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BLAS specification is given, followed by a description of the key features of its implementation in the Suite-
Sparse:GraphBLAS package.

CCS Concepts: rMathematics of computing→ Graph algorithms; Mathematical software;

Additional Key Words and Phrases: Graph algorithms, sparse matrices, GraphBLAS

ACM Reference Format:
Timothy A. Davis, 2018. Algorithm 9xx: SuiteSparse:GraphBLAS, graph algorithms in the language of
sparse linear algebra. ACM Trans. Math. Softw. 1, 1, Article 1 (January 2001), 15 pages.
DOI: 0000001.0000001

1. INTRODUCTION
The GraphBLAS standard defines sparse matrix and vector operations on an extended
algebra of semirings. The operations are useful for creating a wide range of graph
algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Suppose A and B
are sparse n-by-n Boolean adjacency matrices of two undirected graphs. If the matrix
multiplication is redefined to use logical AND instead of scalar multiply, and if it uses
the logical OR instead of add, then the matrix C is the sparse Boolean adjacency ma-
trix of a graph that has an edge (i, j) if node i in A and node j in B share any neighbor
in common. The OR-AND pair forms an algebraic semiring, and many graph opera-
tions like this one can be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides a wide range of built-in
types and operators, and allows the user application to create new types and operators.
Expressing graph algorithms in the language of linear algebra provides:

— a powerful way of expressing graph algorithms with large, bulk operations on adja-
cency matrices with no need to iterate over individual nodes and edges,

— composable graph operations, e.g. (AB)C = A(BC),
— simpler graph algorithms in user-code,
— simple objects for complex problems – a sparse matrix with nearly any data type,
— a well-defined graph object, closed under operations,
— and high performance: the bulk graph/matrix operations allow a serial, parallel, or

GPU-based library to optimize the graph operations.
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A full and precise definition of the GraphBLAS specification is provided in The
GraphBLAS C API Specification [Buluç et al. 2017], based on GraphBLAS Mathe-
matics [Kepner 2017].

2. BASIC CONCEPTS
2.1. Graphs and sparse matrices
Many applications give rise to large graphs, with many nodes and edges. However,
typical graphs are very sparse, with n nodes but only O(n) edges.

Any graph G = (V,E) can be considered as a sparse adjacency matrix A, either
square or rectangular. The square case of an n-by-n sparse matrix is useful for repre-
senting a directed or undirected graph with n nodes, where either the matrix entry aij
or aji represents the edge (i, j). In the rectangular case, an n-by-m sparse matrix can
be used to represent a bipartite graph, or a hypergraph, depending on the context in
which the matrix is used. Edges that do not appear in G are not represented in the data
structure of the sparse matrix A. A sparse matrix data structure allows huge graphs
to be represented. A dense adjacency matrix for a graph of n nodes would take O(n2)
memory, which is impossible when n is large, whereas a sparse adjacency matrix can
be stored in O(n + |E|) space, where |E| is the number of edges present in the graph.

Values of entries not stored in the sparse data structure have some implicit value.
In conventional linear algebra, this implicit value is zero, but it differs with different
semirings. Explicit values are called entries and they appear in the data structure. The
pattern of a matrix defines where its explicit entries appear, and can be represented as
either a set of indices (i, j), or as a Boolean matrix S where sij = 1 if aij is an explicit
entry in the sparse matrix A.

The entries in the pattern of A can take on any value, including the implicit value,
whatever it happens to be. It need not be the value zero. For example, in the max-
plus tropical algebra, the implicit value is negative infinity, and zero has a different
meaning.

Graph Algorithms in the Language on Linear Algebra [Kepner and Gilbert 2011],
provides a framework for understanding how graph algorithms can be expressed as
matrix computations. For additional background on sparse matrix algorithms, see also
[Davis 2006] and a recent survey paper, [Davis et al. 2016].

3. SUITESPARSE:GRAPHBLAS METHODS AND OPERATIONS
3.1. Overview
SuiteSparse:GraphBLAS provides a collection of methods to create, query, and free
each of its nine different types of objects: sparse matrices, sparse vectors, types, binary
and unary operators, selection operators, monoids, semirings, and a descriptor object
used for parameter settings. These are listed in Table I. Once these objects are created
they can be used in mathematical operations (not to be confused with the how the term
operator is used in GraphBLAS). The GxB_ prefix is used for all SuiteSparse extensions
to the GraphBLAS API.

