and Ax. If nvals is zero, the Aj and Ax arrays are returned as NULL; this is
not an error, and GxB_Matrix_import_HyperCSR also allows these two arrays
to be NULL on input when nvals is zero. After a successful export, the user
application is responsible for freeing these three arrays via the ANSI C free.
The hypersparse CSR format is described in Section 4.9.5.

This method takes O(1) time if the matrix is already in hypersparse CSR
format internally. If it is in standard CSR form, the export must first convert
the matrix to hypersparse CSR form, taking O(m) time and memory, where
m = nrows. If the matrix is in CSC format, it is first transposed to convert it
to hypersparse CSR format, and then exported. If in standard CSC form, the
transpose takes O(m +n+e) or O(n + eloge) time and memory, whichever
is less. If in hypersparse CSC format, it takes O(eloge) time.

SPEC: GxB_Matrix_export_HyperCSR is an extension to the spec.
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4.9.10 GxB_Matrix_export_HyperCSC: export a HyperCSC matrix

GrB_Info GxB_Matrix_export_HyperCSC // export and free a hypersparse CSC matrix
(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *nrols,
GrB_Index *nvals, // number of entries in the matrix
GrB_Index *nvec, // number of non-empty columns
GrB_Index **Ah, // list of non-empty columns, size nvec
GrB_Index **Ap, // columns pointers, size nvec+l
GrB_Index **Ai, // row indices, size nvals
void *kAX, // values, size nvals
const GrB_Descriptor desc // currently unused
)

GxB_Matrix_export_HyperCSC exports a matrix in CSC form:

GxB_Matrix_export_HyperCSC (&A, &type, &nrows, &ncols, &nvals, &nvec,
&Ah, &Ap, &Ai, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows
and ncols, its number of entries in nvals, and the number of non-empty
rows in nvec. The hypersparse CSC format is in the four arrays Ah, Ap, Ai,
and Ax. If nvals is zero, the Ai and Ax arrays are returned as NULL; this is
not an error, and GxB_Matrix_import_HyperCSC also allows these two arrays
to be NULL on input when nvals is zero. After a successful export, the user
application is responsible for freeing these three arrays via the ANSI C free.
The hypersparse CSC format is described in Section 4.9.6.

This method takes O(1) time if the matrix is already in hypersparse CSR
format internally. If it is in standard CSR form, the export must first convert
the matrix to hypersparse CSR form, taking O(m) time and memory, where
m = nrows. If the matrix is in CSC format, it is first transposed to convert it
to hypersparse CSR format, and then exported. If in standard CSC form, the
transpose takes O(m +n+e) or O(n + eloge) time and memory, whichever
is less. If in hypersparse CSC format, it takes O(eloge) time.

SPEC: GxB_Matrix_export_HyperCSC is an extension to the spec.
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4.10 GraphBLAS descriptors: GrB_Descriptor

A GraphBLAS descriptor modifies the behavior of a GraphBLAS operation.
If the descriptor is GrB_NULL, defaults are used.

SPEC: GxB_DEFAULT, GxB_AxB_METHOD, and GxB_AxB_x* are extensions
to the spec.

The access to these parameters and their values is governed by two enum
types, GrB_Desc_Field and GrB_Desc_Value:

typedef enum

{
GrB_0OUTP, // descriptor for output of a method
GrB_MASK, // descriptor for the mask input of a method
GrB_INPO, // descriptor for the first input of a method
GrB_INP1, // descriptor for the second input of a method
GxB_AxB_METHOD // descriptor for selecting C=A*B algorithm

}

GrB_Desc_Field ;

typedef enum

{
// for all GrB_Descriptor fields:
GxB_DEFAULT, // default behavior of the method
// for GrB_OUTP only:
GrB_REPLACE, // clear the output before assigning new values to it
// for GrB_MASK only:
GrB_SCMP, // use the structural complement of the input
// for GrB_INPO and GrB_INP1 only:
GrB_TRAN, // use the transpose of the input
// for GxB_AxB_METHOD only:
GxB_AxB_GUSTAVSON, // gather-scatter saxpy method
GxB_AxB_HEAP, // heap-based saxpy method
GxB_AxB_DOT // dot product
}

GrB_Desc_Value ;
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The internal representation is opaque to the user, but in this User Guide
the five descriptor fields of a descriptor desc are illustrated as an array of
five items, as described in the list below. The underlying implementation
need not be an array:

e desc [GrB_OUTP] is a parameter that modifies the output of a Graph-
BLAS operation. Currently, there are two possible settings. In the
default case, the output is not cleared, and C(M) =Z =C o T is
computed as-is, where T is the results of the particular GraphBLAS
operation.

In the non-default case, Z = C ® T is first computed, using the results
of T and the accumulator ®. After this is done, if the GrB_0OUTP de-
scriptor field is set to GrB_REPLACE, then the output is cleared of its
entries. Next, the assignment C(M) = Z is performed.

e desc [GrB_MASK] is a parameter that modifies the Mask, even if the
mask is not present.

If this parameter is set to its default value, and if the mask is not present
(Mask==NULL) then implicitly Mask (i, j)=1 for all i and j. If the mask
is present then Mask(i, j)=1 means that C(i,j) is to be modified by
the C(M) = Z update. Otherwise, if Mask (i, j)=0, then C(i,j) is not
modified, even if Z(i,j) is an entry with a different value; that value
is simply discarded.

If the desc [GrB_MASK] parameter is set to GrB_SCMP, then the use
of the mask is complemented. In this case, if the mask is not present
(Mask==NULL) then implicitly Mask (i, j)=0 for all 1 and j. This means
that none of C is modified and the entire computation of Z might as
well have been skipped. That is, a complemented empty mask means
no modifications are made to the output object at all, except per-
haps to clear it in accordance with the GrB_0UTP descriptor. With a
complemented mask, if the mask is present then Mask(i, j)=0 means
that C(1,j) is to be modified by the C(M) = Z update. Otherwise, if
Mask(i, j)=1, then C(i,j) is not modified, even if Z(i, j) is an entry
with a different value; that value is simply discarded.

Using a parameter to complement the Mask is very useful because con-
structing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in C that should
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be modified is very small, then use a sparse mask without complement-
ing it. If the number of places in C that should be protected from
modification is very small, then use a sparse mask to indicate those
places, and use a descriptor GrB_MASK that complements the use of the
mask.

desc [GrB_INPO] and desc [GrB_INP1] modify the use of the first
and second input matrices A and B of the GraphBLAS operation.

If the desc [GrB_INPO] is set to GrB_TRAN, then A is transposed be-
fore using it in the operation. Likewise, if desc [GrB_INP1] is set to
GrB_TRAN, then the second input, typically called B, is transposed.

Vectors are never transposed via the descriptor. If a method’s first
parameter is a matrix and the second a vector, then desc [GrB_INPO]
modifies the matrix parameter and desc [GrB_INP1] is ignored. If
a method’s first parameter is a vector and the second a matrix, then
desc [GrB_INP1] modifies the matrix parameter and desc [GrB_INPO]
is ignored.

To clarify this in each function, the inputs are labeled as first input:
and second input: in the function signatures.

desc [GxB_AxB_METHOD] suggests the method that should be used to
compute C=A*B. All the methods compute the same result, except
they may have different floating-point roundoff errors. This descrip-
tor should be considered as a hint; SuiteSparse:GraphBLAS is free to
ignore it. The current version always follows the hint, however.

— GxB_DEFAULT means that a method is selected automatically.

— GxB_AxB_GUSTAVSON: an extended version of Gustavson’s method
[Gus78], which is a very good general-purpose method, but some-
times the workspace can be too large. Assuming all matrices are
stored by column, it computes C(:,j)=A*B(:,j) with a sequence
of saxpy operations (C(:,j)+=A(:,k)*B(k:,j) for each nonzero
B(k,j)). It requires workspace of size m, to the number of rows
of C, which is not suitable if the matrices are extremely sparse.

— GxB_AxB_HEAP: a heap-based method, computing C(:, j)=A*B(:, j)
via a heap of size equal to the maximum number of entries in any
column of B. The method is very good for hypersparse matrices,
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particularly when |B| is less than the number of rows of C. The
method used is similar to Algorithm II in [BGO8] (see also [BG12]).
It computes C in the same order as Gustavson’s method, using a
heap instead of a large gather/scatter workspace. The heap has
size b, equal to the maximum number of entries in any one vector
of B.

GxB_AxB_DOT: computes C(i,j)=A(:,1)’*B(:,j), for each entry
C(i,j). If the mask is present and not complemented, only en-
tries for which M(i, j)=1 are computed. This is a very specialized
method that works well only if the mask is present, very sparse,
and not complemented, or when C is tiny. For example, it works
very well when A and B are tall and thin, and C<M>=A’*B or C=A’*B
are computed. It is impossibly slow if C is large and the mask is
not present, since it takes Q(mn) time if C is m-by-n in that case.
It can work either without any workspace at all, or with workspace
of size O(k), where k is the inner dimension (the number of rows
of B if the matrices are stored by column). It does not need any
workspace at all if A or B are completely dense, and is the fastest
method in this case. Otherwise, the method is faster if it has access
to workspace, and thus it uses O(k) workspace if k < (JA|+ |B|).
If this condition does not hold, then the workspace could domi-
nate the memory usage, so it foregoes the use of any workspace.
Since it uses no workspace if k > (|A| 4+ |BJ), it can work very
well for extremely sparse or hypersparse matrices, when the mask
is present and not complemented.

4.10.1 GrB_Descriptor_new: create a new descriptor

GrB_Info GrB_Descriptor_new // create a new descriptor

(

)

GrB_Descriptor *descriptor // handle of descriptor to create

GrB_Descriptor_new creates a new descriptor, with all fields set to their
defaults (output is not replaced, mask is not complemented, neither input
matrix is transposed, and the method used in C=A*B is selected automati-

cally).
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4.10.2 GrB_Descriptor_set: set a parameter in a descriptor

GrB_Info GrB_Descriptor_set

(

GrB_Descriptor desc,

)

// set a parameter in a descriptor

// descriptor to modify
const GrB_Desc_Field field, // parameter to change

const GrB_Desc_Value val // value to change it to

GrB_Descriptor_set sets a descriptor field (GrB_0OUTP, GrB_MASK, GrB_INPO,
GrB_INP1, or GxB_AxB_METHOD) to a particular value (GxB_DEFAULT, GrB_SCMP,
GrB_TRAN, GrB_REPLACE, GxB_AxB_GUSTAVSON, GxB_AxB_HEAP, or GXB_AXB_DOT).

Descriptor Default Non-default
field
GrB_0UTP GxB_DEFAULT: The output matrix is | GrB_REPLACE: After computing
not cleared. The operation computes | Z=C ® T, the output C is
CM)=CoT. cleared of all entries. = Then
C(M) = Z is performed.
GrB_MASK GxB_DEFAULT: The Mask is not com- | GrB_SCMP: The Mask is comple-
plemented. Mask(i,j)=1 means the | mented. Mask(i,j)=0 means the
value C;; can be modified by the op- | value Cj; can be modified by the
eration, while Mask(i,j)=0 means | operation, while Mask(i,j)=1
the value Cj; shall not be modified | means the value Cj; shall not be
by the operation. modified by the operation.
GrB_INPO GxB_DEFAULT: The first input is not | GrB_TRAN: The first input is
transposed prior to using it in the | transposed prior to using it in
operation. the operation. Only matrices are
transposed, never vectors.
GrB_INP1 GxB_DEFAULT: The second input is | GrB_TRAN: The second input is

not transposed prior to using it in
the operation.

transposed prior to using it in
the operation. Only matrices are
transposed, never vectors.

GrB_AxB_METHOD

GxB_DEFAULT: The method used for
computing C=Ax*B is selected auto-
matically.

GxB_AxB_method: The selected
method is used to compute
C=A%B.
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4.10.3 GxB_Desc set: set a parameter in a descriptor

GrB_Info GxB_Desc_set // set a parameter in a descriptor
(

GrB_Descriptor desc, // descriptor to modify

const GrB_Desc_Field field, // parameter to change
// value to change it to

)

GxB_Desc_set is identical to GrB_Descriptor_set, except that the type
of the third parameter can vary with the field. All descriptor fields are cur-
rently of type GrB_Desc_Value, so currently this function is identical in all
ways to GrB_Descriptor_set, except for the name of the function. Future
versions of this function will allow for arbitrary types of the third param-
eter, depending on the field. For a simpler-to-use alternative, see GxB_set
described in Section 5.

SPEC: The GxB_Desc_set function is an extension to the spec.

4.10.4 GxB_Desc_get: get a parameter from a descriptor

GrB_Info GxB_Desc_get // get a parameter from a descriptor

(
const GrB_Descriptor desc, // descriptor to query; NULL means defaults
const GrB_Desc_Field field, // parameter to query

// value of the parameter

)

GxB_Desc_get returns the value of a single field in a descriptor. The type
of the third parameter is a pointer to a variable type, whose type depends
on the field. Currently, all descriptor values are of type GrB_Desc_Value, so
this third parameter is a pointer to a scalar value of type GrB_Desc_Value.
For a simpler-to-use alternative, see GxB_get described in Section 5.

SPEC: The GxB_Desc_get function is an extension to the spec.
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4.10.5 GrB_Descriptor_free: free a descriptor

GrB_Info GrB_free // free a descriptor
(

GrB_Descriptor *descriptor // handle of descriptor to free

)

GrB_Descriptor_free frees a descriptor. Either usage:

GrB_Descriptor_free (&descriptor) ;
GrB_free (&descriptor) ;

frees the descriptor and sets descriptor to NULL. It safely does nothing if
passed a NULL handle, or if descriptor == NULL on input.

There are currently no predefined descriptors, but if these are added in
the future, this function will do nothing if passed a built-in descriptor.
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4.11 GrB_free: free any GraphBLAS object

Each of the nine objects has GrB_*_new and GrB_x_free methods that are
specific to each object. They can also be accessed by a generic function,
GrB_free, that works for all nine objects. If G is any of the nine objects, the
statement

GrB_free (&G) ;

frees the object and sets the variable G to NULL. It is safe to pass in a NULL
handle, or to free an object twice:

GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing
GrB_free (&G) ; // the object G is freed and G set to NULL
GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing

However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.

H=G; // valid; creates a 2nd handle of the same object
GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined
GrB_some_method (H) ; // not valid; H is undefined

Some objects are predefined, such as the built-in types. If a user appli-
cation attempts to free a built-in object, SuiteSparse:GraphBLAS will safely
do nothing. In all cases, the GrB_free function in SuiteSparse:GraphBLAS
always returns GrB_SUCCESS.
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5 SuiteSparse:GraphBLAS Options

SPEC: GxB_set and GxB_get are extensions to the specification.

SuiteSparse:GraphBLAS includes two type-generic methods, GxB_set and
GxB_get, that set and query various options and parameters settings, includ-
ing a generic way to set values in the GrB_Descriptor object. Using these
methods, the user application can provide hints to SuiteSparse:GraphBLAS
on how it should store and operate on its matrices. These hints have no effect
on the results of any GraphBLAS operation (except perhaps floating-point
roundoff differences), but they can have a great impact on the amount of
time or memory taken.

e GxB_set (field, value) provides hints to SuiteSparse:GraphBLAS
on how it should store all matrices created after calling this function: by
row, by column, and whether or not to use a hypersparse format [BGOS,
BG12]. These are global options that modify all matrices created after
calling this method.

e GxB_set (GrB_Matrix A, field, value) provides hints to SuiteSparse:
GraphBLAS on how to store a particular matrix. This method allows
SuiteSparse:GraphBLAS to transform a specific matrix from one for-
mat to another. The format has no effect on the result computed by
GraphBLAS:; it only affects the time and memory taken to do the com-
putations.

e GxB_set (GrB_Descriptor desc, field, value) is another way to
set the value of a field in a GrB_Descriptor. It is identical to
GrB_Descriptor_set, just with a generic name. Except for GxB_AxB_METHOD,
the descriptor settings are not hints but are always implemented by
GraphBLAS, since they affect the results of any GraphBLAS opera-
tion.

The GxB_get method queries a GrB_Descriptor, a GrB_Matrix, or the
global options.

e GxB_get (field, &value) retrieves the current value of a global op-
tion.
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e GxB_get (GrB_Matrix A, field, &value) retrieves the current value
of an option from a particular matrix A.

e GxB_get (GrB_Descriptor desc, field, &value) retrieves the value
of a field in a descriptor.

5.1 Storing a matrix by row or by column

The GraphBLAS GrB_Matrix is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored.
However, choices made in how the matrix is represented in a particular im-
plementation, such as SuiteSparse:GraphBLAS, can have a large impact on
performance.

Many graph algorithms are just as fast in any format, but some algorithms
are much faster in one format or the other. For example, suppose the user ap-
plication stores a directed graph as a matrix A, with the edge (7, j) represented
as the value A(i,j), and the application makes many accesses to the ith
row of the matrix, with GrB_Col_extract (w,...,A,GrB_ALL,...,i,desc)
with the transposed descriptor (GrB_INPO set to GrB_TRAN). If the matrix
is stored by column this can be extremely slow, just like the expression
w=A(i,:) in MATLAB, where i is a scalar. Since this is a typical use-
case in graph algorithms, the default format in SuiteSparse:GraphBLAS is
to store its matrices by row, in Compressed Sparse Row format (CSR).

MATLAB stores its sparse matrices by column, in “non-hypersparse”
format, in what is called the Compressed Sparse Column format, or CSC
for short. An m-by-n matrix in MATLAB is represented as a set of n column
vectors, each with a sorted list of row indices and values of the nonzero entries
in that column. As a result, w=A(:,j) is very fast, since the result is already
held in the data structure a single list, the jth column vector. However,
w=A(1i,:) is very slow in MATLAB, since every column in the matrix has to
be searched to see if it contains row i. In MATLAB, if many such accesses
are made, it is much better to transpose the matrix (say AT=A’) and then use
w=AT(:,1) instead. This can have a dramatic impact on the performance of
MATLAB.

Likewise, if u is a very sparse column vector and A is stored by column,
then w=u’*A (via GrB_vxm) is slower than w=A*u (via GrB_mxv). The opposite
is true if the matrix is stored by row.

An example of this can be found in Section B.1 of Version 1.2 of the

94



GraphBLAS API Specification, where the breadth-first search BFS uses GrB_vxm
to compute q’=q’*A. This method is not fast if the matrix A is stored
by column. The bfs5 and bfs6 examples in the Demo/ folder of Suite-
Sparse:GraphBLAS use GrB_vxm, which is fast since the matrices are assumed
to be stored in their default format, by row.

SuiteSparse:GraphBLAS stores its sparse matrices by row, by default. In
Versions 2.1 and earlier, the matrices were stored by column, by default.
However, it can also be instructed to store any selected matrices, or all
matrices, by column instead (just like MATLAB), so that w=A(:,j) (via
GrB_Col_extract) is very fast. The change in data format has no effect
on the result, just the time and memory usage. To use a column-oriented
format by default, the following can be done in a user application that tends
to access its matrices by column.

GrB_init (...) ;

// just after GrB_init: do the following:
#ifdef GxB_SUITESPARSE_GRAPHBLAS

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

#endif

If this is done, and no other GxB_set calls are made with GxB_FORMAT,
all matrices will be stored by column. Alternatively, SuiteSparse:GraphBLAS
can be compiled with -DBYCOL, which changes the default format to GxB_BY_COL,
with no calls to any GxB_x* function. NOTE: the default format is now
GxB_BY_ROW in this release; the default in Versions 2.1 and earlier
was GxB_BY_COL.

5.2 Hypersparse matrices

MATLAB can store an m-by-n matrix with a very large value of m, since a
CSC data structure takes O(n + |A|) memory, independent of m, where |A|
is the number of nonzeros in the matrix. It cannot store a matrix with a
huge n, and this structure is also inefficient when |A| is much smaller than
n. In contrast, SuiteSparse:GraphBLAS can store its matrices in hypersparse
format, taking only O(|A|) memory, independent of how it is stored (by row
or by column) and independent of both m and n [BG08, BG12].

In both the CSR and CSC formats, the matrix is held as a set of sparse
vectors. In non-hypersparse format, the set of sparse vectors is itself dense; all
vectors are present, even if they are empty. For example, an m-by-n matrix in
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non-hypersparse CSC format contains n sparse vectors. Each column vector
takes at least one integer to represent, even for a column with no entries. This
allows for quick lookup for a particular vector, but the memory required is
O(n+]A|). With a hypersparse CSC format, the set of vectors itself is sparse,
and columns with no entries take no memory at all. The drawback of the
hypersparse format is that finding an arbitrary column vector j, such as for
the computation C=A(:,j), takes O(log k) time if there k& < n vectors in the
data structure. One advantage of the hypersparse structure is the memory
required for an m-by-n hypersparse CSC matrix is only O(]A|), independent
of m and n. Algorithms that must visit all non-empty columns of a matrix are
much faster when working with hypersparse matrices, since empty columns
can be skipped.

The hyper_ratio parameter controls the hypersparsity of the internal
data structure for a matrix. The parameter is typically in the range 0 to
1. The default is hyper_ratio = GxB_HYPER_DEFAULT, which is an extern
const double value, currently set to 0.0625. This default ratio may change
in the future.

The hyper_ratio determines how the matrix is converted between the
hypersparse and non-hypersparse formats. Let n be the number of columns
of a CSC matrix, or the number of rows of a CSR matrix. The matrix can
have at most n non-empty vectors.

Let k be the actual number of non-empty vectors. That is, for the CSC
format, £ < n is the number of columns that have at least one entry. Let h
be the value of hyper_ratio.

If a matrix is currently hypersparse, it can be converted to non-hypersparse
if the either condition n < 1 or k > 2nh holds, or both. Otherwise, it
stays hypersparse. Note that if n < 1 the matrix is always stored as non-
hypersparse.

If currently non-hypersparse, it can be converted to hypersparse if both
conditions n > 1 and k < nh hold. Otherwise, it stays non-hypersparse.
Note that if n <1 the matrix always remains non-hypersparse.

The default value of hyper_ratio is assigned at startup by GrB_init,
and can then be modified globally with GxB_set. All new matrices are cre-
ated with the same hyper_ratio, determined by the global value. Once
a particular matrix A has been constructed, its hypersparsity ratio can be
modified from the default with:

double hyper_ratio = 0.2 ;
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GxB_set (A, GxB_HYPER, hyper_ratio) ;

To force a matrix to always be non-hypersparse, use hyper_ratio equal
to GxB_NEVER_HYPER. To force a matrix to always stay hypersparse, set
hyper_ratio to GxB_ALWAYS_HYPER.

A GrB_Matrix can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC. All GrB_Vector objects are always stored
in non-hypersparse CSC format.

A new matrix created via GrB_Matrix_new starts with £k = 0 and is cre-
ated in hypersparse form by default unless n <1 or if h < 0, where h is the
global hyper_ratio value. The matrix is created in in either GxB_BY_ROW or
GxB_BY_COL format, as determined by the last call to GxB_set (GxB_FORMAT, . ..
or GrB_init.

A new matrix C created via GrB_dup (&C,A) inherits the CSR/CSC for-
mat, hypersparsity format, and hyper_ratio from A.

Parameter types: The GxB_Option_Field enumerated type gives the
type of the field parameter for the second argument of GxB_set and GxB_get,
for setting global options or matrix options.

typedef enum

{
GxB_HYPER, // defines switch to hypersparse format (a double value)
GxB_FORMAT // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL
GxB_MODE, // mode passed to GrB_init (blocking or non-blocking)
GxB_THREAD_SAFETY, // thread library for thread safety
GxB_THREADING // current none

}

GxB_Option_Field ;

The GxB_FORMAT field can be by row or by column, set to a value with
the type GxB_Format_Value:

typedef enum

{
GxB_BY_ROW, // CSR: compressed sparse row format
GxB_BY_COL // CSC: compressed sparse column format
}

GxB_Format_Value ;

The default format (in SuiteSparse:GraphBLAS Version 2.2 and later) is
by row. The format in SuiteSparse:GraphBLAS Version 2.1 and earlier was
by column, just like MATLAB.
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The default format is given by the predefined value GxB_FORMAT _DEFAULT,
which is equal to GxB_BY_ROW if default compile-time options are used. To
change the default at compile time to GxB_BY_COL, compile the SuiteSparse:
GraphBLAS library with -DBYCOL. This changes GxB_FORMAT_DEFAULT to
GxB_BY_COL. The default hypersparsity ratio is 0.0625 (1/16), but this value
may change in the future.

Setting the GxB_HYPER field to GxB_ALWAYS_HYPER ensures a matrix al-
ways stays hypersparse. If set to GxB_NEVER_HYPER, it always stays non-
hypersparse. At startup, GrB_init defines the following initial settings:

GxB_set (GxB_HYPER, GxB_HYPER_DEFAULT) ;
GxB_set (GxB_FORMAT, GxB_FORMAT_DEFAULT) ;

That is, by default, all new matrices are held by column in CSR format,
unless -DBYCOL is used at compile time, in which case the default is to store
all new matrices by row in CSC format. If a matrix has fewer than n/16
columns, it can be converted to hypersparse format. If it has more than n/8
columns, it can be converted to non-hypersparse format. These options can
be changed for all future matrices with GxB_set. For example, to change all
future matrices to be in non-hypersparse CSC when created, use:

GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;

Then if a particular matrix needs a different format, then (as an example):

GxB_set (A, GxB_HYPER, 0.1) ;
GxB_set (A, GxB_FORMAT, GxB_BY_ROW) ;

This changes the matrix A so that it is stored by row, and it is converted
from non-hypersparse to hypersparse format if it has fewer than 10% non-
empty columns. If it is hypersparse, it is a candidate for conversion to non-
hypersparse if has 20% or more non-empty columns. If it has between 10%
and 20% non-empty columns, it remains in whatever format it is currently
in.

MATLAB only supports a non-hypersparse CSC format. The format in
SuiteSparse:GraphBLAS that is equivalent to the MATLAB format is given
below:
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GrB_init (...) ;

GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

// no subsequent use of GxB_HYPER or GxB_FORMAT

The GxB_HYPER and GxB_FORMAT options should be considered as sugges-
tions from the user application as to how SuiteSparse:GraphBLAS can obtain
the best performance for a particular application. SuiteSparse:GraphBLAS
is free to ignore any of these suggestions, both now and in the future, and the
available options and formats may be augmented in the future. Any prior
options no longer needed in future versions of SuiteSparse:GraphBLAS will
be silently ignored, so the use these options is safe for future updates.

5.3 Other global options

GxB_MODE, GxB_THREAD_SAFETY, and GxB_THREADING can only be queried
by GxB_get; they cannot be modified by GxB_set. The mode is the value
passed to GrB_init (blocking or non-blocking). The GxB_THREAD* options
are returned as an enum type with one of the following options:

typedef enum

{
GxB_THREAD_NONE = O, // no threading
GxB_THREAD_OPENMP, // QOpenMP
GxB_THREAD_POSIX, // POSIX pthreads
GxB_THREAD_WINDOWS, // Windows threads
GxB_THREAD_ANSI // ANSI C11 threads
}

GxB_Thread_Model ;

SuiteSparse:GraphBLAS is not yet multi-threaded, but it is thread-safe if
it is compiled with OpenMP or POSIX pthreads, and if the user application
threads do not operate on the same matrices at the same time. Output
matrices and vectors used by different threads must be different, and input
matrices and vectors can be safely used only if any pending computations on
them have finished, via GrB_wait or the per-matrix methods, GrB_*_nvals,
GrB_*_extractElement, GrB_x*_extractTuples, and reduction to a scalar
via GrB_*_reduce.

The GxB_THREAD_SAFETY option returns the threading model used inter-
nally to synchronize user threads. This is determine during installation (see
Section 11.3). Since GxB_THREAD_NONE is zero, the following can be used:
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GxB_Thread_Model safe ;
GxB_get (GxB_THREAD_SAFETY, &safe) ;

if (safe)
{
printf ("GraphBLAS is thread-safe\n") ;
}
else
{
// neither OpenMP, POSIX pthreads, nor any other threading model
// was available at compile-time
printf ("GraphBLAS is not thread-safe!\n") ;
}

The GxB_THREADING option currently returns GxB_THREAD_NONE, but this
will change when SuiteSparse:GraphBLAS exploits OpenMP for internal par-
allelism. In this case, the GxB_THREADING option will return either GxB_THREAD_NONE
(if OpenMP is not available) or GxB_THREAD_OPENMP otherwise.

All threads in the same user application share the same global options,
including hypersparsity and CSR/CSC format determined by GxB_set, the
blocking mode determined by GrB_init, and the threading options. Spe-
cific format and hypersparsity parameters of each matrix are specific to that
matrix and can be independently changed.

5.4 GxB_Global_Option_set: set a global option

GrB_Info GxB_set // set a global default option
(

const GxB_Option_Field field, // option to change
// value to change it to

)

This usage of GxB_set sets the value of a global option. The field
parameter can be GxB_HYPER or GxB_FORMAT.

For example, the following usage sets the global hypersparsity ratio to
0.2, and the format of future matrices to GxB_BY_COL. No existing matrices
are changed.

GxB_set (GxB_HYPER, 0.2) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;

100



5.5 GxB_Matrix_Option_set: set a matrix option

GrB_Info GxB_set // set an option in a matrix
(

GrB_Matrix A, // matrix to modify

const GxB_Option_Field field, // option to change
// value to change it to

)

This usage of GxB_set sets the value of a matrix option, for a particular
matrix. The field parameter can be GxB_HYPER or GxB_FORMAT.

For example, the following usage sets the hypersparsity ratio to 0.2, and
the format of GxB_BY_COL, for a particular matrix A. SuiteSparse:GraphBLAS
currently applies these changes immediately, but since they are simply hints,
future versions of SuiteSparse:GraphBLAS may delay the change in format
if it can obtain better performance.

For performance, the matrix option should be set as soon as it is created
with GrB_Matrix_new, so the internal transformation takes less time.

GxB_set (A, GxB_HYPER, 0.2) ;
GxB_set (A, GxB_FORMAT, GxB_BY_COL) ;

5.6 GxB_Desc_set: set a GrB_Descriptor value

GrB_Info GxB_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
const GrB_Desc_Field field, // parameter to change
e // value to change it to
)

This usage is identical to GrB_Descriptor_set, just with a name that is
consistent with the other usages of this generic function. Unlike GrB_Descriptor_set,
Future versions of GxB_Desc_set will allow for different types for the third
parameter. Refer to Sections 4.10.2 and 4.10.3 for details.
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5.7 GxB_Global_Option_get: retrieve a global option

GrB_Info GxB_get // gets the current global default option
(
const GxB_Option_Field field, // option to query
// return value of the global option

This usage of GxB_get retrieves the value of a global option. The field
parameter can be GxB_HYPER, GxB_FORMAT. GxB_MODE, GxB_THREAD_SAFETY,
or GxB_THREADING. For example:

double h ;
GxB_get (GxB_HYPER, &h) ;
printf ("hyper_ratio = %g for all new matrices\n", h) ;

GxB_Format_Value s ;

GxB_get (GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n")
else printf ("all new matrices are stored by row\n") ;

GrB_mode mode ;

GxB_get (GxB_MODE, &mode) ;

if (mode == GrB_BLOCKING) printf ("GrB_init(GrB_BLOCKING) was called.\n")
else printf ("GrB_init(GrB_NONBLOCK) was called.\n")

// see Demo/Program/pthread_demo.c and openmp_demo.c for examples:
GxB_Threading_Model thread_safety, threading ;

GxB_get (GxB_THREAD_SAFETY, &thread_safey) ;

GxB_get (GxB_THREADING, &threading) ;
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5.8 GxB_Matrix_Option_get: retrieve a matrix option

GrB_Info GxB_get // gets the current option of a matrix
(
const GrB_Matrix A, // matrix to query
const GxB_Option_Field field, // option to query
// return value of the matrix option

This usage of GxB_get retrieves the value of a matrix option. The field
parameter can be GxB_HYPER or GxB_FORMAT. For example:

double h ;
GxB_get (A, GxB_HYPER, &h) ;
printf ("matrix A has hyper_ratio = %g\n", h) ;

GxB_Format_Value s ;

GxB_get (A, GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("matrix A is stored by column\n")
else printf ("matrix A is stored by row\n") ;

5.9 GxB_Desc get: retrieve a GrB_Descriptor value

GrB_Info GxB_get // get a parameter from a descriptor
(
const GrB_Descriptor desc, // descriptor to query; NULL means defaults
const GrB_Desc_Field field, // parameter to query
// value of the parameter

This usage is the same as GxB_Desc_get. The field parameter can
be GrB_0OUTP, GrB_MASK, GrB_INPO, GrB_INP1 or GxB_AxB_METHOD. Refer to
Section 4.10.4 for details.
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5.10 Summary of usage of GxB_set and GxB_get

The different usages of GxB_set and GxB_get are summarized below.
To set/get the global options:

GxB_set (GxB_HYPER, double h) ;
GxB_set (GxB_HYPER, GxB_ALWAYS_HYPER) ;
GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_get (GxB_HYPER, double *h) ;

GxB_set (GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;

To get global options that can be queried but not modified:

GxB_get (GxB_MODE, GrB_Mode *mode) ;
GxB_get (GxB_THREAD_SAFETY, GxB_Thread_Model *thread_safety) ;
GxB_get (GxB_THREADING, GxB_Thread_Model *threading) ;

To set/get a matrix option:

GxB_set (GrB_Matrix A, GxB_HYPER, double h) ;
GxB_set (GrB_Matrix A, GxB_HYPER, GxB_ALWAYS_HYPER) ;
GxB_set (GrB_Matrix A, GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_get (GrB_Matrix A, GxB_HYPER, double *h) ;

GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ;

To set/get a descriptor field:

GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_SCMP) ;

GxB_set (GrB_Descriptor d, GrB_INPO, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_INPO, GrB_TRAN) ;

GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN);
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GxB_set
GxB_set
GxB_set
GxB_set

GxB_get

(GrB_Descriptor
(GrB_Descriptor
(GrB_Descriptor
(GrB_Descriptor

(GrB_Descriptor

GxB_AxB_METHOD, GxB_DEFAULT) ;
GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;
GxB_AxB_METHOD, GxB_AxB_HEAP) ;
GxB_AxB_METHOD, GxB_AxB_DOT) ;

GrB_Desc_Field f, GrB_Desc_Value *v)
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6 SuiteSparse:GraphBLAS Colon and Index
Notation

MATLAB uses a colon notation to index into matrices, such as C=A(2:4,3:8),
which extracts C as 3-by-6 submatrix from A, from rows 2 through 4 and
columns 3 to 8 of the matrix A. A single colon is used to denote all rows,
C=A(:,9), or all columns, C=A(12, :), which refers to the 9th column and
12th row of A, respectively. An arbitrary integer list can be given as well,
such as the MATLAB statements:

I=1[214];
J=1[35] ;
C=A(1I,0) ;

which creates the 3-by-2 matrix C as follows:

Q23 0A25
C = a13 A1p
43 QA4

The GraphBLAS API can do the equivalent of C=A(I,J), C=A(:,J),
C=A(I,:), and C=A(:,:), by passing a parameter const GrB_Index *I as
either an array of size ni, or as the special value GrB_ALL, which corresponds
to the stand-alone colon C=A(:,J), and the same can be done for J.. To
compute C=A(2:4,3:8) in GraphBLAS requires the user application to cre-
ate two explicit integer arrays I and J of size 3 and 5, respectively, and then
fill them with the explicit values [2,3,4] and [3,4,5,6,7,8]. This works
well if the lists are small, or if the matrix has more entries than rows or
columns.

However, particularly with hypersparse matrices, the size of the explicit
arrays I and J can vastly exceed the number of entries in the matrix. When
using its hypersparse format, SuiteSparse:GraphBLAS allows the user appli-
cation to create a GrB_Matrix with dimensions up to 2%, with no memory
constraints. The only constraint on memory usage in a hypersparse matrix
is the number of entries in the matrix.

For example, creating a n-by-n matrix A of type GrB_FP64 with n = 2%
and one million entries is trivial to do in Version 2.1 (and later) of Suite-
Sparse:GraphBLAS, taking at most 24MB of space. SuiteSparse:GraphBLAS

106



Version 2.1 (or later) could do this on an old smartphone. However, us-
ing just the pure GraphBLAS API, constructing C=A(0: (n/2),0: (n/2)) in
SuiteSparse Version 2.0 would require the creation of an integer array I of
size 2%, containing the sequence 0, 1, 2, 3, ...., requiring about 4 ExaBytes
of memory (4 million terabytes). This is roughly 1000 times larger than the
memory size of the world’s largest computer in 2018.

SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS
API with a full implementation of the MATLAB colon notation for inte-
gers, I=begin:inc:end. This extension allows the construction of the ma-
trix C=A(0: (n/2),0:(n/2)) in this example, with dimension 2%, probably
taking just milliseconds on an old smartphone.

The GrB_extract, GrB_assign, and GrB_subassign operations (described
in the Section 7) each have parameters that define a list of integer indices,
using two parameters:

const GrB_Index *I ; // an array, or a special value GrB_ALL
GrB_Index ni ; // the size of I, or a special value

These two parameters define five kinds of index lists, which can be used
to specify either an explicit or implicit list of row indices and/or column
indices. The length of the list of indices is denoted |I|. This discussion
applies equally to the row indices I and the column indices J. The five kinds
are listed below.

1. An explicit list of indices, such as I = [2 1 4 7 2] in MATLAB no-
tation, is handled by passing in I as a pointer to an array of size 5,
and passing ni=5 as the size of the list. The length of the explicit list
is ni=|I|. Duplicates may appear.

2. To specify all rows of a matrix, use I = GrB_ALL. The parameter ni is
ignored. This is equivalent to C=A(:,J) in MATLAB. In GraphBLAS,
this is the sequence 0: (m-1) if A has m rows, with length |I|=m. If J
is used the columns of an m-by-n matrix, then J=GrB_ALL refers to all
columns, and is the sequence 0: (n-1), of length |J|=n.

3. To specify a contiguous range of indices, such as I=10:20 in MATLAB,
the array I has size 2, and ni is passed to SuiteSparse:GraphBLAS as
the special valueni = GxB_RANGE. The beginning index is I [GxB_BEGIN]
and the ending index is I [GxB_END]. Both values must be non-negative
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since GrB_Index is an unsigned integer (uint64_t). The value of
I[GxB_INC] is ignored.

// to specify I = 10:20

GrB_Index I [2], ni = GxB_RANGE ;

I [GxB_BEGIN] 10 ; // the start of the sequence
I [GxB_END ] = 20 ; // the end of the sequence

Let b = I[GxB_BEGIN], let ¢ = I[GxB_END], The sequence has length
zero if b > e; otherwise the length is |I| = (e — b) + 1.

. To specify a strided range of indices with a non-negative stride, such
as I1=3:2:10, the array I has size 3, and ni has the special value
GxB_STRIDE. This is the sequence 3, 5, 7, 9, of length 4. Note that
10 does not appear in the list. The end point need not appear if the
increment goes past it.

// to specify I = 3:2:10
GrB_Index I [3], ni = GxB_STRIDE ;

I [GxB_BEGIN ] = 3 ; // the start of the sequence
I [GxB_INC ] =2 ; // the increment
I [GxB_END ] = 10 ; // the end of the sequence

The GxB_STRIDE sequence is the same as the List generated by the
following for loop:

int64_t k = 0 ;
GrB_Index *List = (a pointer to an array of large enough size)
for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])
{
// i is the kth entry in the sequence
List [k++] =1 ;
}

Then passing the explicit array List and its length ni=k has the same
effect as passing in the array I of size 3, with ni=GxB_STRIDE. The
latter is simply much faster to produce, and much more efficient for
SuiteSparse:GraphBLAS to process.

Let b = I[GxB_BEGIN], let e = I [GxB_END], and let A = I[GxB_INC].
The sequence has length zero if b > e or A = 0. Otherwise, the length
of the sequence is

e—b
== +1

A
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5. In MATLAB notation, if the stride is negative, the sequence is decreas-
ing. For example, 10:-2:1 is the sequence 10, 8, 6, 4, 2, in that order.
In SuiteSparse:GraphBLAS, use ni = GxB_BACKWARDS, with an array
I of size 3. The following example specifies defines the equivalent of
the MATLAB expression 10:-2:1 in SuiteSparse:GraphBLAS:

// to specify I = 10:-2:1

GrB_Index I [3], ni = GxB_BACKWARDS ;

I [GxB_BEGIN ] = 10 ; // the start of the sequence

I [GxB_INC ] =2 ; // the magnitude of the increment
I [GxB_END ] 1 // the end of the sequence

The value -2 cannot be assigned to the GrB_Index array I, since that
is an unsigned type. The signed increment is represented instead with
the special value ni = GxB_BACKWARDS. The GxB_BACKWARDS sequence
is the same as generated by the following for loop:

int64_t k = 0 ;
GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])

{
// i is the kth entry in the sequence

List [k++] = 1i ;
¥

Let b = T[GxB_BEGIN], let ¢ = I[GxB_END], and let A = I[GxB_INC]
(note that A is not negative). The sequence has length zero if b < e or
A = 0. Otherwise, the length of the sequence is

=[5+

Since GrB_Index is an unsigned integer, all three values I [GxB_BEGIN],
I[GxB_INC], and I[GxB_END] must be non-negative.

Just as in MATLAB, it is valid to specify an empty sequence of length
zero. For example, I = 5:3 has length zero in MATLAB and the same is true
for a GxB_RANGE sequence in SuiteSparse:GraphBLAS, with I [GxB_BEGIN]=5
and I[GxB_END]=3. This has the same effect as array I with ni=0.

SPEC: GxB_RANGE, GxB_STRIDE, and GxB_BACKWARDS are extensions to
the specification.
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7 GraphBLAS Operations

The next sections define each of the GraphBLAS operations, also listed
in the table below. SuiteSparse:GraphBLAS extensions (GxB_subassign,

GxB_select and GxB_kron) are included in the table.

GrB_mxm matrix-matrix multiply CM)=C0oAB
GrB_vxm vector-matrix multiply wiimh) =wlou'A
GrB_mxv matrix-vector multiply w(m) =w o Au
GrB_eWiseMult element-wise, CM)=Co(A®B)
set union wim)=w0o (u® V)
GrB_eWiseAdd  element-wise, CM)=Co (AaB)
set intersection wim)=wo (udv)
GrB_extract extract submatrix CM)=CoA(LJ)
w(m) = w O u(i)
GxB_subassign assign submatrix, CLIH(M)=C(L,J)eo A
with submask for C(I,J) w(i)(m) =w(i)®u
GrB_assign assign submatrix CIM)(LJ)=C(IJ) oA
with submask for C w(m)(i) =w(i)Ou
GrB_apply apply unary operator CM) =Cof(A)
w{m) = wof(u)
GxB_select apply select operator C(M) = Cof(A k)
w(m) = wo f(u, k)
GrB_reduce reduce to vector w(m) = wO[B;A(:,])]
reduce to scalar s=s50 @A, J)]
GrB_transpose transpose CM)=CoAT
GxB_kron Kronecker product C(M) = C ® kron(A, B)
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7.1 The GraphBLAS specification in MATLAB

SuiteSparse:GraphBLAS includes a MATLAB implementation of nearly the
entire GraphBLAS specification, including all built-in types and operators.
The typecasting rules and integer operator rules from GraphBLAS are im-
plemented in MATLAB via mexFunctions that call the GraphBLAS rou-
tines in C. All other functions are written purely in MATLAB M-files, and
are given names of the form GB_spec_x*. All of these MATLAB interfaces
and M-file functions they are provided in the software distribution of Suite-
Sparse:GraphBLAS. The purpose of this is two-fold:

e Illustration and documentation: MATLAB is so expressive, and
so beautiful to read and write, that the GB_spec_* functions read al-
most like the exact specifications from the GraphBLAS API. Excerpts
and condensed versions of these functions have already been used to
this point in the User Guide, such as Figure 1, and the subsequent
sections rely on them as well. This is why the discussion here is not
just relegated to an Appendix on testing; the reader can benefit from
studying the GB_spec_x* functions to understand what a GraphBLAS
operation is computing. For example, GrB_mxm (Section 7.2) includes
a condensed and simplified version of GB_spec_mxm.

e Testing: Testing the C interface to SuiteSparse:GraphBLAS is a sig-
nificant challenge since it supports so many different kinds of operations
on a vast range of semirings. It is difficult to tell from looking at the
result from a C function in GraphBLAS if the result is correct. Thus,
each function has been written twice: once in a highly-optimized func-
tion in C, and again in a simple and elegant MATLAB function. The
latter is almost a direct translation of all the mathematics behind the
GraphBLAS API, so it is much easier to visually inspect the GB_spec_x*
version in MATLAB to ensure the correct mathematics are being com-
puted.