The GraphBLAS API makes a distinction between methods and operations. A
method is a function that works on a GraphBLAS object, creating it, destroying it,
or querying its contents. An operation (not to be confused with an operator) acts on
matrices and/or vectors in a semiring. Each object is described below.

3.1.1. Types. A GraphBLAS type (GrB_Type) can be any of 11 built-in types (Boolean,
integer and unsigned integers of sizes 8, 16, 32, and 64 bits, and single and double
precision floating point). In addition, user-defined scalar types can be created from
nearly any C typedef, as long as the entire type fits in a fixed-size contiguous block of
memory (of arbitrary size). All of these types can be used to create GraphBLAS sparse

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2001.



SuiteSparse:GraphBLAS, graph algorithms via sparse linear algebra 1:3

Table I. SuiteSparse:GraphBLAS Objects

object description
GrB Type a scalar data type
GrB UnaryOp a unary operator z = f(x), where z and x are scalars
GrB BinaryOp a binary operator z = f(x, y), where z, x, and y are scalars
GxB SelectOp a unary operator for constructing subgraphs
GrB Monoid an associative and commutative binary operator

and its identity value
GrB Semiring a monoid that defines the “plus” and a binary operator

that defines the “multiply” for an algebraic semiring
GrB Matrix a 2D sparse matrix of any type
GrB Vector a 1D sparse column vector of any type
GrB Descriptor parameters that modify an operation

matrices or vectors. All built-in types can typecasted as needed; user-defined types
cannot.

3.1.2. Unary operators. A unary operator (GrB_UnaryOp) is a function z = f(x). Suite-
Sparse:GraphBLAS comes with 67 built-in unary operators, such as z = 1/x and
z = −x, with variants for each built-in type. The user application can also create its
own user-defined unary operators.

3.1.3. Binary operators. Likewise, a binary operator (GrB_BinaryOp) is a function z =
f(x, y), such as z = x + y or z = xy. SuiteSparse:GraphBLAS provides 256 built-in
binary operators, with variants for each built-in type. User-defined binary operators
can also be created.

3.1.4. Select operators. The GxB_SelectOp operator is a SuiteSparse extension to the
GraphBLAS API. It is used in the GxB_select operation to select a subset of entries
from a matrix, like L=tril(A) in MATLAB. Its syntax is z = f(i, j,m, n, aij , k) where
aij is the numerical value of the entry in row i and column j in an m-by-n matrix.
The parameter k is optional, and is used for operations analogous to the MATLAB
statement L=tril(A,k), where entries on or below the kth diagonal are kept and the
rest discarded. The output z is true if the entry is to be kept, and false otherwise.

3.1.5. Monoids. The scalar addition of conventional matrix multiplication is replaced
with a monoid. A monoid (GrB_Monoid) is an associative and commutative binary oper-
ator z = f(x, y) where all three domains are the same (the types of x, y, z), and where
the operator has an identity value o such that f(x, o) = f(o, x) = x. Performing matrix
multiplication with a semiring uses a monoid in place of the “add” operator, scalar ad-
dition being just one of many possible monoids. The identity value of addition is zero,
since x+0 = 0+x = x. GraphBLAS includes eight built-in operators suitable for use as
a monoid: min (with an identity value of positive infinity), max (whose identity is neg-
ative infinity), add (identity is zero) multiply (with an identity of one), and four logical
operators: AND, OR, exclusive-OR, and Boolean equality. User-created monoids can be
defined with any associative and commutative operator with an identity value.

A monoid can also be used in a reduction operation, like s=sum(A) in MATLAB. MAT-
LAB provides the plus, times, min, and max reductions of a real or complex sparse
matrix as s=sum(A), s=prod(A), s=min(A), and s=max(A), respectively. In GraphBLAS,
any monoid can be used (min, max, plus, times, AND, OR, exclusive-OR, equality, or
any user-defined monoid, on any user-defined type).