The following functions are included in the SuiteSparse:GraphBLAS soft-
ware distribution. Each has a name of the form GB_spec_*, and each of them
is a “mimic” of a corresponding C function in GraphBLAS. Not all functions
in the C API have a corresponding mimic; in particular, many of the vector
functions can be computed directly with the corresponding matrix version in
the MATLAB implementations. A list of these files is shown below:
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MATLAB GB_spec function corresponding GraphBLAS Section
function or method

GB_spec_accum.m Z=CoT 2.3
GB_spec_mask.m CM) =17 2.3
GB_spec_accum_mask.m CM)=CoT 2.3
GB_spec_Vector_extractElement.m GrB_Vector_extractElement 4.7.9
GB_spec_build.m GrB_Matrix_build 4.8.8
GB_spec_Matrix_extractElement.m GrB_Matrix_extractElement 4.8.10
GB_spec_extractTuples.m GrB_Matrix_extractTuples 4.8.11
GB_spec_mxm.m GrB_mxm 7.2
GB_spec_vxm.m GrB_vxm 7.4
GB_spec_mxv.m GrB_mxv 7.5
GB_spec_eWiseMult_Vector.m GrB_eWiseMult_Vector 7.6
GB_spec_eWiseMult_Matrix.m GrB_eWiseMult_Matrix 7.6
GB_spec_eWiseAdd_Vector.m GrB_eWiseAdd_Vector 7.7
GB_spec_eWiseAdd_Matrix.m GrB_eWiseAdd_Matrix 7.7
GB_spec_Vector_extract.m GrB_Vector_extract 7.8.1
GB_spec_Matrix_extract.m GrB_Matrix_extract 7.8.2
GB_spec_Col_extract.m GrB_Col_extract 7.8.3
GB_spec_subassign.m GxB_subassign 7.9
GB_spec_assign.m GrB_assign 7.10
GB_spec_apply.m GrB_apply 7.12
GB_spec_select.m GxB_select 7.13
GB_spec_reduce_to_vector.m GrB_reduce (to vector) 7.14.1
GB_spec_reduce_to_scalar.m GrB_reduce (to scalar) 7.14.3
GB_spec_transpose.m GrB_transpose 7.15
GB_spec_kron.m GxB_kron 7.16

Additional files are included for creating test problems and providing
inputs to the above files, or supporting functions:

MATLAB GB_spec function purpose

GB_spec_compare.m Compares output of C and MATLAB functions
GB_spec_random.m Generates a random matrix

GB_spec_op.m MATLAB mimic of built-in operators
GB_spec_operator.m Like GrB_*0p_new

GB_spec_opsall.m List operators, types, and semirings
GB_spec_semiring.m Like GrB_Semiring_new

GB_spec_descriptor.m mimics a GraphBLAS descriptor
GB_spec_identity.m returns the identity of a monoid
GB_spec_matrix.m conforms a MATLAB sparse matrix to GraphBLAS
GB_define*.m creates draft of GraphBLAS.h

112



An intensive test suite has been written that generates test graphs in
MATLAB, then computes the result in both the C version of the Suite-
Sparse:GraphBLAS and in the MATLAB GB_spec_x* functions. Each C func-
tion in GraphBLAS has a direct mexFunction interface that allow the test
suite in MATLAB to call both functions.

This approach has its limitations:

e matrix classes: MATLAB only supports sparse double, sparse double
complex, and sparse logical matrices. MATLAB can represent dense
matrices in all eleven built-in GraphBLAS data types, so in all these
specification M-files, the matrices are either in dense format in the cor-
responding MATLAB class, or they are held as sparse double or sparse
logical, and the actual GraphBLAS type is held with it as a string
member of a MATLAB struct. To ensure the correct typecasting is
computed, most of the MATLAB scripts work on dense matrices, not
sparse ones. As a result, the MATLAB GB_spec_* function are not
meant for production use, but just for testing and illustration.

e integer operations: MATLAB and GraphBLAS handle integer op-
erations differently. In MATLAB, an integer result outside the range
of the integer is set to maximum or minimum integer. For example,
int8(127)+1 is 127. This is useful for many computations such as
image processing, but GraphBLAS follows the C rules instead, where
integer values wrap, modulo style. For example, in GraphBLAS and
in C, incrementing (int8_t) 127 by one results in -128. Of course,
an alternative would be for a MATLAB interface to create its own
integer operators, each of which would follow the MATLAB integer
rules of arithmetic. However, this would obscure the purpose of these
GB_spec_x and GB_mex_x* test functions, which is to test the C API of
GraphBLAS. When the GB_spec_x* functions need to perform integer
computations and typecasting, they call GraphBLAS to do the work,
instead doing the work in MATLAB. This ensures that the GB_spec_x
functions obtain the same results as their GraphBLAS counterparts.

e elegance: to simplify testing, each MATLAB mexFunction interface a
GraphBLAS function is a direct translation of the C API. For example,
GB_mex_mxm is a direct interface to the GraphBLAS GrB_mxm, even
down the order of parameters. This approach abandons some of the
potential features of MATLAB for creating elegant M-file interfaces in a
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highly usable form, such as the ability to provide fewer parameters when
optional parameters are not in use. These mexFunctions, as written,
are not meant to be usable in a user application. They are not highly
documented. They are meant to be fast, and direct, to accomplish the
goal of testing SuiteSparse:GraphBLAS in MATLAB and comparing
their results with the corresponding GB_spec_x function. They are not
recommended for use in general applications in MATLAB.

e generality: the MATLAB mexFunction interface needs to test the C
API directly, so it must access content of SuiteSparse:GraphBLAS ob-
jects that are normally opaque to an end user application. As a result,
these mexFunctions do not serve as a general interface to any conform-
ing GraphBLAS implementation, but only to SuiteSparse:GraphBLAS.

In the MATLAB mimic functions, GB_spec_x, a GraphBLAS matrix A is
represented as a MATLAB struct with the following components:

e A.matrix: the values of the matrix. If A.matrix is a sparse double ma-
trix, it holds a typecasted copy of the values of a GraphBLAS matrix,
unless the GraphBLAS matrix is also double (GrB_FP64).

e A.pattern: alogical matrix holding the pattern; A.pattern(i, j)=true
if (i,j) is in the pattern of A, and false otherwise.

e A.class: the MATLAB class of the matrix corresponding to one of the
eleven built-in types. Normally this is simply class(A.matrix).

e A.values: most of the GraphBLAS test mexFunctions return their
result as a MATLAB sparse matrix, in the double class. This works
well for all types except for the 64-bit integer types, since a double has
about 54 bits of mantissa which is less than the 64 bits available in a
long integer. To ensure no bits are lots, these values are also returned as
a vector. This enables GB_spec_compare to ensure the test results are
identical down to the very last bit, and not just to within roundoff error.
Nearly all tests, even in double precision, check for perfect equality, not
just for results accurate to within round-off error.
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7.2 GrB_mxm: matrix-matrix multiply

GrB_Info GrB_mxm // C<Mask> = accum (C, Ax*B)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Semiring semiring, // defines ’+’ and ’*’ for Ax*B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B

)

GrB_mxm multiplies two sparse matrices A and B using the semiring. The
input matrices A and B may be transposed according to the descriptor, desc
(which may be NULL) and then typecasted to match the multiply operator of
the semiring. Next, T=A*B is computed on the semiring, precisely defined
in the GB_spec_mxm.m script. The actual algorithm exploits sparsity and
does not take O(n?) time, but what computes is the following:

[m s] = size (A.matrix) ;

[s n] = size (B.matrix) ;
T.matrix = zeros (m, n, multiply.ztype) ;
T.pattern = zeros (m, n, ’logical’) ;
T.matrix (:,:) = identity ; % the identity of the semiring’s monoid
T.class = multiply.ztype ; % the ztype of the semiring’s multiply op
A = cast (A.matrix, multiply.xtype) ; 7% the xtype of the semiring’s multiply op
B = cast (B.matrix, multiply.ytype) ; 7% the ytype of the semiring’s multiply op
for j =1:n
for i = 1:m
for k = 1:s
% T (1,j) += A (i,k) * B (k,j), using the semiring

if (A.pattern (i,k) && B.pattern (k,j))
z = multiply (A (i,k), B (k,j)) ;
T.matrix (i,j) = add (T.matrix (i,j), =z) ;
T.pattern (i,j) = true ;

end

end
end
end

Finally, T is typecasted into the type of C, and the results are written back
into C via the accum and Mask, C(M) = C ® T. The latter step is reflected
in the MATLAB function GB_spec_accum_mask.m, discussed in Section 2.3.
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Performance considerations: Suppose all matrices are in GxB_BY_COL
format, and B is extremely sparse but A is not as sparse. Then computing
C=AxB is very fast, and much faster then when A is extremely sparse. For
example, if A is square and B is a column vector that is all nonzero except for
one entry B(j,0)=1, then C=A*B is the same as extracting column A(:,j).
This is very fast if A is stored by column but slow if A is stored by row. If
A is a sparse row with a single entry A(0,i)=1, then C=A*B is the same as
extracting row B(di,:). This is fast if B is stored by row but slow if B is
stored by column.

If the user application needs to repeatedly extract rows and columns from
a matrix, whether by matrix multiplication or by GrB_extract, then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.

7.3 Meta-algorithm for sparse matrix multiplication

SuiteSparse:GraphBLAS includes three different methods for computing C<M>=A*B,
and more may be added in the future. It uses a meta-algorithm to select be-
tween the methods, described below. The default behavior depends on the
CSR/CSC format of each matrix (any combination can be used for the four
matrices), whether or not the mask M is present, and the descriptor values

for transposing A and B. This gives a large number of possible combinations,

so the meta-algorithm that selects the method starts by reducing this space

of combinations.

A matrix stored by row but not transposed has the same data structure
as a matrix stored by column and transposed. To make all matrices uniform
all matrices are viewed as if stored by column, by negating the transpose
descriptors if they are stored by row. No data movement takes place.

A_transpose = true if transposed by INPO, false otherwise
B_transpose = true if transposed by INP1, false otherwise
if (A is stored by row)

A_transpose = !A_transpose
if (B is stored by row)
B_transpose = !B_transpose

if (C is stored by row)
C_transpose = true
else
C_transpose = false
if (M is present and stored by row)
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M_transpose = true
else
M_transpose = false

Now all matrices are treated as if stored by column. The next phase
applies the default swap rule, which removes the transpose of C via the linear
algebraic property ATBT = (BA)T.

swap_rule = C_transpose
if (swap_rule)
swap the matrices A and B

A_transpose = !B_transpose
B_transpose = !A_transpose
C_transpose = !C_transpose
M_transpose = !M_transpose

With this default swap rule, C_transpose is now false. All transposes
below are now explicit, requiring data movement. Next, the mask is explicitly
transposed.

if (M_transpose)
M = M’ (an explicit transpose)
M_transpose = false

There are now four cases to handle:

1. If computing C<M> = A’*B’: the matrix B is explicitly transposed and
then rule (2) below is applied.

2. If computing C<M> = A’*B

if default method:
if M is present, or if A or B have a single column, or if B or A are dense:
use the dot method
else
select the heap or Gustavson method (see below)
if dot method:
compute C<M>=A’x*B
else if heap or Gustavon’s method:
A=A’
compute C<M>=Ax*B

3. If computing C<M> = Ax*B’

117



if default method:

select the heap or Gustavson method (see below)
if dot method (not selected automatically):

A=A’ ; B=B’ ;

compute C<M>=A’*B
else if heap or Gustavon’s method:

B=B’ ;

compute C<M>=Ax*B

4. If computing C<M> = Ax*B

if default method:

select the heap or Gustavson method (see below)
if dot method (not selected automatically):

A=A’

compute C<M>=A’*B
else if heap or Gustavon’s method:

compute C<M>=Ax*B

The GrB_vxm and GrB_mxv operations described in Sections 7.4 and 7.5
use the same method above, where the vectors w, mask, and u are treated as
n-by-1 matrices, stored by column.

The default automatic selection between the heap method or Gustavson’s
method for C<M>=A%*B depends on the sparsity of A and B. Let b be the largest
number of entries in any column of B. Let m-by-n be the dimensions of C.
Let k be the inner dimension, so that A is m-by-k and B is k-by-n (and thus
b<k).

The workspace required by the heap method is 5b integers, or 400 bytes.
Gustavson’s method requires (s + 1)m bytes of workspace where s is the
number of bytes required for the data type of C (s = 8 if C is GrB_FP64, for
example). The workspace of Gustavson’s method can be prohibitive if the
matrices are extremely sparse since m >> b or even m >> |B]| is possible.

When the GxB_AxB_METHQOD is GxB_DEFAULT and the GxB_AxB_DOT method
has not been chosen (see above), then the following rules are used to select
between the heap method and Gustavson’s method.

e Rule (1): If b < 2 use the heap method. The heap will be at most 2 in
size, which makes the heap method very fast. It is typically faster than
Gustavson’s method in this case. Example B matrices that fit Rule
(1) include diagonal matrices, permutation matrices, or upper/lower
bidiagonal matrices.
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e Rule (2): If |B| < 3k, or |B| < m, or if |A] < min(k,m) then
the heap method is used if its memory requirements are much less
than Gustavson’s method. The heap method can be slow if b is large,
however, since modifying the heap after each operation can take as
much as O(logb) time. So the heap selection is penalized by a 4log, b
factor. Thus, the heap method is used if the condition

(40b)4logy b < (s + 1)m

holds; otherwise Gustavson’s method is used. Rules (1) and (2) mean
that the heap rule is used for computing C' = PA(Q) where P and () are
permutation matrices or diagonal scaling matrices, which are common
use cases. The heap method uses very little memory and is faster than
Gustavson’s method for these cases.

e Rule (3): Otherwise, Gustavson’s method is used. Rules (1) and (2)
ensure that the workspace requirement for Gustavson’s method will not
be prohibitive.

The automatic selection applies to any mixture of the format of the four
matrices (CSR or CSC, and hypersparse or non-hypersparse), and any com-
bination of the input descriptors that transpose A and B. If all matrices are
CSR format, C<M>=A*B does not explicitly transpose any matrix.

Performance considerations: With such a large space of combinations,
the default meta-algorithm may not select the fastest method, which is why
the method can be selected via the GxB_AxB_METHOD field of the descriptor.

The meta-algorithm never transposes the final result (C=A’*B’ is never
converted into C=(B*A)’), although that strategy can lead to better perfor-
mance. The user application can do this by computing C’=B*A, and then
transposing the result via GrB_transpose to obtain C=(B*A) ’=A’x*B’. This
can be faster in some cases, depending on the size and sparsity of the three
or four matrices (C, A, B, and M if present).
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7.4 GrB_vxm: vector-matrix multiply

GrB_Info GrB_vxm // w’<mask> = accum (w, u’*A)

(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Semiring semiring, // defines ’+’ and ’*’ for u’*A
const GrB_Vector u, // first input: vector u
const GrB_Matrix A, // second input: matrix A
const GrB_Descriptor desc // descriptor for w, mask, and A

)

GrB_vxm multiplies a row vector u’ times a matrix A. The matrix A may
be first transposed according to desc (as the second input, GrB_INP1); the
column vector u is never transposed via the descriptor. The inputs u and
A are typecasted to match the xtype and ytype inputs, respectively, of the
multiply operator of the semiring. Next, an intermediate column vector
t=A’*u is computed on the semiring using the same method as GrB_mxm.
Finally, the column vector t is typecasted from the ztype of the multiply
operator of the semiring into the type of w, and the results are written back
into w using the optional accumulator accum and mask.

The last step is w(m) = w © t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: If the GxB_FORMAT of A is GxB_BY_ROW,
and the default descriptor is used (A is not transposed), then GrB_vxm is
faster than than GrB_mxv with its default descriptor, when the vector u is
very sparse. However, if the GxB_FORMAT of A is GxB_BY_COL, then GrB_mxv
with its default descriptor is faster than GrB_vxm with its default descriptor,
when the vector u is very sparse. Using the non-default GrB_TRAN descriptor
for A makes the GrB_vxm operation equivalent to GrB_mxv with its default
descriptor (with the operands reversed in the multiplier, as well). The reverse
is true as well; GrB_mxv with GrB_TRAN is the same as GrB_vxm with a default
descriptor.

The breadth-first search presented in Section 10.2 of this User Guide uses
GrB_vxm instead of GrB_mxv, since the default format in SuiteSparse:GraphBLAS
is GxB_BY_ROW. If the matrix is stored by column, then use GrB_mxv instead.
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7.5 GrB_mxv: matrix-vector multiply

GrB_Info GrB_mxv // w<mask> = accum (w, A*xu)

(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Semiring semiring, // defines ’+’ and ’*’ for Ax*B
const GrB_Matrix A, // first input: matrix A
const GrB_Vector u, // second input: vector u
const GrB_Descriptor desc // descriptor for w, mask, and A

)

GrB_mxv multiplies a matrix A times a column vector u. The matrix A may
be first transposed according to desc (as the first input); the column vector
u is never transposed via the descriptor. The inputs A and u are typecasted
to match the xtype and ytype inputs, respectively, of the multiply operator
of the semiring. Next, an intermediate column vector t=A*u is computed on
the semiring using the same method as GrB_mxm. Finally, the column vector
t is typecasted from the ztype of the multiply operator of the semiring into
the type of w, and the results are written back into w using the optional
accumulator accum and mask.

The last step is w(m) = w © t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: Refer to the discussion of GrB_vxm. In
SuiteSparse:GraphBLAS, GrB_mxv is very efficient when u is sparse or dense,
when the default descriptor is used, and when the matrix is GxB_BY_COL.
When u is very sparse and GrB_INPO is set to its non-default GrB_TRAN, then
this method is not efficient if the matrix is in GxB_BY_COL format. If an
application needs to perform A’*u repeatedly where u is very sparse, then
use the GxB_BY_ROW format for A instead.
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7.6 GrB_eWiseMult: element-wise operations, set inter-
section

Element-wise “multiplication” is shorthand for applying a binary operator
element-wise on two matrices or vectors A and B, for all entries that appear in
the set intersection of the patterns of A and B. This is like A. *B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just multiplication.

The pattern of the result of the element-wise “multiplication” is exactly
this set intersection. Entries in A but not B, or visa versa, do not appear in
the result.

Let ® denote the binary operator to be used. The computation T = A ® B
is given below. Entries not in the intersection of A and B do not appear in
the pattern of T. That is:

for all entries (i,7) in ANB
tij = Q45 & bij

Depending on what kind of operator is used and what the implicit value
is assumed to be, this can give the Hadamard product. This is the case for
A.xB in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the eWiseMult operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of A and B, and discards any entry outside this intersection.
Its usefulness in a user’s application does not depend upon it computing
a Hadamard product in all cases. The operator need not be associative,
commutative, nor have any particular property except for type compatibility
with A and B, and the output matrix C.

The generic name for this operation is GrB_eWiseMult, which can be used
for both matrices and vectors.
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7.6.1 GrB_eWiseMult_Vector: element-wise vector multiply

GrB_Info GrB_eWiseMult // w<mask> = accum (w, u.*v)

(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> multiply, // defines ’.x’ for t=u.*v
const GrB_Vector u, // first input: vector u
const GrB_Vector v, // second input: vector v
const GrB_Descriptor desc // descriptor for w and mask

)

GrB_eWiseMult_Vector computes the element-wise “multiplication” of
two vectors u and v, element-wise using any binary operator (not just times).
The vectors are not transposed via the descriptor. The vectors u and v are
first typecasted into the first and second inputs of the multiply operator.
Next, a column vector t is computed, denoted t = u ® v. The pattern of t
is the set intersection of u and v. The result t has the type of the output
ztype of the multiply operator.

The operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The next and final step is w(m) = w © t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices. Note for all
GraphBLAS operations, including this one, the accumulator w ® t is always
applied in a set union manner, even though t = u ® v for this operation is
applied in a set intersection manner.

123



7.6.2 GrB_eWiseMult_Matrix: element-wise matrix multiply

GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> multiply, // defines ’.x’ for T=A.*B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B

)

GrB_eWiseMult_Matrix computes the element-wise “multiplication” of
two matrices A and B, element-wise using any binary operator (not just times).
The input matrices may be transposed first, according to the descriptor desc.
They are then typecasted into the first and second inputs of the multiply
operator. Next, a matrix T is computed, denoted T = A ® B. The pattern
of T is the set intersection of A and B. The result T has the type of the output
ztype of the multiply operator.

The multiply operator is typically a GrB_BinaryOp, but the method is
type-generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

.matrix = zeros (nrows, ncols, multiply.ztype) ;
.class = multiply.ztype ;

= A.pattern & B.pattern ;

= cast (A.matrix (p), multiply.xtype) ;

cast (B.matrix (p), multiply.ytype) ;

.matrix (p) = multiply (A, B) ;

.pattern = p ;

H 3wt 94

The final step is C(M) = C ® T, as described in Section 2.3. Note for all
GraphBLAS operations, including this one, the accumulator C ® T is always
applied in a set union manner, even though T = A ® B for this operation is
applied in a set intersection manner.
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7.7 GrB_eWiseAdd: element-wise operations, set union

Element-wise “addition” is shorthand for applying a binary operator element-
wise on two matrices or vectors A and B, for all entries that appear in the
set intersection of the patterns of A and B. This is like A+B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just addition. The pattern of the result of the element-wise
“addition” is the set union of the pattern of A and B. Entries in neither in A
nor in B do not appear in the result.

Let & denote the binary operator to be used. The computation T = A & B
is exactly the same as the computation with accumulator operator as de-
scribed in Section 2.3. It acts like a sparse matrix addition, except that any
operator can be used. The pattern of A & B is the set union of the patterns
of A and B, and the operator is applied only on the set intersection of A and
B. Entries not in either the pattern of A or B do not appear in the pattern
of T. That is:

for all entries (i,7) in ANB
tij = a;; © bij
for all entries (i,7) in A\ B

bij = aij
for all entries (7,7) in B\ A
tij = bij

The only difference between element-wise “multiplication” (T = A ® B)
and “addition” (T = A @ B) is the pattern of the result, and what happens
to entries outside the intersection. With ® the pattern of T is the inter-
section; with @ it is the set union. Entries outside the set intersection are
dropped for ®, and kept for @; in both cases the operator is only applied to
those (and only those) entries in the intersection. Any binary operator can
be used interchangeably for either operation.

Element-wise operations do not operate on the implicit values, even im-
plicitly, since the operations make no assumption about the semiring. As a
result, the results can be different from MATLAB, which can always assume
the implicit value is zero. For example, C=A-B is the conventional matrix
subtraction in MATLAB. Computing A-B in GraphBLAS with eWiseAdd
will apply the MINUS operator to the intersection, entries in A but not B will
be unchanged and appear in C, and entries in neither A nor B do not appear
in C. For these cases, the results matches the MATLAB C=A-B. Entries in B
but not A do appear in C but they are not negated; they cannot be subtracted
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from an implicit value in A. This is by design. If conventional matrix sub-
traction of two sparse matrices is required, and the implicit value is known
to be zero, use GrB_apply to negate the values in B, and then use eWiseAdd
with the PLUS operator, to compute A+(-B).

The generic name for this operation is GrB_eWiseAdd, which can be used
for both matrices and vectors.

There is another minor difference in two variants of the element-wise func-
tions. If given a semiring, the eWiseAdd functions use the binary operator of
the semiring’s monoid, while the eWiseMult functions use the multiplicative
operator of the semiring.

7.7.1 GrB_eWiseAdd_Vector: element-wise vector addition

GrB_Info GrB_eWiseAdd // w<mask> = accum (w, ut+v)

(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> add, // defines ’+’ for t=u+v
const GrB_Vector u, // first input: vector u
const GrB_Vector v, // second input: vector v
const GrB_Descriptor desc // descriptor for w and mask

)

GrB_eWiseAdd_Vector computes the element-wise “addition” of two vec-
tors u and v, element-wise using any binary operator (not just plus). The
vectors are not transposed via the descriptor. Entries in the intersection of u
and v are first typecasted into the first and second inputs of the add operator.
Next, a column vector t is computed, denoted t = u @ v. The pattern of t
is the set union of u and v. The result t has the type of the output ztype of
the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The final step is w(m) = w ®@ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.
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7.7.2 GrB_eWiseAdd_Matrix: element-wise matrix addition

GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> add, // defines ’+’ for T=A+B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B

)

GrB_eWiseAdd_Matrix computes the element-wise “addition” of two ma-
trices A and B, element-wise using any binary operator (not just plus). The
input matrices may be transposed first, according to the descriptor desc.
Entries in the intersection then typecasted into the first and second inputs of
the add operator. Next, a matrix T is computed, denoted T = A & B. The
pattern of T is the set union of A and B. The result T has the type of the
output ztype of the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, add.ztype) ;

p = A.pattern & B.pattern ;

A = GB_mex_cast (A.matrix (p), add.xtype) ;

B = GB_mex_cast (B.matrix (p), add.ytype) ;

T.matrix (p) = add (A, B) ;

p = A.pattern & "B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;
p = “A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;
T.pattern = A.pattern | B.pattern ;

T.class = add.ztype ;

Except for when typecasting is performed, this is identical to how the
accum operator is applied in Figure 1.
The final step is C(M) = C ® T, as described in Section 2.3.
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7.8 GrB_extract: submatrix extraction

The GrB_extract function is a generic name for three specific functions:
GrB_Vector_extract, GrB_Col_extract, and GrB_Matrix_extract. The
generic name appears in the function signature, but the specific function
name is used when describing what each variation does.

7.8.1 GrB_Vector_extract: extract subvector from vector

(

const
const
const
const
const
const

GrB_Info GrB_extract

GrB_Vector w,

GrB_Vector mask,
GrB_BinaryOp accum,
GrB_Vector u,
GrB_Index *I,
GrB_Index ni,
GrB_Descriptor desc

//

//
//
//
//
//
//
//

w<mask> = accum (w, u(I))

input/output vector for results
optional mask for w, unused if NULL
optional accum for z=accum(w,t)
first input: vector u

row indices

number of row indices

descriptor for w and mask

GrB_Vector_extract extracts a subvector from another vector, identical
tot = u (I) in MATLAB where I is an integer vector of row indices. Refer
to GrB_Matrix_extract for further details; vector extraction is the same as
matrix extraction with n-by-1 matrices. See Section 6 for a description of I
and ni. The final step is w(m) = w © t, as described in Section 2.3, except
that all the terms are column vectors instead of matrices.
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7.8.2 GrB_Matrix_extract: extract submatrix from matrix

GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C, Mask, and A

)

GrB_Matrix_extract extracts a submatrix from another matrix, identi-
cal to T = A(I,J) in MATLAB where I and J are integer vectors of row and
column indices, respectively, except that indices are zero-based in Graph-
BLAS and one-based in MATLAB. The input matrix A may be transposed
first, via the descriptor. The type of T and A are the same. The size of C is
|T|-by-1J|. Entries outside A(I,J) are not accessed and do not take part in
the computation. More precisely, assuming the matrix A is not transposed,
the matrix T is defined as follows:

T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj
T.pattern = false (ni, nj) ;
for i = 1:ni
for j = 1:nj
if (A (I(1),J(j)).pattern)
T (i,j).matrix = A (I(1),J(j)).matrix ;
T (i,j).pattern = true ;
end
end
end

If duplicate indices are present in I or J, the above method defines the
result in T. Duplicates result in the same values of A being copied into different
places in T. See Section 6 for a description of the row indices I and ni, and
the column indices J and nj. The final step is C(M) = C ® T, as described
in Section 2.3.

Performance considerations: If A is not transposed via input descriptor:
if |I| is small, then it is fastest if A is GxB_BY_ROW; if |J| is small, then it is
fastest if A is GxB_BY_COL. The opposite is true if A is transposed.
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7.8.3 GrB_Col_extract: extract column vector from matrix

GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))

(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for w, mask, and A

)

GrB_Col_extract extracts a subvector from a matrix, identicaltot = A (I, j)
in MATLAB where I is an integer vector of row indices and where j is a single
column index. The input matrix A may be transposed first, via the descrip-
tor, which results in the extraction of a single row j from the matrix A, the
result of which is a column vector w. The type of t and A are the same. The
size of wis | I|-by-1.

See Section 6 for a description of the row indices I and ni. The final step
is w(m) = w © t, as described in Section 2.3, except that all the terms are
column vectors instead of matrices.

Performance considerations: If A is not transposed: it is fastest if the
format of A is GxB_BY_COL. The opposite is true if A is transposed.
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7.9 GxB_subassign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in
their generic form with the single name GxB_subassign. This is reflected
in the prototypes. However, to avoid confusion between the different kinds
of assignment, the name of the specific function is used when describing
each variation. If the discussion applies to all variations, the simple name
GxB_subassign is used.

See Section 6 for a description of the row indices I and ni, and the column
indices J and nj.

GxB_subassign is very similar to GrB_assign, described in Section 7.10.
The two operations are compared and contrasted in Section 7.11.

SPEC: All variants of GxB_subassign are extensions to the spec.

7.9.1 GxB_Vector_subassign: assign to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
)

GxB_Vector_subassign operates on a subvector w(I) of w, modifying
it with the vector u. The method is identical to GxB_Matrix_subassign
described in Section 7.9.2, where all matrices have a single column each.
The mask has the same size as w(I) and u. The only other difference is that
the input u in this method is not transposed via the GrB_INPO descriptor.
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7.9.2 GxB_Matrix_subassign: assign to

a submatrix

GrB_Info GxB_subassign //

(
GrB_Matrix C, //
const GrB_Matrix Mask, //
const GrB_BinaryOp accum, //
const GrB_Matrix A, //
const GrB_Index *I, //
const GrB_Index ni, //
const GrB_Index *J, //
const GrB_Index nj, //
const GrB_Descriptor desc //

)

C(I,J)<Mask> = accum (C(I,J),A)
input/output matrix for results

optional mask for C(I,J), unused if NULL
optional accum for Z=accum(C(I,J),T)
first input: matrix A

row indices

number of row indices

column indices

number of column indices

descriptor for C(I,J), Mask, and A

GxB_Matrix_subassign operates only on a submatrix S of C, modifying
it with the matrix A. For this operation, the result is not the entire matrix C,
but a submatrix S=C(I,J) of C. The steps taken are as follows, except that
A may be optionally transposed via the GrB_INPO descriptor option.

Step GraphBLAS description
notation
1 S=C(I,J) extract the C(I,J) submatrix
S(M) =S ® A apply the accumulator/mask to the submatrix S

3 CILJ)=S

put the submatrix S back into C(I, J)

The accumulator/mask step in Step 2 is the same as for all other Graph-
BLAS operations, described in Section 2.3, except that for GxB_subassign,
it is applied to just the submatrix S = C(I,J), and thus the Mask has the

same size as A, S, and C(I,J).

The GxB_subassign operation is the reverse of matrix extraction:

e For submatrix extraction, GrB_Matrix_extract, the submatrix A(I, J)
appears on the right-hand side of the assignment, C=A(I,J), and entries
outside of the submatrix are not accessed and do not take part in the

computation.

e For submatrix assignment, GxB_Matrix_subassign, the submatrix C(I, J)
appears on the left-hand-side of the assignment, C(I,J)=A, and entries
outside of the submatrix are not accessed and do not take part in the

computation.

132




In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the Mask matrix is present it is the same size as
the submatrix:

e For submatrix extraction, C(M) = C ® A(I,J) is computed, where
the submatrix is on the right. The mask M has the same size as the
submatrix A(I,J).

e For submatrix assignment, C(I,J)(M) = C(I,J) ® A is computed, where
the submatrix is on the left. The mask M has the same size as the sub-

matrix C(I,J).

In Step 1, the submatrix S is first computed by the GrB_Matrix_extract
operation, S=C(I,J).

Step 2 accumulates the results S(M) =S ® T, exactly as described in
Section 2.3, but operating on the submatrix S, not C, using the optional
Mask and accum operator. The matrix T is simply T = A, or T = AT if A
is transposed via the desc descriptor, GrB_INPO. The GrB_REPLACE option
in the descriptor clears S after computing Z =T or Z = C ® T, not all of
C since this operation can only modify the specified submatrix of C.

Finally, Step 3 writes the result (which is the modified submatrix S and
not all of C) back into the C matrix that contains it, via the assignment
C(I,J)=8, using the reverse operation from the method described for matrix
extraction:

for i = 1:ni
for j = 1:nj
if (S (i,j).pattern)
C (I(i),J(j)).matrix = S (i,j).matrix ;
C (I(i),J(j)).pattern = true ;
end
end
end

Results are not defined for any GxB_subassign operation if duplicate
indices appear in I or J.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if | J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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7.9.3 GxB_Col_subassign: assign to a sub-column of a matrix

GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(I,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(I,j) and mask

)

GxB_Col_subassign modifies a single sub-column of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector J[0]=j is a single
column index (and thus nj=1), and where all matrices in GxB_Matrix_subassign
(except C) consist of a single column. The mask vector has the same size as
u and the sub-column C(I,j). The input descriptor GrB_INPO is ignored;
the input vector u is not transposed. Refer to GxB_Matrix_subassign for
further details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GxB_BY_COL. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GxB_BY_ROW.

7.9.4 GxB_Row_subassign: assign to a sub-row of a matrix

GrB_Info GxB_subassign // C(i,J)<mask’> = accum (C(i,J),u’)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,J) and mask
)

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector I[0]=i is a single
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row index (and thus ni=1), and where all matrices in GxB_Matrix_subassign
(except C) consist of a single row. The mask vector has the same size as u
and the sub-column C(I,j). The input descriptor GrB_INPO is ignored; the
input vector u is not transposed. Refer to GxB_Matrix_subassign for further
details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GxB_BY_COL. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GxB_BY_ROW.

7.9.5 GxB_Vector_subassign_<type>: assign a scalar to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
)

GxB_Vector_subassign_<type> assigns a single scalar to an entire sub-
vector of the vector w. The operation is exactly like setting a single entry in an
n-by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. For further details of this function, see GxB_Matrix_subassign_<type>
in Section 7.9.6.

Unlike GrB_Vector_assign_<type> (see Section 7.10.5), results are not
defined if I contains duplicate indices.
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7.9.6 GxB_Matrix_subassign_<type>: assign a scalar to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J) and Mask

)

GxB_Matrix_subassign_<type> assigns a single scalar to an entire sub-
matrix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix A
is assigned to C(I,J) using the same method as in GxB_Matrix_subassign.
Refer to that function in Section 7.9.2 for further details. For the accumu-
lation step, the scalar x is typecasted directly into the type of C when the
accum operator is not applied to it, or into the ytype of the accum operator,
if accum is not NULL, for entries that are already present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 4.8.9). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error. Unlike GrB_Matrix_assign_<type> (see Section 7.10.5), results are
not defined if I or J contain duplicate indices.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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7.10 GrB_assign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,

which modifies a submatrix of the matrix C. All methods can be used in their

generic form with the single name GrB_assign. These methods are very simi-

lar to their GxB_subassign counterparts in Section 7.9. They differ primarily

in the size of the Mask, and how the GrB_REPLACE option works. Refer to

Section 7.11 for a complete comparison of GxB_subassign and GrB_assign.
See Section 6 for a description of I, ni, J, and nj.

7.10.1 GrB_Vector_assign: assign to a subvector

(

const
const
const
const
const
const

)

GrB_Info GrB_assign

GrB_Vector w,

GrB_Vector mask,
GrB_BinaryOp accum,
GrB_Vector u,
GrB_Index *I,
GrB_Index ni,
GrB_Descriptor desc

//

//
//
//
//
//
//
//

w<mask>(I) = accum (w(I),u)

input/output matrix for results
optional mask for w, unused if NULL
optional accum for z=accum(w(I),t)
first input: vector u

row indices

number of row indices

descriptor for w and mask

GrB_Vector_assign operates on a subvector w(I) of w, modifying it with
the vector u. The mask vector has the same size as w. The method is identical
to GrB_Matrix_assign described in Section 7.10.2, where all matrices have
a single column each. The only other difference is that the input u in this
method is not transposed via the GrB_INPO descriptor.
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7.10.2 GrB_Matrix_assign: assign to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C, Mask, and A

)

GrB_Matrix_assign operates on a submatrix S of C, modifying it with
the matrix A. It may also modify all of C, depending on the input descriptor
desc and the Mask.

Step GraphBLAS description

notation

S=C(I,J) extract C(I,J) submatrix

S=S®A apply the accumulator (but not the mask) to S
Z=C make a copy of C

Z(I,J) =S put the submatrix into Z(I,J)

C(M) =7  apply the mask/replace phase to all of C

Uk W N+~

In contrast to GxB_subassign, the Mask has the same as C.

Step 1 extracts the submatrix and then Step 2 applies the accumulator
(or S = A if accum is NULL). The Mask is not yet applied.

Step 3 makes a copy of the C matrix, and then Step 4 writes the submatrix
S into Z. This is the same as Step 3 of GxB_subassign, except that it
operates on a temporary matrix Z.

Finally, Step 5 writes Z back into C via the Mask, using the Mask/Replace
Phase described in Section 2.3. If GrB_REPLACE is enabled, then all of C is
cleared prior to writing Z via the mask. As a result, the GrB_REPLACE option
can delete entries outside the C(I,J) submatrix.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if | J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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7.10.3 GrB_Col_assign: assign to a sub-column of a matrix

GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(:,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(:,j) and mask

)

GrB_Col_assign modifies a single sub-column of a matrix C. It is the same
as GrB_Matrix_assign where the index vector J[0]=j is a single column
index, and where all matrices in GrB_Matrix_assign (except C) consist of a
single column.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single column of C.

The input descriptor GrB_INPO is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign
if the format of C is GxB_BY_COL. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GxB_BY_ROW.
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7.10.4 GrB_Row_assign: assign to a sub-row of a matrix

GrB_Info GrB_assign // C<mask’>(i,J) = accum (C(i,J),u’)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,:), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,:) and mask

)

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the same
as GxB_Matrix_subassign where the index vector I[0]=1i is a single row
index, and where all matrices in GxB_Matrix_subassign (except C) consist
of a single row.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single row of C.

The input descriptor GrB_INPO is ignored; the input vector u is not trans-
posed. Refer to GxB_Matrix_subassign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign
if the format of C is GxB_BY_COL. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GxB_BY_ROW.
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7.10.5 GrB_Vector_assign_<type>: assign a scalar to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)

(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask

)

GrB_Vector_assign_<type> assigns a single scalar to an entire subvector
of the vector w. The operation is exactly like setting a single entry in an n-
by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. The mask vector has the same size as w. For further details of this
function, see GrB_Matrix_assign_<type> in the next section.

In contrast to GxB_Vector_subassign_<type>, results are well-defined if
I contains duplicate indices. Duplicate indices are simply ignored.

7.10.6 GrB_Matrix_assign_<type>: assign a scalar to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C and Mask

)

GrB_Matrix_assign_<type> assigns a single scalar to an entire subma-
trix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix
A is assigned to C(I,J) using the same method as in GrB_Matrix_assign.
Refer to that function in Section 7.10.2 for further details.

The Mask has the same size as C.
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For the accumulation step, the scalar x is typecasted directly into the
type of C when the accum operator is not applied to it, or into the ytype
of the accum operator, if accum is not NULL, for entries that are already
present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 4.8.9). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

In contrast to GxB_Matrix_subassign_<type>, results are well-defined if
I or J contain duplicate indices. Duplicate indices are simply ignored.

Performance considerations: If A is not transposed: if | I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if | J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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7.11 Comparing GrB_assign and GxB_subassign

The GxB_subassign and GrB_assign operations are very similar, but they
differ in three ways:

1. The Mask has a different size: The mask in GxB_subassign has
the same dimensions as w(I) for vectors and C(I,J) for matrices. In
GrB_assign, the mask is the same size as w or C, respectively (ex-
cept for the row/col variants). The two masks are related. If M is the
mask for GrB_assign, then M(I,J) is the mask for GxB_subassign. If
there is no mask, or if I and J are both GrB_ALL, the two masks are
the same. For GrB_Row_assign and GrB_Col_assign, the mask vector
is the same size as a row or column of C, respectively. For the cor-
responding GxB_Row_subassign and GxB_Col_subassign operations,
the mask is the same size as the sub-row C(i,J) or subcolumn C(TI, j),
respectively.

2. GrB_REPLACE is different: They differ in how C is affected in areas
outside the C(I,J) submatrix. In GxB_subassign, the C(I,J) sub-
matrix is the only part of C that can be modified, and no part of C
outside the submatrix is ever modified. In GrB_assign, it is possible
to delete entries in C outside the submatrix, but only in one specific
manner. Suppose the mask M is present (or, suppose it is not present
but GrB_SCMP is true). After (optionally) complementing the mask, the
value of M(i, j) can be 0 for some entry outside the C(I,J) submatrix.
If the GrB_REPLACE descriptor is true, GrB_assign deletes this entry.

3. Scalar expansion when duplicates appear in I or J:

They differ in how duplicate indices are treated in I and J. For both
assign and subassign, results are not defined for GrB_Matrix_*assign,
GrB_Vector_*assign, GrB_Row_x*assign, and GrB_Col_*assign when
duplicate indices appear in I or J. The scalar expansion operations,
GrB_*_assign_<type>, are well-defined if duplicate indices appear (the
results are the same as if duplicates are removed first from I and J).
However, the scalar expansion operations GxB_x*_subassign_<type>
are not well-defined if duplicate indices appear in I or J.

GxB_subassign and GrB_assign are identical if GrB_REPLACE is set to
its default value of false, and if the masks happen to be the same. The two
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masks can be the same in two cases: either the Mask input is NULL (and
it is not complemented via GrB_SCMP), or I and J are both GrB_ALL. For
scalar expansion, no duplicates can appear in the index lists I and J. If all
these conditions hold, the two algorithms are identical and have the same
performance. Otherwise, GxB_subassign is much faster than GrB_assign
when the latter must examine the entire matrix C to delete entries (when
GrB_REPLACE is true), and if it must deal with a much larger Mask matrix.
However, both methods have specific uses.

Consider using C(I,J)+=F for many submatrices F (for example, when
assembling a finite-element matrix). If the Mask is meant as a specification
for which entries of C should appear in the final result, then use GrB_assign.

If instead the Mask is meant to control which entries of the submatrix
C(I,J) are modified by the finite-element F, then use GxB_subassign. This
is particularly useful is the Mask is a template that follows along with the
finite-element F, independent of where it is applied to C. Using GrB_assign
would be very difficult in this case since a new Mask, the same size as C,
would need to be constructed for each finite-element F.

In GraphBLAS notation, the two methods can be described as follows:

matrix and vector subassign C(I,J)(M) =C(I,J)® A
matrix and vector assign CM) (L)) =C(ILJ)o A

This notation does not include the details of the GrB_SCMP and GrB_REPLACE
descriptors, but it does illustrate the difference in the Mask. In the sub-
assign, Mask is the same size as C(I,J) and A. If I[0]=i and J[0]=j, Then
Mask(0,0) controls how C(i,j) is modified by the subassign, from the value
A(0,0). In the assign, Mask is the same size as C, and Mask(i, j) controls
how C(i,j) is modified.

The GxB_subassign and GrB_assign functions have the same signatures;
they differ only in how they consider the Mask and the GrB_REPLACE descrip-
tor, and in how duplicate indices are treated for scalar expansion.

Details of each step of the two operations are listed below:

Step GrB_Matrix_assign GxB_Matrix_subassign

1 S=C(LJ) S=C(,J)

2  S=SoeA S(M) =S ® A
3 Z=C C(L,J) =S

4 ZLI) =S

5  CM)=2%
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Step 1 is the same. In the Accumulator Phase (Step 2), the expression
S ® A, described in Section 2.3, is the same in both operations. The result is
simply A if accum is NULL. It only applies to the submatrix S, not the whole
matrix. The result S ® A is used differently in the Mask/Replace phase.
The Mask/Replace Phase, described in Section 2.3 is different:

e For GrB_assign (Step 5), the mask is applied to all of C. The mask has
the same size as C. Just prior to making the assignment via the mask,
the GrB_REPLACE option can be used to clear all of C first. This is the
only way in which entries in C that are outside the C(I,J) submatrix
can be modified by this operation.

e For GxB_subassign (Step 2b), the mask is applied to just S. The
mask has the same size as C(I,J), S, and A. Just prior to making the
assignment via the mask, the GrB_REPLACE option can be used to clear
S first. No entries in C that are outside the C(I,J) can be modified
by this operation. Thus, GrB_REPLACE has no effect on entries in C
outside the C(I,J) submatrix.

The differences between GrB_assign and GxB_subassign can be seen in
Tables 1 and 2. The first table considers the case when the entry ¢;; is in the
C(I,J) submatrix, and it describes what is computed for both GrB_assign
and GxB_subassign. They perform the exact same computation; the only
difference is how the value of the mask is specified.

The first column of the table is yes if GrB_REPLACE is enabled, and a dash
otherwise. The second column is yes if an accumulator operator is given,
and a dash otherwise. The third column is ¢;; if the entry is present in C,
and a dash otherwise. The fourth column is a;j if the corresponding entry
is present in A, where ¢ = I(¢’) and 7 = J(¢).

The mask column is 1 if the mask allows C to be modified, and 0 oth-
erwise. This is m;; for GrB_assign, and m;  for GxB_subassign, to reflect
the difference in the mask, but this difference is not reflected in the table.
The value 1 or 0 is the value of the entry in the mask after it is optionally
complemented via the GrB_SCMP option.

Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case ¢;; is not modified if present, or not inserted
into C if not present.
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repl accum C A mask | action taken by GrB_assign and GxB_subassign
- - cij apy 1 cij = ayjr, update

- - - a1 Cij = ajjr, insert

- - cij - 1 delete c;; because a;j» not present

- ; .- 1

- - Cij Qg 0

- - - ai’j’ 0

- - Cij - 0

- - - - 0

yes - cij apjy 1 ¢ij = ayy, update

yes - - a1 Cij = ajjr, insert

yes - cij - 1 delete c;; because a;j» not present
yes - - - 1

yes - cj ayy 0 delete ¢;; (because of GrB_REPLACE)
yes - - ayryr 0

yes - Cij - 0 delete ¢;; (because of GrB_REPLACE)
yes - - - 0

- yes cij apjy 1 ¢ij = ¢ij © ayjr, apply accumulator
- yes - a1 Cij = ajjr, insert

- yes cij - 1

- yes - - 1

- yes cij a0

- yes - ayryr 0

- yes cij - 0

- yes - - 0

yes  yes cij apy 1 ¢ij = ¢ij © ayjr, apply accumulator
yes  yes - a1 Cij = ajjr, insert

yes  yes cij - 1

yes  yes - - 1

yes  yes cj ayy 0 delete ¢;; (because of GrB_REPLACE)
yes  yes - ayryr 0

yes  yes cij - 0 delete ¢;; (because of GrB_REPLACE)
yes  yes - - 0

Table 1: Results of assign and subassign for entries in the C(I,J) submatrix
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repl accum C C=7Z mask | action taken by GrB_assign

- - Cij  Cij 1

- - - - 1

- - Cij Cl'j 0

- - - - 0

yes - Cij  Cij 1

yes - - - 1

yes - Cij  Cij 0 delete c¢;; (because of GrB_REPLACE)
yes - - - 0

- yes Cij  Cij 1

- yes - - 1

- yes Cij CZ‘j 0

- yes - - 0

yes  yes Cij  Cij 1

yes  yes - - 1

yes  yes Cij  Cij 0 delete ¢;; (because of GrB_REPLACE)
yes  yes - - 0

Table 2: Results of assign for entries outside the C(I,J) submatrix. Sub-
assign has no effect on these entries.

Table 2 illustrates how GrB_assign and GxB_subassign differ for entries
outside the submatrix. GxB_subassign never modifies any entry outside the
C(I,J) submatrix, but GrB_assign can modify them in two cases listed in
Table 2. When the GrB_REPLACE option is selected, and when the Mask(i, j)
for an entry ¢;; is false (or if the Mask(i, j) is true and GrB_SCMP is enabled
via the descriptor), then the entry is deleted by GrB_assign.

The fourth column of Table 2 differs from Table 1, since entries in A never
affect these entries. Instead, for all index pairs outside the I x J submatrix,
C and Z are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either ¢;; is present, or not. This in contrast
to Table 1, where each section must consider four different cases.

The GrB_Row_assign and GrB_Col_assign operations are slightly differ-
ent. They only affect a single row or column of C. For GrB_Row_assign,
Table 2 only applies to entries in the single row C(i,J) that are outside the
list of indices, J. For GrB_Col_assign, Table 2 only applies to entries in the
single column C(I, j) that are outside the list of indices, I.
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7.11.1 Example

The difference between GxB_subassign and GrB_assign is illustrated in
the following example. Consider the 2-by-2 matrix C where all entries are
present.

11 12
C= { 21 22 }
Suppose GrB_REPLACE is true, and GrB_SCMP is false. Let the Mask be:
11
.

Let A = 100, and let the index sets be I = 0 and J = 1. Consider the
computation C(M)(0,1) = C(0,1) + A, using the GrB_assign operation.

The result is:
11 112
c_{ L ]

The (0,1) entry is updated and the (1,0) entry is deleted because its Mask
is zero. The other two entries are not modified since Z = C outside the
submatrix, and those two values are written back into C because their Mask
values are 1. The (1,0) entry is deleted because the entry Z(1,0) = 21 is
prevented from being written back into C since Mask(1,0)=0.

Now consider the analogous GxB_subassign operation. The Mask has the
same size as A, namely:

M=[1].
After computing C(0,1)(M) = C(0,1) + A, the result is
11 112
€= { 21 22 } '

Only the C(I,J) submatrix, the single entry C(0,1), is modified by
GxB_subassign. The entry C(1,0) = 21 is unaffected by GxB_subassign,
but it is deleted by GrB_assign.
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7.11.2 Performance of GxB_subassign, GrB_assign and GrB_* setElement

When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications
to a matrix by GxB_subassign, GrB_assign, and GrB_*_setElement can
postponed, and computed all at once later on. This has a huge impact on
performance.

A sequence of assignments is fast if their completion can be postponed
for as long as possible, or if they do not modify the pattern at all. Modifying
the pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.

Consider a sequence of ¢ submatrix assignments C(I,J)=C(I,J)+A to an
n-by-n matrix C where each submatrix A has size a-by-a with s entries, and
where C starts with ¢ entries. Assume the matrices are all stored in non-
hypersparse form, by row (GxB_BY_ROW).

If blocking mode is enabled, or if the sequence requires the matrix to
be completed after each assignment, each of the ¢ assignments takes O(a +
slogn) time to process the A matrix and then O(n + ¢ + slogs) time to
complete C. The latter step uses GrB_*_build to build an update matrix
and then merge it with C. This step does not occur if the sequence of
assignments does not add new entries to the pattern of C, however. As-
suming in the worst case that the pattern does change, the total time is
O(t[a+ slogn 4+ n + c+ slogs]).

If the sequence can be computed with all updates postponed until the end
of the sequence, then the total time is no worse than O(a+ slogn) to process
each A matrix, for ¢ assignments, and then a single build at the end, taking
O(n+c+stlog st) time. The total time is O(t [a + slog n]+ (n+c+ st log st)).
If no new entries appear in C the time drops to O(t [a + slogn]), and in this
case, the time for both methods is the same; both are equally efficient.

A few simplifying assumptions are useful to compare these times. Con-
sider a graph of n nodes with O(n) edges, and with a constant bound on the
degree of each node. The asymptotic bounds assume a worst-case scenario
where C has a least some dense rows (thus the logn terms). If these are not
present, if both ¢ and ¢ are O(n), and if @ and s are constants, then the total
time with blocking mode becomes O(n?), assuming the pattern of C changes
at each assignment. This very high for a sparse graph problem. In contrast,
the non-blocking time becomes O(nlogn) under these same assumptions,
which is asymptotically much faster.
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The difference in practice can be very dramatic, since n can be many
millions for sparse graphs with n nodes and O(n), which can be handled on
a commodity laptop.

The following guidelines should be considered when using GxB_subassign,
GrB_assign and GrB_*_setElement.

1. A sequence of assignments that does not modify the pattern at all
is fast, taking as little as Q(1) time per entry modified. The worst
case time complexity is O(logn) per entry, assuming they all modify
a dense row of C with n entries, which can occur in practice. It is
more common, however, that most rows of C have a constant number
of entries, independent of n. No work is ever left pending when the
pattern of C does not change.

2. A sequence of assignments that modifies the entries that already exist
in the pattern of a matrix, or adds new entries to the pattern (using
the same accum operator), but does not delete any entries, is fast. The
matrix is not completed until the end of the sequence.

3. Similarly, a sequence that modifies existing entries, or deletes them, but
does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast.
The matrix is not completed until the end of the sequence.

4. A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assign-
ment. The time complexity can become quadratic in the worst case.

5. However, any single assignment takes no more than O(a+ slogn+n+
c+slog s) time, even including the time for a matrix completion, where
C is n-by-n with ¢ entries and A is a-by-a with s entries. This time is
essentially linear in the size of the matrix C, if A is relatively small and
sparse compared with C. In this case, n+ c are the two dominant terms.

6. In general, GxB_subassign is faster than GrB_assign. If GrB_REPLACE
is used with GrB_assign, the entire matrix C must be traversed. This
is much slower than GxB_subassign, which only needs to examine the
C(I,J) submatrix. Furthermore, GrB_assign must deal with a much
larger Mask matrix, whereas GxB_subassign has a smaller mask. Since
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its mask is smaller, GxB_subassign takes less time than GrB_assign
to access the mask.

Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient,
even without considering the advantages of non-blocking mode discussed in
Section 7.11. Consider assigning a large submatrix C(I,J)=A where C is the
Freescale2 matrix from the SuiteSparse Collection [DH11], of size 3 million
by 3 million, with 14.3 million nonzeros. With the vectors I=randperm(n,5500)
and J=randperm(n,7000) and A a random sparse matrix with 38,500 nonze-
ros, C(I,J)=A takes 87 seconds in MATLAB.! The same computation takes
0.74 seconds in SuiteSparse:GraphBLAS, a speedup of over 100. This is af-
ter finishing all pending computations in GraphBLAS and returning result
to MATLAB as a valid MATLAB sparse matrix. The dominant time com-
plexity for GraphBLAS is O(n + ¢), where n is the dimension of C and ¢ is
its number of nonzeros. As a comparison, MATLAB takes just 0.42 seconds
to compute C+C’ for this matrix, which also takes time linear in the size of
the matrix data structure, O(n + ¢).

The time for submatrix assignment can be greatly reduced if C is hyper-
sparse. Let n be the number of non-empty rows, where n < n, and sometimes
n << n. The logn terms remain since they reflect the binary search inside
a row, but the term n by itself is replaced by n or nlogn. The term a is re-
placed by alogn. The total time for a sequence of £ updates to a hypersparse
matrix C takes O(t [alogn + slogn|+ (n+ c+ stlog st)) time. This assumes
that C could include one or more dense rows, with n entries. If instead the
number of entries in each row of C is bounded by a constant, the logn term
becomes a constant. If A is also hypersparse, the value a is removed from the
expression, replaced with its number of non-empty rows, a. Suppose also ¢
is a constant, and s is O(a). Suppose the pattern of C changes. Suppose the
number of entries in any one row of C is bounded by n, and likewise for A.
Then the time for the non-hypersparse case simplifies to:

O(a+ slogn + (n+c+ slogs)).
For the hypersparse case it becomes

O(alogn + slogn + (n + ¢+ slog s)).

LAll performance measurements in this document were done on a MacBook Pro, 2.8
GHz Intel Core i7, 16 GB Ram, OSX 10.11.6, clang 8.0.0, MATLAB R2017A.
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Both of these times include the similar terms
O(slogn + (c+ slogs)),

which reflects the sorting of and searching of the nonzero entries themselves,
in C and A. Excluding those terms and just considering the additional time,
the non-hypersparse case takes an extra time of

O(a+n),
whereas the hypersparse case takes only:
O(alogn +n).

The difference is astonishing if n << n and a << a. Hypersparse C and
A matrices can be created with a = n = 2%, but suppose a = n = 2%,
say, which is 4 million. Then alog,n + 7 is only about 420 million. In
stark contrast, updating the same matrices held in non-hypersparse form
would take 2% time and memory, a number currently beyond the reach of
the world’s largest supercomputer.

If the matrices C and A have no empty columns or rows, then a = a and
n = n. Hypersparse matrices are more costly in this case, since they still
require an extra logn term to search for a specific row in C. As a result, Suite-
Sparse:GraphBLAS supports both hypersparse and non-hypersparse data
structures.
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7.12 GrB_apply: apply a unary operator

The GrB_apply function is the generic name for two specific functions:

GrB_Vector_apply and GrB_Matrix_apply. The generic name appears in
the function prototypes, but the specific function name is used when describ-
ing each variation. When discussing features that apply to both versions, the

simple name GrB_apply is used.

7.12.1 GrB_Vector_apply: apply a unary operator to a vector

(
const
const
const
const
const
)

GrB_Info GrB_apply

GrB_Vector w,

GrB_Vector mask,
GrB_BinaryOp accum,
GrB_UnaryOp op,
GrB_Vector u,
GrB_Descriptor desc

//

//
//
//
//
//
//

w<mask> = accum (w, op(w))

input/output vector for results
optional mask for w, unused if NULL
optional accum for z=accum(w,t)
operator to apply to the entries
first input: vector u

descriptor for w and mask

GrB_Vector_apply applies a unary operator to the entries of a vector,
analogous to t = op(u) in MATLAB except the operator op is only applied
to entries in the pattern of u. Implicit values outside the pattern of u are not
affected. The entries in u are typecasted into the xtype of the unary operator.
The vector t has the same type as the ztype of the unary operator. The
final step is w(m) = w ® t, as described in Section 2.3, except that all the
terms are column vectors instead of matrices.
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7.12.2 GrB_Matrix_apply: apply a unary operator to a matrix

GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A’)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A

)

GrB_Matrix_apply applies a unary operator to the entries of a matrix,
analogous to T = op(A) in MATLAB except the operator op is only applied
to entries in the pattern of A. Implicit values outside the pattern of A are not
affected. The input matrix A may be transposed first. The entries in A are
typecasted into the xtype of the unary operator. The matrix T has the same
type as the ztype of the unary operator. The final step is C(M) = C® T,
as described in Section 2.3.

The built-in GrB_IDENTITY_T operators (one for each built-in type T')
are very useful when combined with this function, enabling it to compute
C(M) = C ® A. This makes GrB_apply a direct interface to the accumula-
tor/mask function for both matrices and vectors.

To compute C(M) = A or C(M) = C ® A for user-defined types, the
user application would need to define an identity operator for the type. Since
GraphBLAS cannot detect that it is an identity operator, it must call the
operator to make the full copy T=A and apply the operator to each entry of
the matrix or vector.

The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is GrB_transpose, which does not require an
operator to perform this task. As a result, GrB_transpose can be used as
an efficient and direct interface to the accumulator/mask function for both
built-in and user-defined types. However, it is only available for matrices,
not vectors.
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7.13 GxB_select: apply a select operator

The GxB_select function is the generic name for two specific functions:
GxB_Vector_select and GxB_Matrix_select. The generic name appears in
the function prototypes, but the specific function name is used when describ-
ing each variation. When discussing features that apply to both versions, the
simple name GxB_select is used.

SPEC: The GxB_select operation and GxB_Select0Op operator are ex-
tensions to the spec.

7.13.1 GxB_Vector_select: apply a select operator to a vector

GrB_Info GxB_select // w<mask> = accum (w, op(u,k))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GxB_SelectOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const void *k, // optional input for the select operator
const GrB_Descriptor desc // descriptor for w and mask
)

GxB_Vector_select applies a select operator to the entries of a vector,
analogous to t = u.*op(u) in MATLAB except the operator op is only ap-
plied to entries in the pattern of u. Implicit values outside the pattern of u
are not affected. If the operator is not type-generic, the entries in u are type-
casted into the xtype of the select operator. The vector t has the same type
and size as u. The final step is w(m) = w ® t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices.

This operation operates on vectors just as if they were m-by-1 matrices,
except that GraphBLAS never transposes a vector via the descriptor. The
op is passed n=1 as the number of columns. Refer to the next section on
GxB_Matrix_select for more details.
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7.13.2 GxB_Matrix_select: apply a select operator to a matrix

GrB_Info GxB_select // C<Mask> = accum (C, op(A,k)) or op(A’,k)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GxB_SelectOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const void x*k, // optional input for the select operator
const GrB_Descriptor desc // descriptor for C, mask, and A
)

GxB_Matrix_select applies a select operator to the entries of a matrix,
analogous to T = A .* op(A) in MATLAB except the operator op is only
applied to entries in the pattern of A. Implicit values outside the pattern of A
are not affected. The input matrix A may be transposed first. If the operator
is not type-generic, the entries in A are typecasted into the xtype of the select
operator. The final step is C(M) = C ® T, as described in Section 2.3.

The matrix T has the same size and type as A (or the transpose of A if the
input is transposed via the descriptor). The entries of T are a subset of those
of A. Each entry A(i,j) of A is passed to the op, as z = f(i, j, m,n, a;;, k),
where A is m-by-n. If A is transposed first then the operator is applied to
entries in the transposed matrix, A’. If z is returned as true, then the entry
is copied into T, unchanged. If it returns false, the entry does not appear in
T.

For user-defined select operators, the argument k is passed to the operator
unchanged. For built-in operators, k is a pointer to an int64_t scalar that
refers to the kth diagonal of the matrix. The value k=0 specifies the main
diagonal of the matrix, k=1 is the +1 diagonal (the entries just above the
main diagonal), k=-1 is the -1 diagonal, and so on. Note that k must be
passed as a pointer to int64_t, not merely as an integer. The parameter k
is not used by GxB_NONZERO and may be passed as GrB_NULL.

The action of GxB_select with the built-in select operators is described
in the table below. The MATLAB analogs are precise for tril and triu,
but shorthand for the other operations. The MATLAB diag function re-
turns a column with the diagonal, if A is a matrix, whereas the matrix T in
GxB_select always has same size as A (or its transpose if the GrB_INPO is
set to GrB_TRAN). In the MATLAB analog column, diag is as if it operates
like GxB_select, where T is a matrix.
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GraphBLAS MATLAB

name analog

GxB_TRIL T=tril(A,k) Entries in T are the entries on and below the
kth diagonal of A.

GxB_TRIU T=triu(A,k) Entries in T are the entries on and above the
kth diagonal of A.

GxB_DIAG T=diag(A,k) Entries in T are the entries on the kth diagonal
of A.

GxB_OFFDIAG T=A-diag(A,k) Entries in T are all entries not on the kth di-
agonal of A.

GxB_NONZERO T=A(A~=0) Entries in T are all entries in A that have

nonzero value.
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7.14 GrB_reduce: reduce to a vector or scalar

The generic function name GrB_reduce may be used for all specific functions
discussed in this section. When the details of a specific function are discussed,
the specific name is used for clarity.

7.14.1 GrB_Matrix_reduce_<op>: reduce a matrix to a vector

GrB_Info GrB_reduce // w<mask> = accum (w,reduce(d))

(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> reduce, // reduce operator for t=reduce(A)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for w, mask, and A

)

GrB_Matrix_reduce_<op> is a generic name for two specific methods.
Both methods reduce a matrix to a column vector using an operator, roughly
analogous to t = sum (A’) in MATLAB, in the default case, where t is a
column vector. By default, the method reduces across the rows to obtain a
column vector; use GrB_TRAN to reduce down the columns.

GrB_Matrix_reduce_BinaryOp relies on a binary operator for the reduc-
tion: the fourth argument reduce, a GrB_BinaryOp. All three domains of
the operator must be the same. GrB_Matrix_reduce_Monoid performs the
same reduction using a GrB_Monoid as its fourth argument. In both cases
the reduction operator must be commutative and associative. Otherwise the
results are undefined.

The input matrix A may be transposed first. Its entries are then typecast
into the type of the reduce operator or monoid. The reduction is applied
to all entries in A (i,:) to produce the scalar t (i). This is done without
the use of the identity value of the monoid. If the ith row A (i,:) has no
entries, then (i) is not an entry in t and its value is implicit. If A (i,:) has
a single entry, then that is the result t (i) and reduce is not applied at all
for the ith row. Otherwise, multiple entries in row A (i, :) are reduced via
the reduce operator or monoid to obtain a single scalar, the result t (i).

The final step is w(m) = w ® t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.
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7.14.2 GrB_Vector_reduce_<type>: reduce a vector to a scalar

GrB_Info GrB_reduce // ¢ = accum (c, reduce_to_scalar (u))
(
<type> *c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Vector u, // vector to reduce
const GrB_Descriptor desc // descriptor (currently unused)
)

GrB_Vector_reduce_<type> reduces a vector to a scalar, analogous to
t = sum (u) in MATLAB, except that in GraphBLAS any commutative and
associative monoid can be used in the reduction.

The reduction operator is a commutative and associative monoid with
an identity value. Results are undefined if the monoid does not have these
properties. This function differs from GrB_Matrix_reduce_BinaryOp (which
reduces a matrix to a vector) in that it requires a valid monoid additive
identity value. If the vector u has no entries, that identity value is copied
into the scalar t. Otherwise, all of the entries in the vector are reduced to a
single scalar using the reduce operator.

The scalar type is any of the built-in types, or a user-defined type. In
the function signature it is a C type: bool, int8_t, ... float, double, or
void * for a user-defined type. The user-defined type must be identical to
the type of the vector u. This cannot be checked by GraphBLAS and thus
results are undefined if the types are not the same.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API. This function has no mask so its accumula-
tor/mask step differs from the other GraphBLAS operations. It does not use
the methods described in Section 2.3, but uses the following method instead.

If accum is NULL, then the scalar t is typecast into the type of c, and ¢ = t
is the final result. Otherwise, the scalar t is typecast into the ytype of the
accum operator, and the value of ¢ (on input) is typecast into the xtype of
the accum operator. Next, the scalar z = accum (c,t) is computed, of the
ztype of the accum operator. Finally, z is typecast into the final result, c.

Forced completion: All computations for the vector u are guaranteed to
be finished when the method returns.
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7.14.3 GrB_Matrix_reduce_<type>:

reduce a matrix to a scalar

GrB_Info GrB_reduce

(
<type> *c,
const GrB_BinaryOp accum,
const GrB_Monoid monoid,
const GrB_Matrix A,
const GrB_Descriptor desc
)

//

//
//
//
//
//

¢ = accum (c, reduce_to_scalar (A))

result scalar

optional accum for c=accum(c,t)
monoid to do the reduction
matrix to reduce

descriptor (currently unused)

GrB_Matrix_reduce_<type> reduces a matrix A to a scalar, roughly anal-
ogoustot = sum (A (:)) in MATLAB. This function is identical to reduc-
ing a vector to a scalar, since the positions of the entries in a matrix or vector
have no effect on the result. Refer to the reduction to scalar described in the

previous Section 7.14.2.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns.
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7.15 GrB_transpose: transpose a matrix

GrB_Info GrB_transpose // C<Mask> = accum (C, A’)

(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, Mask, and A

)

GrB_transpose transposes a matrix A, just like the array transpose T = A.’
in MATLAB. The internal result matrix T = A’ (or merely T = A if A is
transposed via the descriptor) has the same type as A. The final step is
C(M) =C0oT, as described in Section 2.3, which typecasts T as needed
and applies the mask and accumulator.

To be consistent with the rest of the GraphBLAS API regarding the
descriptor, the input matrix A may be transposed first. It may seem counter-
intuitive, but this has the effect of not doing any transpose at all. As
a result, GrB_transpose is useful for more than just transposing a ma-
trix. It can be used as a direct interface to the accumulator/mask op-
eration, C(M) = C ® A. This step also does any typecasting needed, so
GrB_transpose can be used to typecast a matrix A into another matrix C.
To do this, simply use NULL for the Mask and accum, and provide a non-
default descriptor desc that sets the transpose option:

// C = typecasted copy of A
GrB_Descriptor_set (desc, GrB_INPO, GrB_TRAN) ;
GrB_transpose (C, NULL, NULL, A, desc) ;

If the types of C and match, then the above two lines of code are the same
as GrB_Matrix_dup (&C, A), except that for GrB_transpose the matrix C
must already exist and be the right size. If C does not exist, the work of
GrB_Matrix_dup can be replicated with this:

// C = create an exact copy of A, just like GrB_Matrix_dup
GrB_Matrix C ;

GrB_Type type ;

GrB_Index nrows, ncols ;

GrB_Descriptor desc ;

GxB_Matrix_type (&type, A) ;

GrB_Matrix_nrows (&nrows, A) ;
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GrB_Matrix_ncols (&ncols, A) ;

GrB_Matrix_new (&C, type, nrows, ncols) ;
GrB_Descriptor_new (&desc) ;

GrB_Descriptor_set (desc, GrB_INPO, GrB_TRAN) ;
GrB_transpose (C, NULL, NULL, A, desc) ;

Since the input matrix A is transposed by the descriptor, SuiteSparse:Graph-
BLAS does the right thing and does not transpose the matrix at all. Since
T = Ais not typecasted, SuiteSparse:GraphBLAS can construct T internally
in O(1) time and using no memory at all. This makes Grb_transpose a fast
and direct interface to the accumulator/mask function in GraphBLAS.