3.1.6. Semirings. A semiring (GrB_Semiring) consists of an additive monoid and a
multiplicative operator. Together, these operations define the matrix multiplication
C = AB, where the monoid is used as the additive operator and the semiring’s mul-
tiplicative operator is used in place of the conventional scalar multiplication in stan-
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dard matrix multiplication via the plus-times semiring. A user application can define
its own monoids and semirings.

A semiring can use any built-in or user-defined binary operator z = f(x, y) as its
multiplicative operator, as long as the type of its output, z matches the type of the
semiring’s monoid. The user application can create any semiring based on any types,
monoids, and multiply operators, as long these few rules are followed.

Just considering built-in types and operators, SuiteSparse:GraphBLAS can perform
C=A*B in 960 unique semirings. With typecasting, any of these 960 semirings can be
applied to matrices C, A, and B of any of the 11 types, in any combination. This gives
960 × 113 = 1, 277, 760 possible kinds of sparse matrix multiplication supported by
SuiteSparse:GraphBLAS, and this is counting just built-in types and operators. By
contrast, MATLAB provides just two semirings for its sparse matrix multiplication
C=A*B: plus-times-double and plus-times-complex, not counting the typecasting that
MATLAB does when multiplying a real matrix times a complex matrix. All of the
1.3 million forms of matrix multiplication methods in SuiteSparse:GraphBLAS are
typically just as fast as computing C=A*B in MATLAB using its own native sparse
matrix multiplication methods.

3.1.7. Descriptor. A descriptor object, GrB_Descriptor, provides a set of parameter set-
tings that modify the behavior of GraphBLAS operations, such as transposing an input
matrix or complementing a Mask matrix (see Section 3.1.9 for details).

3.1.8. Non-blocking mode. GraphBLAS includes a non-blocking mode where operations
can be left pending, and saved for later. This is very useful for submatrix assignment
(C(I,J)=A where I and J are integer vectors), or or scalar assignment (C(i,j)=x where
i and j are scalar integers). Because of how MATLAB stores its matrices, adding
and deleting individual entries is very costly. For example, this is very fast in Suite-
Sparse:GraphBLAS, taking only O(nz log nz) time:

GrB_Matrix A ;
GrB_Matrix_new (&A, GrB_FP64, m, n) ;
for (int k = 0 ; k < nz ; k++)
{

// compute a value x, row index i, and column index j
// A (i,j) = x
GrB_Matrix_setElement (A, x, i, j) ;

}

The equivalent method in MATLAB takes O(nz2) time:

A = sparse (m,n) ; % an empty sparse matrix
for k = 1:nz

compute a value x, row index i, and column index j
A (i,j) = x ;

end

Building a matrix all at once via GrB_Matrix_build in SuiteSparse:GraphBLAS and
via sparse in MATLAB is equally fast; both methods below take O(nz log nz) time, in
SuiteSparse:GraphBLAS:

for (int k = 0 ; k < nz ; k++)
{

I [k] = ... ;
J [k] = ... ;
X [k] = ... ;

}
GrB_Matrix A ;
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GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;
GrB_Matrix_build (A, I,J,X,nz, GrB_SECOND_FP64) ;

And in MATLAB:

I = zeros (nz,1) ;
J = zeros (nz,1) ;
X = zeros (nz,1) ;
for k = 1:nz

compute a value x, row index i, and column index j
I (k) = i ;
J (k) = j ;
X (k) = x ;

end
A = sparse (I,J,X,m,n) ;

Exploiting non-blocking mode, SuiteSparse:GraphBLAS can do both incremental
and all-at-once methods equally fast, but in MATLAB only the all-at-once method is
efficient. Allowing for fast incremental updates allows the user to write simpler code
to construct a matrix, and enables much faster incremental updates to a matrix that
has already been constructed.

3.1.9. The accumulator and the mask. Most GraphBLAS operations can be modified via
transposing input matrices, using an accumulator operator, applying a mask or its
complement, and by clearing all entries the matrix C after using it in the accumulator
operator but before the final results are written back into it. All of these steps are
optional, and are controlled by a descriptor object that holds parameter settings that
control the following options:

— the input matrices A and/or B can be transposed first.
— an accumulator operator can be used, like the plus in the MATLAB statement

C=C+A*B. The accumulator operator can be any binary operator, and an element-wise
“add” (set-union) is performed using the operator.