This example is of course overkill, since the work can all be done by a
single call to the GrB_Matrix_dup function. However, the GrB_Matrix_dup
function can only create C as an exact copy of A, whereas variants of the code
above can do many more things with these two matrices. For example, the
type in the example can be replaced with any other type, perhaps selected
from another matrix or from an operator.

Consider the following code excerpt, which uses GrB_transpose to re-
move all diagonal entries from a square matrix. It first creates a diagonal
Mask, which is complemented so that C(—M) = A does not modify the diag-
onal of C. The REPLACE ensures that C is cleared first, and then C(-M) = A
modifies all entries in C where the mask M is false. These correspond to all
the off-diagonal entries. The descriptor ensures that A is not transposed at
all. The Mask can have any pattern, of course, and wherever it is set true,
the corresponding entries in A are deleted from the copy C.

// remove all diagonal entries from the matrix A
// Mask = speye (n) ;
GrB_Matrix_new (&Mask, GrB_BOOL, n, n) ;
for (int64_t i = 0 ; i < n ; i++)
{

GrB_Matrix_setElement (Mask, (bool) true, i, i) ;
}
// C<"Mask> = A, clearing C first. No transpose.
GrB_Descriptor_new (&desc) ;
GrB_Descriptor_set (desc, GrB_INPO, GrB_TRAN) ;
GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ;
GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ;
GrB_transpose (A, Mask, NULL, A, desc) ;
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7.16 GxB_kron: Kronecker product

GrB_Info GxB_kron

(

GrB_Matrix C,

const
const
const
const
const
const

)

GrB_Matrix Mask,
GrB_BinaryOp accum,
GrB_BinaryOp op,
GrB_Matrix A,
GrB_Matrix B,
GrB_Descriptor desc

//

//
//
//
//
/7
//
//

C<Mask> = accum (C, kron(A,B))

input/output matrix for results
optional mask for C, unused if NULL
optional accum for Z=accum(C,T)
defines ’*’ for T=kron(A,B)

first input: matrix A

second input: matrix B

descriptor for C, Mask, A, and B

GxB_kron computes the Kronecker product, C(M) = C ® kron(A, B) where

kron(A,B) =

CL00®B

am-1,0® B

aO,n—l & B

m—1,n—1 X B

The ® operator is defined by the op parameter. It is applied in an element-
wise fashion (like GrB_eWiseMult), where the pattern of the submatrix a;; @B
is the same as the pattern of B if a;; is an entry in the matrix A, or empty
otherwise. The input matrices A and B can be of any dimension, and both
matrices may be transposed first via the descriptor, desc. Entries in A and
B are typecast into the input types of the op. The matrix T=kron(A,B) has
the same type as the ztype of the binary operator, op. The final step is
C(M) = C® T, as described in Section 2.3.

SPEC: GxB_kron is an extension to the spec.
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8 Printing GraphBLAS objects

SPEC: The GraphBLAS API has no mechanism for printing the con-
tents of GraphBLAS objects. This entire section is an extension to the
specification.

The 9 different objects handled by SuiteSparse:GraphBLAS are all opaque,
although nearly all of their contents can be extracted via methods such as
GrB_Matrix_extractTuples, GrB_Matrix_extractElement, GxB_Matrix_type,
and so on. The GraphBLAS C API has no mechanism for printing all the
contents of GraphBLAS objects, but this is helpful for debugging. Nine
type-specific methods and two type-generic methods are provided, listed in
the table below:

GxB_Type_fprint print and check a GrB_Type
GxB_UnaryOp_fprint print and check a GrB_UnaryOp
GxB_BinaryOp_fprint print and check a GrB_BinaryOp
GxB_SelectOp_fprint print and check a GxB_SelectOp

GxB_Monoid_fprint print and check a GrB_Monoid
GxB_Semiring_fprint print and check a GrB_Semiring
GxB_Descriptor_fprint print and check a GrB_Descriptor
GxB_Matrix_fprint print and check a GrB_Matrix
GxB_Vector_fprint print and check a GrB_Vector
GxB_fprint print/check any object to a file
GxB_print print/check any object to stdout

These methods do not modify the status of any object. If a matrix or vec-
tor has not been completed, the pending computations are guaranteed to not
be performed. The reason is simple. It is possible for a bug in the user appli-
cation (such as accessing memory outside the bounds of an array) to mangle
the internal content of a GraphBLAS object, and the GxB_*print methods
can be helpful tools to track down this bug. If GxB_*print attempted to
complete any computations prior to printing or checking the contents of the
matrix or vector, then further errors could occur, including a segfault.

By contrast, all GraphBLAS methods and operations that return values
into user-provided arrays or variables force the completion of pending oper-
ations (GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples, and
GrB_reduce (to scalar)). The GxB_xprint methods provide a useful alter-
native for debugging, and for a quick understanding of what GraphBLAS is
computing while developing a user application.
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Each of the methods has a parameter of type GxB_Print_Level that
specifies the amount to print:

typedef enum

{
GxB_SILENT = O, // nothing is printed, just check the object
GxB_SUMMARY = 1, // print a terse summary
GxB_SHORT = 2, // short description, about 30 entries of a matrix
GxB_COMPLETE = 3 // print the entire contents of the object

}

GxB_Print_Level ;

The nine type-specific functions include an additional argument, the name
string. The name is printed at the beginning of the display (assuming the
print level is not GxB_SILENT) so that the object can be more easily identified
in the output. For the type-generic methods GxB_fprint and GxB_print,
the name string is the variable name of the object itself.

If the file £ is NULL, nothing is printed (pr is effectively GxB_SILENT) If
pr is outside the bounds 0 to 3, negative values are treated as GxB_SILENT,
and values larger than 3 are treated as GxB_COMPLETE. If name is NULL, it is
treated as the empty string. None of these are error conditions.

The methods check their input objects carefully and extensively, even
when pr is equal to GxB_SILENT. The following error codes can be returned:

GrB_SUCCESS: object is valid

GrB_UNINITIALIZED_OBJECT: object is not initialized
GrB_INVALID_OBJECT: object is not valid

GrB_NULL_POINTER: object is a NULL pointer

GrB_INVALID_VALUE: fprintf returned an I/O error; see the ANSI C
errno or GrB_error( ) for details.

The content of any GraphBLAS object is opaque, and subject to change.
As aresult, the exact content and format of what is printed is implementation-
dependent, and will change from version to version of SuiteSparse:GraphBLAS.
Do not attempt to rely on the exact content or format by trying to parse
the resulting output via another program. The intent of these functions is
to produce a report of an object for visual inspection. If the user appli-
cation needs to extract content from a GraphBLAS matrix or vector, use
GrB_*_extractTuples instead.
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8.1 GxB_fprint: Print a GraphBLAS object to a file

GrB_Info GxB_fprint // print and check a GraphBLAS object
(
GrB_<objecttype> object, // object to print and check
GxB_Print_Level pr, // print level
FILE xf // file for output
)

The GxB_fprint function prints the contents of any of the 9 Graph-
BLAS objects to the file £. If £ is NULL, the results are printed to stdout.
For example, to print the entire contents of a matrix A to the file f, use
GxB_fprint (A, GxB_COMPLETE, f).

8.2 GxB_print: Print a GraphBLAS object to stdout

GrB_Info GxB_print // print and check a GrB_Vector
(
GrB_<objecttype> object, // object to print and check
GxB_Print_Level pr // print level
)

GxB_print is the same as GxB_fprint, except that it prints the contents
of the object to stdout instead of a file f. For example, to print the entire
contents of a matrix A, use GxB_print (A, GxB_COMPLETE).

8.3 GxB_Type_fprint: Print a GrB_Type

GrB_Info GxB_Type_fprint // print and check a GrB_Type
(
GrB_Type type, // object to print and check
const char #*name, // name of the object
GxB_Print_Level pr, // print level
FILE xf // file for output
)

For example, GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)
prints the contents of the GrB_BOOL object to the file £.
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8.4 GxB_UnaryOp_fprint: Print a GrB_UnaryOp

GrB_Info GxB_UnaryOp_fprint

(
GrB_UnaryOp unaryop,
const char *name,
GxB_Print_Level pr,
FILE *f

)

// print and check a GrB_UnaryOp

// object to print and check
// name of the object

// print level

// file for output

For example, GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)

prints the GrB_LNOT unary operator to the file f.

8.5 GxB_BinaryOp_fprint: Print a GrB_BinaryOp

GrB_Info GxB_BinaryOp_fprint
(
GrB_BinaryOp binaryop,
const char *name,
GxB_Print_Level pr,
FILE *f
)

// print and check a GrB_BinaryOp

// object to print and check
// name of the object

// print level

// file for output

For example, GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)

prints the GrB_PLUS_FP64 binary operator to the file f.

8.6 GxB_SelectOp_fprint: Print a GxB_SelectOp

GrB_Info GxB_SelectOp_fprint
(
GxB_SelectOp selectop,
const char *name,
GxB_Print_Level pr,
FILE *f
)

// print and check a GxB_SelectOp

// object to print and check
// name of the object

// print level

// file for output

For example, GxB_SelectOp_fprint (GxB_TRIL, "tril", GxB_COMPLETE, f)

prints the GxB_TRIL select operator to the file f.
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8.7 GxB_Monoid_fprint: Print a GrB_Monoid

GrB_Info GxB_Monoid_fprint // print and check a GrB_Monoid
(
GrB_Monoid monoid, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
)

For example, GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",
GxB_COMPLETE, f) prints the predefined GxB_PLUS_FP64_MONOID (based on
the binary operator GrB_PLUS_FP64) to the file £.

8.8 GxB_Semiring_fprint: Print a GrB_Semiring

GrB_Info GxB_Semiring_fprint // print and check a GrB_Semiring
(
GrB_Semiring semiring, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE xf // file for output
)

For example, GxB_Semiring fprint (GxB_PLUS_TIMES_FP64, "standard",
GxB_COMPLETE, f) prints the predefined GxB_PLUS_TIMES_FP64 semiring to
the file f.

8.9 GxB_Descriptor_fprint: Print a GrB_Descriptor

GrB_Info GxB_Descriptor_fprint // print and check a GrB_Descriptor
(
GrB_Descriptor descriptor, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
)

For example, GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)
prints the descriptor d to the file f.
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8.10 GxB_Matrix_fprint: Print a GrB_Matrix

GrB_Info GxB_Matrix_fprint // print and check a GrB_Matrix
(
GrB_Matrix A, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
)

For example, GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f) prints
about 30 entries from the matrix A to the file £.

8.11 GxB_Vector_fprint: Print a GrB_Vector

GrB_Info GxB_Vector_fprint // print and check a GrB_Vector
(
GrB_Vector v, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
)

For example, GxB_Vector_fprint (v, "my vector", GxB_SHORT, f) prints
about 30 entries from the vector v to the file £.

8.12 Performance and portability considerations

Even when the print level is GxB_SILENT, these methods extensively check
the contents of the objects passed to them, which can take some time. They
should be considered debugging tools only, not for final use in production.
To control when these methods are used, the user application could define
the following macro and global variable pr in a user include file:

#include <assert.h>
extern GxB_Print_Level pr ;
#define CHECK(object) assert (GxB_print (object, pr) == GrB_SUCCESS)

Place the following statement:

GxB_Print_Level pr = GxB_SILENT ;
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in one of the source files (outside of any function), and then use CHECK (A)
to check a matrix or any other object. To enable printing, set the global
pr value to a nonzero value, say GxB_SUMMARY or GxB_COMPLETE. Compile
normally to enable debugging, or with ~-DNDEBUG to disable debugging when
compiling the code for performance.

The return value of the GxB_*print methods can be relied upon, but the
output to the file (or stdout) can change from version to version. If these
methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of
the pr value. This may be essential if the GraphBLAS library is installed in
a dedicated device, with no file output, for example.

Some implementations may wish to print nothing at all if the matrix is not
yet completed, or just an indication that the matrix has pending operations
and cannot be printed, when non-blocking mode is employed. In this case,
use GrB_Matrix_nvals or GrB_wait to finish all pending computations first.
If a matrix or vector has pending operations, SuiteSparse:GraphBLAS prints
a list of the pending tuples, which are the entries not yet inserted into the
primary data structure. It can also print out entries that remain in the data
structure but are awaiting deletion; these are called zombies in the output
report.

Most of the rest of the report is self-explanatory.
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9 Creating user-defined objects at compile-
time

SPEC: The GraphBLAS API has no mechanism for constructing user-
defined objects when GraphBLAS is compiled. This entire section, and
the GxB_x_define macros, are extensions to the specification.

User-defined types, operators, monoids, and semirings provide a powerful
and flexible mechanism for extending GraphBLAS functionality. For exam-
ple, GraphBLAS does not support a built-in complex type, but it can be
added in a user application with a few simple functions, and a few calls to
GrB_Type_new, GrB_BinaryOp_new, GrB_Monoid_new, and GrB_Semiring_new.
A complete example is given in Section 10.9. See in particular the example
code in Demo/Source/usercomplex.c.

GraphBLAS does not need to be recompiled in order for the user appli-
cation to add new types, operators, monoids, or semirings. This flexibility
comes at the cost of performance, however. Since the multiply/add oper-
ations in a user-defined semiring must be accessed one at a time through
a function pointer, a complex matrix multiply via GrB_mxm is about two or
three times slower than it could be if GraphBLAS included a built-in complex
type.

This performance gap could be solved in two ways. Complex operators
and types could be added to SuiteSparse:GraphBLAS, or the GraphBLAS C
API Specification itself, but this is not flexible. Other user-defined objects
would still need to be created.

The mechanism described in this section is another solution. It allows the
user to create an unlimited variety of user-defined types, operators, monoids,
and semirings, and have them compiled into SuiteSparse:GraphBLAS. This
is done by creating one or more files with the filename extension *.m4, and
placing them in the SuiteSparse/GraphBLAS/User directory. Then when
SuiteSparse:GraphBLAS is compiled via cmake, these new objects are com-
piled as well. This is illustrated by the example in Figure 2. It is a single file,
GraphBLAS/User/Example/my_complex.m4, that defines the complex type
double complex as a GraphBLAS GrB_Type called My_Complex.

If the file resides in its default location in GraphBLAS/User/Example, it
is not compiled with GraphBLAS. Moving this file into GraphBLAS/User,
or creating other m4 files in the GraphBLAS/User directory, enables Suite-
Sparse:GraphBLAS to incorporate these user-defined objects at compile-
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time. Any number of *.m4 files may be placed in the GraphBLAS/User
directory; they are all included in SuiteSparse:GraphBLAS. There is no
need to tell the cmake process what the file names are. All *.m4 files in
GraphBLAS/User will be found and included.

Of course, a C++ API for GraphBLAS could also create user-defined
objects at compile-time via templates, but the API for GraphBLAS is in C,
not C++. The solution described in this Section provides this functionality
in a purely C interface.

In Figure 2, two inline functions are defined to perform complex addition
and multiplication, and these are used as the basis for two GraphBLAS
binary operators, My_complex_plus and My_complex_times. A monoid is
constructed for complex addition, and then finally the complex plus-times
semiring is defined. All of these user-defined objects are appended to the
GraphBLAS . h include file.

Some user definitions such as the static inline functions my_complex_plus
and my_complex_times in Figure 2 should appear in the GraphBLAS.h in-
clude file, so that they are available to any function in the user application.
Other user declarations should appear only once, such as the declaration of
global values used by user-defined functions.

To handle this, an #ifdef GxB_USER_INCLUDE mechanism is provided for
use in the User/#*m4 file, in the following style:

#ifdef GxB_USER_INCLUDE

// Part 1: any code here will be active in GraphBLAS.h. Place all
// declarations suitable for use in an #include file here. These
// declarations will be available to all user application files

// and to all internal SuiteSparse/GraphBLAS codes.

#else

// Part 2: declarations of user-defined variables, and executable
// code that should be compiled just once appears here.

#endif

Placing user functions inside this #ifdef structure gives the user control over
what declarations should be available to all of GraphBLAS and to all user
application files (Part 1), and what definitions should appear just once (Part
2).
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#ifdef GxB_USER_INCLUDE

// Get complex.h but remove "I" since it is used elsewhere in GraphBLAS.
#include <complex.h>
#undef I

// Not all complex.h definitions include the CMPLX macro
#ifndef CMPLX
#define CMPLX(real,imag) \
( (double complex) ((double) (real)) + \
(double complex) ((double) (imag) * _Complex_I) )
#endif

// define a token so a user application can check for existence
#define MY_COMPLEX

static inline void my_complex_plus

(
double complex *z, const double complex *x, const double complex *y
)
{
(xz) = (xx) + (xy) ;
}
static inline void my_complex_times
(
double complex *z, const double complex *x, const double complex *y
)
{
(xz) = (xx) * (*xy) ;
X
#endif

// define the complex type, plus & times operators, plus monoid, and semiring
GxB_Type_define(My_Complex, double complex) ;
GxB_BinaryOp_define(My_Complex_plus,

my_complex_plus, My_Complex, My_Complex, My_Complex) ;
GxB_BinaryOp_define (My_Complex_times, my_complex_times,

My_Complex, My_Complex, My_Complex) ;
GxB_Monoid_define (My_Complex_plus_monoid, My_Complex_plus, CMPLX(0,0)) ;
GxB_Semiring_define(My_Complex_plus_times, My_Complex_plus_monoid,

My_Complex_times) ;

Figure 2: User-defined complex type and operators, defined at compile-time
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For example, User/Example/my_scale.m4 in Figure 3 defines a unary
operator that computes z=my_scalar*x, where my_scalar is a global vari-
able. The declaration of my_scalar should appear in GraphBLAS.h, but it
should be defined only once.

The GxB_*_define macros must not appear inside either Part 1 or Part
2 of the #ifdef GxB_USER_INCLUDE.

When creating user-defined objects in a User/*.m4 a useful (but op-
tional) strategy is to define a token that can be used to discover whether
or not a particular object is available at compile time. For example, for the
My_complex objects in Figure 2, the following code snippet could appear in
a user application:

#ifndef MY_COMPLEX
// construct complex type and operators at run-time
GrB_Type My_Complex ;
GrB_Type_new (&My_Complex, sizeof (double complex)) ;
. etc
#else
// use the pre-defined My_Complex type and corresponding objects
#endif

In either case, when the user application is finished, it can do GrB_free (My_Complex).
This safely does nothing if My_Complex is defined at compile-time with GxB_Type_define,
or frees it if the type was created a run-time with GrB_Type_new.

These pre-defined objects can be used in the user application just as if
they were created at run-time via the corresponding calls to GrB_Type_new,
GrB_BinaryOp_new, GrB_Monoid_new, and GrB_Semiring new. For a large
matrix, computing C=A*B via GrB_mxm with the pre-compiled My _Complex_plus_times
semiring is about 10% faster than the MATLAB statement C=A*B for sparse
complex matrices. This is the same relative performance as when computing
C=A*B for real matrices in MATLAB, versus using GrB_mxm with the built-
in GxB_PLUS_TIMES_FP64 semiring. If the complex plus-times semiring is
defined at run-time instead, GrB_mxm is about two to three times slower.

User definitions in the User/#m4 files are visible to all internal Suite-
Sparse:GraphBLAS functions and thus must be given names that do not
conflict with internal variables, functions, and macros.

Objects defined by GxB_*_define, user-defined static inline functions,
typedefs, global variables, and macros (via #define) in the User/*.m4 files
must be given names with a unique prefix, such as MY_, USER_, my_, user_,
or the name of the user application (say RealCoolApp_, or PAGERANK_ as
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#ifdef GxB_USER_INCLUDE

// The following are declarations that are enabled in GraphBLAS.h and

// appear in all user codes that #include "GraphBLAS.h", and also in all
// internal GraphBLAS codes. All user declarations (not definitions)

// should appear here.

#define MY_SCALE
extern double my_scalar ;
// for thread safety if the user application uses OpenMP

#pragma omp threadprivate(my_scalar)

static inline void my_scale

(
double *z,
const double *x
)
{
(¥z) = my_scalar * (*x) ;
}
#else
/= e -

// The following defintions are enabled in only a single place:

// SuiteSparse/GraphBLAS/Source/all_user_objects.c. This is the place
// where all user-defined global variables should be defined.

double my_scalar = 0 ;

#endif

// Unary operator to compute z = my_scalar*x
GxB_UnaryOp_define (My_scale, my_scale, GrB_FP64, GrB_FP64) ;

Figure 3: User-defined unary operator, dependent upon a global variable
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exemplified in the my_pagerank.m4 example). This will ensure that no name
conflicts will occur.

An example macro name conflict occurs in the User/Example/my_complex .mé
example in Figure 2, which includes the ANSI complex.h include file. The
complex.h file defines an ANSI C11 macro I but that name conflicts with
internal SuiteSparse:GraphBLAS variables, so #undef I is done immediately
after the complex.h file is included. Undefining I is permitted in the ANSI
C11 specification for complex.h.

The six GxB_*_define macros are presented below. They all have essen-
tially the same parameters in the same order as the corresponding GrB_*_new
methods, except that where the GrB_*_new methods use pointers to the new
objects, the corresponding GxB_*_define macro uses just the name of the
object. Unlike their GrB_*_new counterparts, the six GxB_*_define macros
do not return an error code. Any errors will be detected by the compiler.

Since they are m4 macros, no space can appear between the macro name
GxB_x*_define and the subsequent left parenthesis. This restriction may be
relaxed in subsequent versions of SuiteSparse:GraphBLAS.

Since these objects are constructed at compile-time, they do not need to
be freed with GrB_free. Attempting to free them is safe, however. Suite-
Sparse:GraphBLAS will safely (and silently) do nothing if an attempt is made
to free them.

The next sections describe the following 6 macros:

GxB_Type_define define a GrB_Type at compile-time
GxB_UnaryOp_define  define a GrB_UnaryOp at compile-time
GxB_BinaryOp_define define a GrB_BinaryOp at compile-time
GxB_SelectOp_define define a GxB_SelectOp at compile-time
GxB_Monoid_define define a GrB_Monoid at compile-time
GxB_Semiring_define define a GrB_Semiring at compile-time
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9.1 GxB_Type_define: define a GrB_Type at compile time

GxB_Type_define(GrB_Type type, ctype) ;

GxB_Type_define is very similar to GrB_Type_new, except that it defines
a type when SuiteSparse:GraphBLAS is compiled. Instead of the sizeof (ctype)
second parameter of GrB_Type_new, the second parameter ctype of GxB_Type_define
is a C type (a built-in one or from a typedef). As in all GxB_*_define
macros, there is no & symbol in front of the GraphBLAS type parameter,
since this macro defines the object instead of returning a pointer.