— an optional mask can be used to selectively write the results to the output. The mask
is a sparse Boolean matrix Mask whose size is the same size as the result. If Mask(i,j)
is true, then the corresponding entry in the output can be modified by the computa-
tion. If Mask(i,j) is false, then the corresponding in the output is protected and can-
not be modified by the computation. The Mask matrix acts exactly like logical matrix
indexing in MATLAB, with one minor difference: in GraphBLAS notation, the mask
operation is C〈M〉 = Z, where the mask M appears only on the left-hand side. In
MATLAB, it would appear on both sides as C(Mask)=Z(Mask). If no mask is provided,
the Mask matrix is implicitly all true. This is indicated by passing the value GrB_NULL
in place of the Mask argument in GraphBLAS operations.

This process can be described in mathematical notation as:

A = A′, if requested via descriptor (first input option)
B = B′, if requested via descriptor (second input option)
T is computed according to the specific operation
C〈M〉 = C�T, accumulating and writing the results back via the mask

The application of the mask and the accumulator operator is written as
C〈M〉 = C�T where Z = C�T denotes the application of the accumulator operator,
and C〈M〉 = Z denotes the mask operator via the Boolean matrix M. The expression
C〈M〉 = C�T is computed as follows:

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2001.



1:6 T. Davis

if no accumulator operator, Z = T; otherwise Z = C�T
if requested via descriptor (replace option), all entries cleared from C
if Mask is NULL

C = Z if Mask is not complemented; otherwise C is not modified
else

C〈M〉 = Z if Mask is not complemented;
otherwise C〈¬M〉 = Z

The accumulator operator (�) acts like a sparse matrix addition, except that any
operator can be used. The pattern of C�T is the set-union of the patterns of C and T,
and the operator is applied only on the set-intersection of C and T. Entries in neither
the pattern of C nor T do not appear in the pattern of Z. That is:

for all entries (i, j) in C ∩T (that is, entries in both C and T)
zij = cij � tij

for all entries (i, j) in C \T (that is, entries in C but not T)
zij = cij

for all entries (i, j) in T \C (that is, entries in T but not C)
zij = tij

3.2. GraphBLAS methods and operations
The matrix (GrB_Matrix) and vector (GrB_Vector) objects include additional methods
for setting a single entry, extracting a single entry, making a copy, and constructing
an entire matrix or vector from a list of tuples. The tuples are held as three arrays I,
J, and X, which work the same as A=sparse(I,J,X) in MATLAB, except that any type
matrix or vector can be constructed. A complete list of methods can be found in the
User Guide provided with the software package.

Table II lists all SuiteSparse:GraphBLAS operations in the GraphBLAS notation
where AB denotes the multiplication of two matrices over a semiring. Upper case
letters denote a matrix, and lower case letters are vectors. Each operation takes an
optional GrB_Descriptor argument that modifies the operation. The input matrices A
and B can be optionally transposed, the mask M can be complemented, and C can be
cleared of its entries after it is used in Z = C�T but before the C〈M〉 = Z assignment.
Vectors are never transposed via the descriptor.

The notation A⊕B denotes the element-wise operator that produces a set-union
pattern (like A+B in MATLAB). The notation A⊗B denotes the element-wise operator
that produces a set-intersection (like A.*B in MATLAB). Reduction of a matrix A to a
vector reduces the ith row of A to a scalar wi, like w=sum(A’) in MATLAB.

4. SUITESPARSE:GRAPHBLAS IMPLEMENTATION
The GraphBLAS API provides a great deal of flexibility in its implementation details.
All of its objects are opaque, and their contents can only be modified by calling Graph-
BLAS functions. This section describes how the GraphBLAS API is implemented in
the SuiteSparse:GraphBLAS software package.

4.1. Matrix and vector data structure
The GraphBLAS matrix and vector objects are opaque to the end-user, and can only be
accessed via GraphBLAS methods and operations. Their implementation has a signif-
icant impact on the performance of GraphBLAS, so an overview of the data structure
is given here.

In SuiteSparse:GraphBLAS (version 2.0.2), a GraphBLAS matrix (the GrB_Matrix
object) is stored in a variant of the compressed-sparse column format. The basics of
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Table II. SuiteSparse:GraphBLAS Operations

function name description GraphBLAS notation
GrB mxm matrix-matrix mult. C〈M〉 = C�AB
GrB vxm vector-matrix mult. w′〈m′〉 = w′ � u′A
GrB mxv matrix-vector mult. w〈m〉 = w �Au
GrB eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set-union w〈m〉 = w � (u⊗ v)
GrB eWiseAdd element-wise, C〈M〉 = C� (A⊕B)

set-intersection w〈m〉 = w � (u⊕ v)
GrB extract extract submatrix C〈M〉 = C�A(i, j)

w〈m〉 = w � u(i)
GrB assign assign submatrix C〈M〉(i, j) = C(i, j)�A

w〈m〉(i) = w(i)� u
GxB subassign assign submatrix C(i, j)〈M〉 = C(i, j)�A

w(i)〈m〉 = w(i)� u
GrB apply apply unary op. C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GxB select apply select op. C〈M〉 = C�f(A,k)

w〈m〉 = w�f(u,k)
GrB reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(i, j)]
GrB transpose transpose C〈M〉 = C�A′

GxB kron Kronecker product C〈M〉 = C� kron(A,B)

this data structure are identical to the MATLAB sparse matrix [Gilbert et al. 1992],
and also the sparse matrix format used in CSparse [Davis 2006]. For a matrix A of
size m-by-n, an integer array A.p of size n+1 holds the column “pointers,” which are
references to locations in the A.i and A.x arrays, each of which are of size equal to, or
greater, than the number of entries in the matrix. The row indices of entries in column
j of A are held in A.i[A.p[j]...A.p[j+1]-1], and the values are held in the same
positions in the A.x array. Row and column indices are zero-based, which matches the
internal data structure of a MATLAB sparse matrix. The MATLAB user is provided
the illusion of 1-based indexing in a MATLAB M-file, whereas the GraphBLAS user
sees a 0-based indexing. To facilitate submatrix extraction (C=A(I,J)) and assignment
(C(I,J)=A), row indices are always kept sorted, just like MATLAB. No duplicate entries
are held in this format.

The type of the entries of A can be almost anything. GraphBLAS provides 11 built-
in types (boolean, integers and unsigned integers of size 8, 16, 32, and 64 bits, and
single and double precision floating-point). In addition, a user application can define
any new type, without requiring a recompilation of the GraphBLAS library. The only
restriction on the type is that it must have a constant size, and it must be possible
to copy a value with a single memcpy. MATLAB provides sparse logical, double, and
complex double. GraphBLAS can be easily extended to handle complex double sparse
matrices via a user-defined complex type; an example is given in the Demo folder of
SuiteSparse:GraphBLAS.

MATLAB drops its entries with a numerical value of zero, but this is never done in
GraphBLAS. A “zero” is simply an entry that is not stored in the data structure, and
the value of this implicit entry depends on the semiring. If the matrix is used in the
conventional plus-times semiring, the implicit value is zero. If used in max-plus, the
implicit entry is −∞. This value is not stored in A; it depends on the semiring, and any
matrix can be used in any semiring. Thus, dropping a numerical entry whose value
happens to be zero cannot be done in GraphBLAS.

SuiteSparse:GraphBLAS adds an additional set of features to this data structure:
zombies and pending tuples, which enable fast insertion and deletion of entries. These
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features enable submatrix assignment to be many times faster the equivalent opera-
tions in MATLAB, even when blocking mode is used.

A zombie is an entry in the data structure that has been marked for deletion. This is
done by “negating” the row index of the entry. More precisely, its row index i is changed
to (-i-2), to accommodate zero-based row indices. Zombies allow for fast deletion, and
they also permit binary searches of a column to performed, even if it contains zombies.

A pending tuple is an entry that has not yet been added to the compressed-sparse
column part of the data structure. Pending tuples are held in an unsorted list of row
indices, column indices, and values. Duplicates may appear in this list. The matrix also
keeps track of a single operator to be used to combine duplicate entries. A matrix can
have both zombies and pending tuples.