9.2 GxB_UnaryOp_define: define a GrB_UnaryOp at compile
time

GxB_UnaryOp_define (GrB_UnaryOp op, func, GrB_Type ztype, GrB_Type xtype) ;

GxB_UnaryOp_define is identical to GrB_UnaryOp_new, except that it
defines a unary operator when SuiteSparse:GraphBLAS is compiled. The
function func is the name of a user-defined function, normally a static inline
function in the user’s *.m4 file. The ztype and xtype must be built-in types
(GrB_BOOL, GrB_FP64, etc) or types defined with GxB_Type_define.

9.3 GxB_BinaryOp_define: define a GrB_BinaryOp at compile
time

GxB_BinaryOp_define (GrB_BinaryOp op, func, GrB_Type ztype, GrB_Type xtype,
GrB_Type ytype) ;

GxB_BinaryOp_define is identical to GrB_BinaryOp_new, except that it
defines a binary operator when SuiteSparse:GraphBLAS is compiled. The
function func is the name of a user-defined function, normally a static inline
function in the user’s *.m4 file. The ztype, xtype, and ytype must be built-
in types (GrB_BOOL, GrB_FP64, etc) or types defined with GxB_Type_define.
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9.4 GxB_SelectOp_define: define a GxB_SelectOp at compile
time

GxB_SelectOp_define(GxB_SelectOp op, func, GrB_Type xtype) ;

GxB_SelectOp_define is identical to GxB_SelectOp_new, except that it
defines a select operator when SuiteSparse:GraphBLAS is compiled. The
function func is the name of a user-defined function, normally a static in-
line function in the user’s *.m4 file. The xtype may be GrB_NULL or NULL,
which denotes a type-generic GxB_SelectOp operator. If not null, xtype
must be a built-in type (GrB_BOOL, GrB_FP64, etc), a type defined with
GxB_Type_define.

9.5 GxB_Monoid_define: define a GrB_Monoid at compile
time

GxB_Monoid_define (GrB_Monoid monoid, GrB_BinaryOp op, identity) ;

GxB_Monoid_define is identical to GrB_Monoid_new, except that it de-
fines a monoid when SuiteSparse:GraphBLAS is compiled. The op is a built-
in binary operator (GrB_PLUS_FP32, for example) or a binary operator de-
fined by GxB_BinaryOp_define. The three types of the operator must be the
same, but this cannot be checked by this method at compile time. Results
are undefined if this condition does not hold.

Unlike GrB_Monoid_new, the identity parameter must be a compile-
time constant expression. It must also be parsable as a valid argument to
an m4 macro. For example, the following is a valid definition that appears in
User/Example/my_complex.m4, It defines a plus monoid for the My_complex
type, which is double complex in C.

GxB_Monoid_define (My_Complex_plus_monoid, My_Complex_plus, CMPLX(0,0)) ;

For user-defined types created from a C struct, another method must be
used for the value of the identity parameter of GxB_Monoid_define. Con-
sider the following excerpt from User/Example/my_pagerank.m4. A struct
variable such as the pagerank_type can be initialized with the C expres-
sion identity = {0,0}, but the expression {0,0} cannot be passed to an
m4 macro since it is interpreted by m4 as two arguments. The solution is to
define a C preprocessor token, PAGERANK_ZEROQ, and pass that token as the
third argument of GxB_Monoid_define.
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#ifdef GxB_USER_INCLUDE
typedef struct
{
double rank ;
double invdegree ;

3
pagerank_type ;

// This is valid. It defines the identity value of the monoid as a
// struct with identity.rank = O and identity.invdegree = 0.
#define PAGERANK_ZERO {0,0}

#endif

GxB_Monoid_define(PageRank_monoid, PageRank_add, PAGERANK_ZERQ) ;

The following definition will fail to compile, since m4 interprets the comma
in the identity argument as the start of a fourth argument:

// This will fail:
GxB_Monoid_define (PageRank_monoid, PageRank_add, {0,03}) ;

9.6 GxB_Semiring_define: define a GrB_Semiring at compile
time

GxB_Semiring_define(GrB_Semiring semiring, GrB_Monoid add, GrB_BinaryOp mult) ;

GxB_Semiring_define is identical to GrB_Semiring_new, except that it
defines a semiring when SuiteSparse:GraphBLAS is compiled. The add pa-
rameter is a GrB_Monoid that is either predefined (such as GxB_PLUS_TIMES_FP64)
or defined with GxB_Monoid_define. Similarly, the mult parameter is either
a predefined binary operator (such as GrB_TIMES_FP32) or a binary operator
defined with GxB_BinaryOp_define.
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10 Examples

Six examples of how to use GraphBLAS are described below. They all appear
in the Demo folder of SuiteSparse:GraphBLAS.

1. performing a breadth-first search,
2. finding a maximal independent set,
3. creating a random matrix,

4. creating a finite-element matrix,

5. reading a matrix from a file, and

6. complex numbers as a user-defined type.

Additional examples appear in the newly created LAGraph project, cur-
rently in progress. Finally, the Extras folder includes triangle counting and

k-truss algorithms in GraphBLAS, and methods that do not GraphBLAS
(both simple sequential methods, and methods that use OpenMP).

10.1 LAGraph

The LAGraph project is a community-wide effort to create graph algorithms
based on GraphBLAS (any implementation of the API, not just SuiteSparse:
GraphBLAS). As of Feb. 2019, the library includes the following algorithms
and utilities. Many additional algorithms are planned, such as between-
ness centrality, PageRank, single-source shortest path (via delta stepping),
minimum spanning trees, connected components, and many more. Refer to
https://github.com/GraphBLAS/LAGraph for a current list of algorithms (the
one below will soon be out of date). All of the functions in the Demo/ and
the Extras folder in SuiteSparse:GraphBLAS will eventually be translated
into algorithms or utilities for LAGraph.

To use LAGraph with SuiteSparse:GraphBLAS, place the two folders
LAGraph and GraphBLAS in the same parent directory. This allows the cmake
script in LAGraph to find the copy of GraphBLAS. Alternatively, the Graph-
BLAS source could be placed anywhere, as long as sudo make install is
performed.
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Build GraphBLAS first, then the LAGraph library, and then the tests in

LAGraph/Test.

Algorithms

description

LAGraph_bfs_pushpull

LAGraph_bfs_simple

a direction-optimized BFS [BAP12, YBO18§],
typically 2x faster than bfsbm
a simple BFS (about the same as bfsb5m)

Utilities

description

LAGraph_Vector_isall
LAGraph_Vector_isequal
LAGraph_Vector_to_dense
LAGraph_alloc_global
LAGraph_finalize
LAGraph_free
LAGraph_free_global
LAGraph_init
LAGraph_isall
LAGraph_isequal
LAGraph_ispattern
LAGraph_malloc
LAGraph_mmread
LAGraph_mmwrite
LAGraph_pattern
LAGraph_rand
LAGraph_rand64
LAGraph_random
LAGraph_randx
LAGraph_tic
LAGraph_toc

tests 2 vectors with a binary operator
tests if 2 vectors are equal

converts a vector to dense

types, operators, monoids, and semirings
ends LAGraph

wrapper for free

frees objects created by _alloc_global
starts LAGraph

tests 2 matrices with a binary operator
tests if 2 matrices are equal

tests if all entries in a matrix are 1
wrapper for malloc

read a Matrix Market file

write a Matrix Market file

extracts the pattern of a matrix
simple random number generator
int64_t random number generator
random matrix generator

double random number generator
start a timer

end a timer
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10.2 Breadth-first search

The bfs examples in the Demo folder provide several examples of how to
compute a breadth-first search (BFS) in GraphBLAS. The bfsbm function
starts at a given source node s of an undirected graph with n nodes. The
graph is represented as an n-by-n Boolean matrix, A, where A(i,j) is the
edge (7,7). The matrix A can actually have any type; if it is not Boolean
(bool in C, or GrB_BOOL in GraphBLAS), it is typecasted to Boolean by the
semiring, where zero is false and nonzero is true.

The vector v of size n holds the level of each node in the BFS, where
v(i)=0 if the node has not yet been seen. This particular value makes v
useful for another role. It can be used as a Boolean mask, since 0 is false
and nonzero is true. Initially the entire v vector is zero.

The vector q is the set of nodes just discovered at the current level, where
q(i)=true if node i is in the current level. It starts out with just a single
entry set to true, q(s), the starting node.

Each iteration of the BF'S consists of three calls to GraphBLAS. The first
one uses q as a mask. It modifies all positions in v where q is true, setting
them all to the current level. No accumulator or descriptor are used. Since
GrB_REPLACE is not used and I=GrB_ALL, GxB_subassign and GrB_assign
are identical; either can be used in this step:

// v<g> = level, using vector assign with q as the mask
GrB_assign (v, q, NULL, level, GrB_ALL, n, NULL) ;

The next call to GraphBLAS is the heart of the algorithm:

// q<!v> = q ||.&& A ; finds all the unvisited
// successors from current q, using !v as the mask
GrB_vxm (q, v, NULL, Boolean, q, A, desc) ;

The vector q is all the set of nodes at the current level. Suppose q(j)
is true, and it has a neighbor i. Then A(i,j)=1, and the dot product of
A(i,:)*q using the OR-AND semiring will use the AND multiplier on these
two terms, A(i,j) AND q(j), resulting in a value true. The OR monoid will
“sum” up all the results in this single row i. If the result is a column vector
t=Axq, then this t(i) will be true. The vector t will be true for any node
adjacent to any node in the set q.

Some of these neighbors of the nodes in q have already been visited by
the BF'S, either in the current level or in a prior level. These results must
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be discarded; what is desired is the set of all nodes i for which t (i) is true,
and yet v(i) is still zero.

Enter the mask. The vector v is complemented for use a mask, via the
desc descriptor. This means that wherever the vector is true, that position
in the result is protected and will not be modified by the assignment. Only
where v is false will the result be modified. This is exactly the desired result,
since these represent newly seen nodes for the next level of the BF'S. A node k
already visited will have a nonzero v(k), and thus q(k) will not be modified
by the assignment.

The result t is written back into the vector g, through the mask, but to
do this correctly, another descriptor parameter is used: GrB_REPLACE. The
vector g was used to compute t=A*q, and after using it to compute t, the
entire q vector needs to be cleared. Only new nodes are desired, for the next
level. This is exactly what the REPLACE option does.

As a result, the vector g now contains the set of nodes at the new level of
the BFS. It contains all those nodes (and only those nodes) that are neighbors
of the prior set and that have not already been seen in any prior level.

Finally, a single call to GraphBLAS computes the OR for all entries in q,
into a single scalar, successor. This value is true if q contains any value
true, or false otherwise. If it is false, the BFS can terminate.

GrB_reduce (&successor, NULL, Lor, q, NULL) ;

Another method for computing the BFS is in the bfs6 function in the
Demo folder. It uses GrB_apply and a unary operator to set the levels of the
newly discovered nodes, instead of GrB_assign.
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GrB_Info bfsbm // BFS of a graph (using vector assign & reduce)

(
GrB_Vector *v_output, // v [i] is the BFS level of node i in the graph

const GrB_Matrix A, // input graph, treated as if boolean in semiring
GrB_Index s // starting node of the BFS
)
{
GrB_Index n ; // # of nodes in the graph
GrB_Vector q = NULL ; // nodes visited at each level
GrB_Vector v = NULL ; // result vector
GrB_Monoid Lor = NULL ; // Logical-or monoid
GrB_Semiring Boolean = NULL ; // Boolean semiring
GrB_Descriptor desc = NULL ; // Descriptor for vxm
GrB_Matrix_nrows (&n, A) ; // n = # of rows of A
GrB_Vector_new (&v, GrB_INT32, n) ; // Vector<int32_t> v(n) = 0
GrB_assign (v, NULL, NULL, O, GrB_ALL, n, NULL) ; // make v dense
GrB_Vector_new (&q, GrB_BOOL, n) ; // Vector<bool> q(n) = false
GrB_Vector_setElement (q, true, s) ; // qls] = true, false elsewhere
GrB_Monoid_new (&Lor, GrB_LOR, (bool) false) ;
GrB_Semiring_new (&Boolean, Lor, GrB_LAND) ;
GrB_Descriptor_new (&desc) ;
GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ; // invert the mask
GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ; // clear q first
bool successor = true ; // true when some successor found
for (int32_t level = 1 ; successor && level <= n ; level++)
{
// v<g> = level, using vector assign with q as the mask
GrB_assign (v, q, NULL, level, GrB_ALL, n, NULL) ;
// q<'v> =q ||.&& A ; finds all the unvisited successors from current
// q, using !v as the mask
GrB_vxm (q, v, NULL, Boolean, q, A, desc) ;
// successor = ||(q)
GrB_reduce (&successor, NULL, Lor, q, NULL) ;
}
GrB_Descriptor_set (desc, GrB_MASK, GxB_DEFAULT) ; // mask not inverted
GrB_assign (v, v, NULL, v, GrB_ALL, n, desc) ; // make v sparse
*v_output = v ; // return result
// free workspace
GrB_free (&q) ; GrB_free (&Lor) ; GrB_free (&Boolean) ; GrB_free (&desc) ;
return (GrB_SUCCESS) ;
}
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10.3 Maximal independent set

The maximal independent set problem is to find a set of nodes S such that
no two nodes in S are adjacent to each other (an independent set), and all
nodes not in S are adjacent to at least one node in S (and thus S is maximal
since it cannot be augmented by any node while remaining an independent
set). The mis function in the Demo folder solves this problem using Luby’s
method [Lub86]. The key operations in the method are replicated on the
next page.

The gist of the algorithm is this. In each phase, all candidate nodes are
given a random score. If a node has a score higher than all its neighbors,
then it is added to the independent set. All new nodes added to the set
cause their neighbors to be removed from the set of candidates. The process
must be repeated for multiple phases until no new nodes can be added. This
is because in one phase, a node i might not be added because one of its
neighbors j has a higher score, yet that neighbor j might not be added
because one of its neighbors k is added to the independent set instead. The
node j is no longer a candidate and can never be added to the independent
set, but node i could be added to S in a subsequent phase.

The initialization step, before the while loop, computes the degree of each
node with a PLUS reduction. The set of candidates is Boolean vector, the ith
component is true if node 1 is a candidate. A node with no neighbors causes
the algorithm to stall, so these nodes are not candidates. Instead, they are
immediately added to the independent set, represented by another Boolean
vector iset. Both steps are done with an assign, using the degree as a
mask, except the assignment to iset uses the complement of the mask, via
the sr_desc descriptor. Finally, the GrB_Vector_nvals statement counts
how many candidates remain.

Each phase of Luby’s algorithm consists of nine calls to GraphBLAS
operations. Not all of them are described here since they are commented in
the code itself. The two matrix-vector multiplications are the important parts
and also take the most time. They also make interesting use of semirings and
masks. The first one computes the largest score of all the neighbors of each
node in the candidate set:

// compute the max probability of all neighbors
GrB_vxm (neighbor_max, candidates, NULL, maxSelectlst, prob, A, r_desc) ;
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// compute the degree of each node
GrB_reduce (degrees, NULL, NULL, GrB_PLUS_FP64, A, NULL) ;

// singletons are not candidates; they are added to iset first instead
// candidates[degree != 0] = 1
GrB_assign (candidates, degrees, NULL, true, GrB_ALL, n, NULL);

// add all singletons to iset
// iset[degree == 0] =1
GrB_assign (iset, degrees, NULL, true, GrB_ALL, n, sr_desc) ;

// Iterate while there are candidates to check.
GrB_Index nvals ;

GrB_Vector_nvals (&nvals, candidates) ;

while (nvals > 0)

{

// compute a random probability scaled by inverse of degree

GrB_apply (prob, candidates, NULL, set_random, degrees, r_desc) ;

// compute the max probability of all neighbors

GrB_vxm (neighbor_max, candidates, NULL, maxSelectlst, prob, A, r_desc)

// select node if its probability is > than all its active neighbors

GrB_eWiseAdd (new_members, NULL,NULL, GrB_GT_FP64, prob, neighbor_max,

NULL) ;

// add new members to independent set.

GrB_eWiseAdd (iset, NULL, NULL, GrB_LOR, iset, new_members, NULL) ;

// remove new members from set of candidates ¢ = c & !'new

GrB_apply (candidates, new_members, NULL, GrB_IDENTITY_BOOL,
candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

if (nvals == 0) { break ; } // early exit condition

// Neighbors of new members can also be removed from candidates

GrB_vxm (new_neighbors, candidates, NULL, Boolean,
new_members, A, NULL) ;

GrB_apply (candidates, new_neighbors, NULL, GrB_IDENTITY_BOOL,
candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

}
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A is a symmetric Boolean matrix and prob is a sparse real vector (of
type FP32), where prob(i) is nonzero only if node i is a candidate. The
maxSelectlst semiring uses z=FIRST(x,y) as the multiplier operator. The
column A(:, j) is the adjacency of node j, and the dot product prob’*A(:, j)
applies the FIRST operator on all entries that appear in the intersection of
prob and A(:,j), where z=FIRST (prob(i),A(i,j)) which is just prob(i)
it A(i,j) is present. If A(i,j) not an explicit entry in the matrix, then this
term is not computed and does not take part in the reduction by the MAX
monoid.

Thus, each term z=FIRST (prob(i),A(i,j)) is the score, prob(i), of all
neighbors i of node j that have a score. Node i does not have a score if it is
not also a candidate and so this is skipped. These terms are then “summed”
up by taking the maximum score, using MAX as the additive monoid.

Finally, the results of this matrix-vector multiply are written to the re-
sult, neighbor_max. The r_desc descriptor has the REPLACE option enabled.
Since neighbor_max does not also take part in the computation prob’*A,
it is simply cleared first. Next, is it modified only in those positions i
where candidates(i) is true, using candidates as a mask. This sets the
neighbor_max only for candidate nodes, and leaves the other components of
neighbor_max as zero (implicit values not in the pattern of the vector).

All of the above work is done in a single matrix-vector multiply, with
an elegant use of the maxSelectlst semiring coupled with a mask. The
matrix-vector multiplication is described above as if it uses dot products of
rows of A with the column vector prob, but SuiteSparse:GraphBLAS does
not compute it that way. Sparse dot products are much slower the optimal
method for multiplying a sparse matrix times a sparse vector. The result is
the same, however.

The second matrix-vector multiplication is more straight-forward. Once
the set of new members in the independent is found, it is used to remove all
neighbors of those new members from the set of candidates.

The resulting method is very efficient. For the Freescale2 matrix, the
algorithm finds an independent set of size 1.6 million in 1.7 seconds (on the
same MacBook Pro referred to in Section 10.2), taking four iterations of
the while loop. For comparison, removing its diagonal entries (required for
the algorithm to work) takes 0.3 seconds in GraphBLAS (see Section 7.15),
and simply transposing the matrix takes 0.24 seconds in both MATLAB and
GraphBLAS.
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10.4 Creating a random matrix

The random_matrix function in the Demo folder generates a random matrix
with a specified dimension and number of entries, either symmetric or un-
symmetric, and with or without self-edges (diagonal entries in the matrix).
It relies on simple_rand* functions in the Demo folder to provide a portable
random number generator that creates the same sequence on any computer
and operating system.

random_matrix can use one of two methods: GrB_Matrix_setElement
and GrB_Matrix_build. The former method is very simple to use:

GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;
for (int64_t k = 0 ; k < ntuples ; k++)

{
GrB_Index i = simple_rand_i ( ) % nrows ;
GrB_Index j = simple_rand_i ( ) % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x ( ) ;
/7 A (1,j) =x
GrB_Matrix_setElement (A, x, i, j) ;
if (make_symmetric)
{
// A (§,i) =x
GrB_Matrix_setElement (A, x, j, 1) ;
}
}

The above code can generate a million-by-million sparse double matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random i, j, and x), including the time to finish all pending
computations. The user application does not need to create a list of all
the tuples, nor does it need to know how many entries will appear in the
matrix. It just starts from an empty matrix and adds them one at a time in
arbitrary order. GraphBLAS handles the rest. This method is not feasible
in MATLAB.

The next method uses GrB_Matrix_build. It is more complex to use
than setElement since it requires the user application to allocate and fill the
tuple lists, and it requires knowledge of how many entries will appear in the
matrix, or at least a good upper bound, before the matrix is constructed. It
is slightly faster, creating the same matrix in 60 seconds, 51 seconds of which
is spent in GrB_Matrix_build.
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GrB_Index *I, *J ;
double *X ;
int64_t s = ((make_symmetric) 7 2 : 1) * nedges + 1 ;

I = malloc (s * sizeof (GrB_Index)) ;
J = malloc (s * sizeof (GrB_Index)) ;
X = malloc (s * sizeof (double ))
if (I == NULL || J == NULL || X == NULL)
{

// out of memory

if (I !'= NULL) free (I)

if (J !'= NULL) free (J)

if (X != NULL) free (X)

return (GrB_0UT_OF_MEMORY) ;
}

int64_t ntuples = 0 ;

for (int64_t k = 0 ; k < nedges ; k++)

{
GrB_Index i = simple_rand_i ( ) % nrows ;
GrB_Index j = simple_rand_i ( ) % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x )
// A (i,j) = x
I [ntuples]
J [ntuples] =
X [ntuples]
ntuples++ ;
if (make_symmetric)

{

’

)

|
oG he

)

// A (§,1) = x
I [ntuples]
J [ntuples]
X [ntuples]
ntuples++ ;

I
MoHe G

}
}
GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ;

The equivalent sprandsym function in MATLAB takes 150 seconds, but
sprandsym uses a much higher-quality random number generator to cre-
ate the tuples [I,J,X]. Considering just the time for sparse(I,J,X,n,n)
in sprandsym (equivalent to GrB_Matrix_build), the time is 70 seconds.
That is, each of these three methods, setElement and build in Suite-
Sparse:GraphBLAS, and sparse in MATLAB, are equally fast.
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10.5 Creating a finite-element matrix

Suppose a finite-element matrix is being constructed, with k=40,000 finite-
element matrices, each of size 8-by-8. The following operations (in pseudo-
MATLAB notation) are very efficient in SuiteSparse:GraphBLAS.

A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix
for i = 1:k

construct a 8-by-8 sparse or dense finite-element F

I and J define where the matrix F is to be added:

I = a 1list of 8 row indices

J = a list of 8 column indices

% using GrB_assign, with the ’plus’ accum operator:

A(1,7) =A(I,])) +F
end

If this were done in MATLAB or in GraphBLAS with blocking mode
enabled, the computations would be extremely slow. This example is taken
from Loren Shure’s blog on MATLAB Central, Loren on the Art of MAT-
LAB [Dav07], which discusses the built-in wathen function. In MATLAB,
a far better approach is to construct a list of tuples [I,J,X] and to use
sparse(I,J,X,n,n). This is identical to creating the same list of tuples in
GraphBLAS and using the GrB_Matrix_build, which is equally fast. The
difference in time between using sparse or GrB_Matrix_build, and using
submatrix assignment with blocking mode (or in MATLAB which does not
have a nonblocking mode) can be extreme. For the example matrix discussed
in [Dav07], using sparse instead of submatrix assignment in MATLAB cut
the run time of wathen from 305 seconds down to 1.6 seconds.

In SuiteSparse:GraphBLAS, the performance of both methods is essen-
tially identical, and roughly as fast as sparse in MATLAB. Inside Suite-
Sparse:GraphBLAS, GrB_assign is doing the same thing. When performing
A(I,J)=A(I,J)+F, if it finds that it cannot quickly insert an update into the
A matrix, it creates a list of pending tuples to be assembled later on. When
the matrix is ready for use in a subsequent GraphBLAS operation (one that
normally cannot use a matrix with pending computations), the tuples are
assembled all at once via GrB_Matrix_build.

GraphBLAS operations on other matrices have no effect on when the
pending updates of a matrix are completed. Thus, any GraphBLAS method
or operation can be used to construct the F matrix in the example above,
without affecting when the pending updates to A are completed.
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The MATLAB wathen.m script is part of Higham’s gallery of matrices
[Hig02]. It creates a finite-element matrix with random coefficients for a 2D
mesh of size nx-by-ny, a matrix formulation by Wathen [Wat87]. The pat-
tern of the matrix is fixed; just the values are randomized. The GraphBLAS
equivalent can use either GrB_Matrix_build, or GrB_assign. Both meth-
ods have good performance. The GrB_Matrix_build version below is about
15% to 20% faster than the MATLAB wathen.m function, regardless of the
problem size. It uses the identical algorithm as wathen.m.

int64_t ntriplets = nx*ny*64 ;
I = malloc (ntriplets * sizeof (int64_t)) ;

J = malloc (ntriplets * sizeof (int64_t)) ;
X = malloc (ntriplets * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{

FREE_ALL ;

return (GrB_0UT_OF_MEMORY) ;
}

ntriplets = 0 ;
for (int j =1 ; j <= ny ; j++)

{
for (int 1 =1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*%i + 2%j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2%j + i - 1 ;
nn [4] = 3*%(j-1)*nx + 2*i + 2*%j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
I [ntriplets] = nn [krow] ;
J [ntriplets] = nn [kcol] ;
X [ntriplets] = em (krow,kcol) ;
ntriplets++ ;
}
}
}
}
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// A = sparse (I,J,X,n,n) ;
GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ;

The GrB_assign version has the advantage of not requiring the user appli-
cation to construct the tuple list, and is almost as fast as using GrB_Matrix_build.
The code is more elegant than either the MATLAB wathen.m function or its
GraphBLAS equivalent above. Its performance is comparable with the other
two methods, but slightly slower, being about 5% slower than the MATLAB
wathen, and 20% slower than the GraphBLAS method above.

GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;
for (int j =1 ; j <= ny ; j++)

{
for (int 1 =1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*%i + 2%j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*%j + 1 - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2%j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] =nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// F (krow,kcol) = em (krow, kcol)
GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;
}
}
// A (nn,nn) += F
GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;
}
}

Since there is no Mask, and since GrB_REPLACE is not used, the call to
GrB_assign in the example above is identical to GxB_subassign. Either one
can be used, and their performance would be identical.

Refer to the wathen. ¢ function in the Demo folder, which uses GraphBLAS
to implement the two methods above, and two additional ones.
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10.6 Reading a matrix from a file

NOTE: see also LAGraph_mmread and LAGraph_mmwrite, which can read
and write any matrix in Matrix Market format.

The read_matrix function in the Demo reads in a triplet matrix from
a file, one line per entry, and then uses GrB_Matrix_build to create the
matrix. It creates a second copy with GrB_Matrix_setElement, just to test
that method and compare the run times. A comparison of build versus
setElement has already been discussed in Section 10.4.

The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
read_matrix computes A=(A+A’) /2 if A is square (turning all directed edges
into undirected ones. If A is rectangular, it creates a bipartite graph, which
is the same as the augmented matrix, A = [0 A ; A’ 0]. If Cis an n-by-n
matrix, then C=(C+C’)/2 can be computed as follows in GraphBLAS, (the
scale2 function divides an entry by 2):

GrB_Descriptor_new (&dt2) ;

GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C’
GrB_free (&C) ;

GrB_Matrix_new (&C, GrB_FP64, n, n) ;

GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;

GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2
GrB_free (&A) ;

GrB_free (&scale2_op) ;

This is of course not nearly as elegant as A=(A+A’)/2 in MATLAB, but
with minor changes it can work on any type and use any built-in operators in-
stead of PLUS, or it can use any user-defined operators and types. The above
code in SuiteSparse:GraphBLAS takes 0.60 seconds for the Freescale2 ma-
trix, slightly slower than MATLAB (0.55 seconds).

Constructing the augmented system is more complicated using the Graph-
BLAS C API Specification since it does not yet have a simple way of speci-
fying a range of row and column indices, as in A(10:20,30:50) in MATLAB
(GxB_RANGE is a SuiteSparse:GraphBLAS extension that is not in the Speci-
fication). Using the C APT in the Specification, the application must instead
build a list of indices first, I=[10, 11 ... 20].

Thus, to compute the MATLAB equivalent of A = [0 A ; A’ 0], index
lists I and J must first be constructed:
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int64_t n = nrows + ncols ;

I = malloc (nrows * sizeof (int64_t)) ;
J = malloc (ncols * sizeof (int64_t)) ;
// I = O:nrows-1

// J = nrows:n-1

if (I == NULL || J == NULL)

{
if (I '= NULL) free (I) ;
if (J !'= NULL) free (J) ;
return (GrB_0UT_OF_MEMORY) ;
}

for (int64_t k
for (int64_t k

0 ; k < nrows ; k++) I [k] k ;
0 ; k < ncols ; k++) J [k] = k + nrows ;

Once the index lists are generated, however, the resulting GraphBLAS
operations are fairly straightforward, computing A=[0 C ; C’ 0].

GrB_Descriptor_new (&dtl) ;

GrB_Descriptor_set (dtl, GrB_INPO, GrB_TRAN) ;
GrB_Matrix_new (&A, GrB_FP64, n, n) ;

// A (nrows:n-1, O:nrows-1) = C’

GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dtl) ;
// A (O:nrows-1, nrows:n-1) = C

GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ;

This takes 1.38 seconds for the Freescale2 matrix, almost as fast as
A=[sparse(m,m) C ; C’ sparse(n,n)] in MATLAB (1.25 seconds).

Both calls to GrB_assign use no accumulator, so the second one causes
the partial matrix A=[0 0 ; C’ 0] to be built first, followed by the final
build of A=[0 C ; C’> 0]. A better method, but not an obvious one, is to
use the GrB_FIRST_FP64 accumulator for both assignments. An accumulator
enables SuiteSparse:GraphBLAS to determine that that entries created by
the first assignment cannot be deleted by the second, and thus it need not
force completion of the pending updates prior to the second assignment.

SuiteSparse:GraphBLAS also adds a GxB_RANGE mechanism that mimics
the MATLAB colon notation. This speeds up the method and simplifies the
code the user needs to write to compute A=[0 C ; C’ 0]:

int64_t n = nrows + ncols ;
GrB_Matrix_new (&A, xtype, n, n) ;
GrB_Index I_range [3], J_range [3] ;
I_range [GxB_BEGIN] = O ;

I_range [GxB_END ] = nrows-1 ;
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J_range [GxB_BEGIN] = nrows ;
J_range [GxB_END ] = ncols+nrows-1 ;
// A (nrows:n-1, O:nrows-1) += C’
GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
C, J_range, GxB_RANGE, I_range, GxB_RANGE, dtl) ;
// A (0:nrows-1, nrows:n-1) += C
GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ;

Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an accum operator is used, only the final matrix is built, and the time in
GraphBLAS drops slightly to 1.25 seconds. This is a very small improvement
because in this particular case, SuiteSparse:GraphBLAS is able to detect that
no sorting is required for the first build, and the second one is a simple con-
catenation. In general, however, allowing GraphBLAS to postpone pending
updates can lead to significant reductions in run time.

10.7 PageRank

The Demo folder contains three methods for computing the PageRank of the
nodes of a graph. One uses floating-point arithmetic (GrB_FP64) and two
user-defined unary operators (dpagerank.c). The second (ipagerank.c) is
very similar, relying on integer arithmetic instead (GrB_UINT64). Neither
method include a stopping condition. They simply compute a fixed num-
ber of iterations. The third example is more extensive (dpagerank?2.c), and
serves as an example of the power and flexibility of user-defined types, oper-
ators, monoids, and semirings. It creates a semiring for the entire PageRank
computation. It terminates if the 2-norm of the change in the rank vector r
is below a threshold.

If my_pagerank.m4 is placed in GraphBLAS/User/, then the user objects
are created at compile-time instead of at run-time, which leads to faster
execution.
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10.8 Triangle counting

A triangle in an undirected graph is a clique of size three: three nodes 1, j,
and k that are all pairwise connected. There are many ways of counting the
number of triangles in a graph. Let A be a symmetric matrix with values 0
and 1, and no diagonal entries; this matrix is the adjacency matrix of the
graph. Let E be the edge incidence matrix with exactly two 1’s per column.
A column of E with entries in rows i and j represents the edge (i, 7j) in the
graph, A(i,j)=1 where i<j. Let L and U be the strictly lower and upper
triangular parts of A, respectively.

The methods are listed in the table below. Most of them use a form
of masked matrix-matrix multiplication. The methods are implemented in
MATLAB in the tricount.m file, and in GraphBLAS in the tricount.c
file, both in the GraphBLAS/Demo folder. Refer to the comments in those two
files for details and derivations on how these methods work.

When the matrix is stored by row, and a mask is present and not com-
plemented, GrB_INP1 is GrB_TRAN, and GrB_INPO is GxB_DEFAULT, the Suite-
Sparse:GraphBLAS implementation of GrB_mxm always uses a dot-product
formulation. Thus, the C(L) = LUT method uses dot products. This
provides a mechanism for the end-user to select a masked dot product ma-
trix multiplication method in SuiteSparse:GraphBLAS, which is occasionally
faster than the outer product method. The MATLAB form assumes the ma-
trices are stored by column (the only option in MATLAB).

Each method is followed by a reduction to a scalar, via GrB_reduce in
GraphBLAS or by nnz or sum(sum(...)) in MATLAB.

method and in MATLAB in GraphBLAS

citation

minitri [WBS15] nnz (A*xE==2)/3 C=AE, then GrB_apply
Burkhardt [Burl6] sum(sum((A~2) .*xA))/6 C(A) =

Cohen [ABG15, Coh09] sum(sum((L*U).*4))/2 C(A)=

Sandia [WDB'17] sum (sum( (UxU) . xU)) C(L) = LL (outer product)
SandiaDot sum(sum((U’*L) .*L))  C(U) = LUT (dot product)
Sandia2 sum(sum ( (L*L) .*L)) C(U) = UU (outer product)

In general, the Sandia methods are the fastest of the 6 methods when
implemented in GraphBLAS. For full details on the triangle counting and
k-truss algorithms, and performance results, see [Davl8|, a copy of which
appears in the SuiteSparse/GraphBLAS/Doc folder. The code appears in
Extras. That paper uses an earlier version of SuiteSparse:GraphBLAS in
which all matrices are stored by column.
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10.9 User-defined types and operators: double com-
plex and struct-based

The Demo folder contains two working examples of user-defined types, first
discussed in Section 4.1.1: double complex, and a user-defined typedef
called wildtype with a struct containing a string and a 4-by-4 float matrix.

Double Complex: GraphBLAS does not have a native complex type,
but this can be easily added as a user-defined type. The Complex_init
function in the usercomplex.c file in the Demo folder creates the Complex
type based on the ANSI C11 double complex type.

GrB_Type_new (&Complex, sizeof (double complex)) ;

Next, it creates a full suite of operators that correspond to every built-in
GraphBLAS operator, both binary and unary. In addition, it creates the
operators listed in the following table, where D is double and C' is Complex.

name types MATLAB description

equivalent
Complex_complex DxD —C z=complex(x,y) complex from real and imag.
Complex_conj c—-C z=conj (x) complex conjugate
Complex_real C—D z=real (x) real part
Complex_imag C—D z=imag(x) imaginary part
Complex_angle C—D z=angle (x) phase angle
Complex_complex_real D —C z=complex(x,0) real to complex real
Complex_complex_imag D — C z=complex(0,x) real to complex imag.

The Complex_init function creates two monoids (Complex_add_monoid
and Complex_times_monoid) and a semiring Complex_plus_times that cor-
responds to the conventional linear algebra for complex matrices. The in-
clude file usercomplex.h in the Demo folder is available so that this user-
defined Complex type can easily be imported into any other user application.
When the user application is done, the Complex_finalize function frees the
Complex type and its operators, monoids, and semiring.

Struct-based: In addition, the wildtype.c program creates a user-
defined typedef of a struct containing a dense 4-by-4 float matrix, and a
64-character string. It constructs an additive monoid that adds two 4-by-4
dense matrices, and a multiplier operator that multiplies two 4-by-4 matrices.
Each of these 4-by-4 matrices is treated by GraphBLAS as a “scalar” value,
and they can be manipulated in the same way any other GraphBLAS type can
be manipulated. The purpose of this type is illustrate the endless possibilities
of user-defined types and their use in GraphBLAS.
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10.10 User applications using OpenMP or POSIX pthreads

Two example demo programs are included that illustrate how a multi-threaded
user application can use GraphBLAS: openmp_demo uses OpenMP for its
user threads and pthread_demo uses POSIX pthreads. To be thread-safe,
SuiteSparse:GraphBLAS must be compiled with a threading li-
brary, either OpenMP or POSIX. Either option used inside GraphBLAS
can typically be combined with any user threading model. See Section 11.

The openmp_demo can be compiled without OpenMP, in which case it be-
comes single-threaded. GraphBLAS can be compiled with OpenMP, POSIX
pthreads, or no threading support (and is not thread-safe in this latter case).
This gives 9 different combinations:

User GraphBLAS Demo/Output file comments
applic.

none none user_none_gb_none.out OK

none OpenMP user_none_gb_openmp.out OK

none pthread user_none_gb_pthread.out OK
OpenMP none user_openmp_gb_none.out fail

OpenMP  OpenMP user_openmp_gb_openmp.out OK, random
OpenMP  pthread user_openmp_gb_pthread.out OK, random
pthread  none user_pthread_gb_none.out fail

pthread ~ OpenMP user_pthread_gb_openmp.out  OK, random
pthread  pthread user_pthread_gb_pthread.out OK, random

When the user application is multithreaded, GraphBLAS must be compiled
with a threading library to be thread-safe. The results listed above as OK,
random mean that the output of the program will appear out of order. This
is by design, simply to show that the user application is running in parallel.
The output of each thread should be the same. In particular, each thread
generates an intentional error, and later on prints it with GrB_error. It will
print its own error, not an error from another thread. When all the threads
finish, the master thread prints out each matrix generated by each thread,
and these results are identical for all 7 cases listed above as OK.

The GraphBLAS C API requires GraphBLAS to be thread-safe. If Suite-
Sparse:GraphBLAS is not compiled with a threading library it will not be
thread-safe (the two fail cases above). For these cases, a thread will not
retrieve its own error, but the last error of any thread. In addition, since
there is no critical section that SuiteSparse:GraphBLAS can use, the output
will include errors about an invalid state of the global matrix queue. These
errors are to be expected if SuiteSparse:GraphBLAS is not thread-safe.
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11 Compiling and Installing SuiteSparse:GraphBLAS

11.1 Required compiler

GraphBLAS makes extensive use of features in the ANSI C11 standard, and
thus a C compiler supporting this version of the C standard is required. On
the Mac (OS X), clang 8.0.0 in Xcode version 8.2.1 is sufficient, although
earlier versions of Xcode may work as well. For the GNU gcc compiler,
version 4.9 or later is required. For the Intel icc compiler, version 18.0 or
later is required. Version 2.8.12 or later of cmake is required; version 3.0.0 is
preferred.

To compile SuiteSparse:GraphBLAS and the demo programs, simply type
make in the main GraphBLAS folder, which compiles the library and runs
several demos.

If cmake or make fail, it might be that your default compiler does not
support ANSI C11. Try another compiler. For example, try one of these
options. Go into the build directory and type one of these:

CC=gcc cmake ..
CC=gcc-6 cmake ..
CC=xlc cmake ..
CC=icc cmake ..

You can also do the following in the top-level GraphBLAS folder instead:

CC=gcc make
CC=gcc-6 cmake
CC=x1lc cmake
CC=icc cmake

For faster compilation, you can specify a parallel make. For example, to
use 32 parallel jobs and the gcc compiler, do the following:

JOBS=32 CC=gcc make

11.2 Creating the Doxygen documentation

SuiteSparse:GraphBLAS is equipped with a Doxyfile that specifies how
doxygen can be used to create detailed documentation of each file, includ-
ing call-graphs. The doxygen documentation is not meant for end-users of

GraphBLAS, but for GraphBLAS developers instead.
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If you edit GraphBLAS, you must first run the MATLARB script dox_headers.m
in Doc/, in MATLAB. This script parses all of the source code for structured
comments, to create header files suitable for parsing by doxygen. Next, do
the following in the top-level GraphBLAS folder:

make dox

This creates the Doc/html/ folder, which is initially empty in the de-
fault distribution. Open the file Doc/html/index.html in any web browser.

Alternatively, a copy of the doxygen documentation can be found at http:
//faculty.cse.tamu.edu/davis/GraphBLAS /html.

11.3 Thread-safety in multithreaded user applications

SuiteSparse:GraphBLAS is not yet parallel, but it is thread-safe if multiple
simultaneous calls are made to GraphBLAS functions. The output variables
of those calls to GraphBLAS must be unique; you cannot safely modify one
GraphBLAS object in parallel, with two or more simultaneous GraphBLAS
functions operating on the same output object. In addition, all pending
operations of objects that appear in parallel calls to GraphBLAS must be
complete. This can be done for all objects via GrB_wait, or it can be done by
calling a method or operation that forces completion of a particular object
(such as GrB_*_nvals). If multiple parallel calls to GraphBLAS functions
operate on unique inputs, then those input objects can safely have pending
operations.

To use GraphBLAS from a multithreaded user application, GraphBLAS
requires access to a critical section for the GrB_wait queue of matrices with
pending operations, and to a thread-local storage space so that each user
thread can safely retrieve its own error message with GrB_error.

SuiteSparse:GraphBLAS supports the following user threading models.
By default, the cmake script detects the presence of OpenMP and POSIX
pthreads. If OpenMP is present, it uses OpenMP critical sections for GrB_wait
and OpenMP threadprivate(...) for thread-local storage for GrB_error.
Otherwise, if POSIX pthreads are available, it uses a POSIX mutex, and
POSIX thread-local storage via pthread_key_create.

These methods used inside GraphBLAS can typically inter-operate with
any user threading model. That is, a user application that relies on POSIX
threads, OpenMP, ANSI C11 threads, or Microsoft Windows threads will
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find GraphBLAS thread-safe, even though GraphBLAS uses OpenMP or
POSIX internally to synchronize the user threads. However, for the most
reliable results, the preferred approach is to use the same threading model
in GraphBLAS as is used in the user application.

You can modify the automatic selection of a user thread synchronization
model by adding the following settings for cmake. This setting does not de-
termine how SuiteSparse:GraphBLAS creates and exploits multiple threads
inside any given GraphBLAS operation. Rather, it determines which thread-
ing library it will use to synchronize multiple calls to GraphBLAS from more
than one user thread.

e OpenMP: this is the default if your compiler supports OpenMP. It can
also be specified with cmake -DUSER_OPENMP=1 in the cmake command
line. Internal parallelism in a future SuiteSparse:GraphBLAS version
will be based on OpenMP, but this is typically safe to use with any
user threading models.

e POSIX: this is used if OpenMP is not available. If OpenMP is available
but you still want GraphBLAS to use POSIX synchronization, compile
with cmake -DUSER_POSIX=1

e no user threading: compile with cmake -DUSER_NONE=1. GraphBLAS
will not be thread-safe.

The following user-threading models are not yet supported, but may be
in a future version.

e Microsoft Windows: cmake -DUSER_WINDOWS=1

e ANSI C11 threads: cmake -DUSER_ANSI=1

11.4 Default matrix format

By default, SuiteSparse:GraphBLAS stores its matrices by row, using the
GxB_BY_ROW format. You can change the default at compile time to GxB_BY_COL
using cmake -DBYCOL=1. For example:

cmake -DBYCOL=1 ..
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The user application can also use GxB_get and GxB_set to set and query
the global option (see also Sections 5.6 and 5.7):

GxB_Format_Value s ;

GxB_get (GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n")
else printf ("all new matrices are stored by row\n") ;

11.5 Setting the C flags and using CMake

The above options can also be combined. For example, to use the gcc com-
piler, to change the default format GxB_FORMAT_DEFAULT to GxB_BY_COL, and
to use a POSIX mutex inside GraphBLAS to synchronize user threads, use
the following cmake command:

CC=gcc cmake -DBYCOL=1 -DUSER_POSIX=1 ..

Then do make in the build directory. If this still fails, see the CMakeLists.txt
file. You can edit that file to pass compiler-specific options to your compiler.
Locate this section in the CMakeLists.txt file. Use the set command in
cmake, as in the example below, to set the compiler flags you need.

# check which compiler is being used. If you need to make
# compiler-specific modifications, here is the place to do it.
if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")
# cmake 2.8 workaround: gcc needs to be told to do ANSI C11.
# cmake 3.0 doesn’t have this problem.
set ( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c1l -1m " )
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")
endif ( )

To compile SuiteSparse:GraphBLAS without running the demos, use make library
in the top-level directory, or make in the build directory.

202



Several compile-time options can be selected by editing the Source/GB.h
file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.

11.6 Running the Demos

By default, make in the top-level directory compiles the library and runs the
demos. You can also run the demos after compiling:

cd Demo
./demo

The ./demo command is a script that runs the demos with various in-
put matrices in the Demo/Matrix folder. The output of the demos will be
compared with expected output files in Demo/Output.

11.7 Installing SuiteSparse:GraphBLAS

To install the library (typically in /usr/local/lib and /usr/local/include
for Linux systems), go to the top-level GraphBLAS folder and type:

sudo make install

11.8 Running the tests

To perform the extensive tests in the Test folder, and the statement coverage
tests in Tcov, MATLAB R2017A is required. See the README.txt files in
those two folders for instructions on how to run the tests.

11.9 Cleaning up

To remove all compiled files, type make distclean in the top-level Graph-
BLAS folder.
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