Temporary matrices, internal in SuiteSparse:GraphBLAS, need not have their own
p, i, and/or x arrays. Any or all of these can be shallow pointers to the components
of other matrices. This feature facilitates operations such as typecasting a user input
matrix to a required type. In this case, only x need be constructed for the temporary
typecasted matrix, while the pattern (p and i) are shallow copies of the input matrix.

A GraphBLAS vector (GrB_Vector) is simply held as an n-by-1 matrix, although the
two types (GrB_Matrix and GrB_Vector) are different and unique types in the user-level
application.

4.2. Matrix operations
Details of the matrix multiply, element-wise, submatrix extraction, and submatrix as-
signment operations are given below. Unless specified otherwise, the matrix C is m-by-
n. The GrB_apply, GrB_reduce, GrB_transpose, GxB_select, and GxB_kron operations
are not described here since their implementation is fairly straight-forward.

4.2.1. Matrix multiply. Multiplying two sparse matrices (GrB_mxm), matrix-vector multi-
ply (GrB_mxv) or vector-matrix multiply (GrB_vxm) relies on three methods:

(1) a variant of Gustavson’s algorithm [Gustavson 1978],
(2) a masked variant of Gustavson’s method for C〈M〉 = AB, and
(3) a dot-product formulation.

In the first method, when no mask is present, the work is split into a symbolic anal-
ysis phase that finds the pattern of C and a numerical phase that computes its values.
To multiply C = AB where C is m-by-n, A is m-by-k and B is k-by-n, both phases take
only O(n + f) time, where f is the number of “multiply-adds” computed (in the semir-
ing). The terms m and k do not appear in the time complexity, which is very important
when n and f are both much less than m or k.

A breadth-first search, for example, must compute c = Ab where b is a sparse vector.
The result c is the set of neighbors of all nodes i where bi is true. This set of neighbors is
much smaller than the number of nodes, m, in the graph, but the time to compute this
set is simply O(f), or the sum total of the adjacency sets for all nodes in the current
level, represented by b (a column vector, so n = 1).

To obtain this time O(n + f) that does not depend on m, SuiteSparse:GraphBLAS
maintains a set of pre-allocated workspaces of size O(m), used internally and reused
for subsequent operations. One is uninitialized, and use for numerical gather/scatter
operations in the numerical phase. The other is an initialized integer array, mark,
that is used for the set-union computation in the symbolic phase, and it is cleared
in constant time (when initialized, mark[i]<flag holds for all i; to set mark[i] as true,
mark[i]=flag is done, and clearing the entire mark array simply requires flag to be in-
cremented). Both workspaces are resized if they are not large enough, but this would
be done just once for the entire breadth-first search, for example. Thus, in an amortized
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sense, these size m arrays do not contribute an O(m) component to the time complexity
of computing C = AB.

Both C and B have n columns, and even if many of those columns are entirely empty,
the time complexity of O(n+f) still depends on n. Constructing C takes Ω(n) time and
space since it is stored in compressed sparse-column form with a pointer array C.p of
size n + 1. The term n could dominate in some cases, if n is much larger than f . In a
future version of SuiteSparse:GraphBLAS, a hypersparse version of the data structure
is being considered, where only non-empty columns would be counted in the memory
space and time complexity of C = AB [Buluç and Gilbert 2008]. This change can easily
be done in the future since all GraphBLAS objects are opaque to the user application.

The result of computing the matrix product AB may be written into C via a mask,
M, via C〈M〉 = AB. If the mask is present (and not complemented), only the subset
of entries appearing in the mask are computed. This greatly reduces the time and
memory usage. In this method, the symbolic analysis is skipped. A matrix T = AB is
computed whose pattern is assumed to be a subset of the mask matrix M. Entries in
AB outside the mask need not be computed, and are discarded if they are computed.

For example, if L is the strictly lower triangular part of an unweighted graph A,
then C〈L〉 = L2 finds the number of triangles in the graph, where cij is the number
of triangles the containing the edge (i, j) [Azad et al. 2015]. Not all of L2 is computed
or stored, but only the entries corresponding to entries in the mask, L. This greatly
reduces the time and memory complexity of the masked matrix multiply, as compared
with computing all of L2 first and then applying the mask.

Currently, matrix multiply and submatrix assignment (GrB_mxm, GrB_mxv, GrB_vxm,
GrB_assign, and GxB_subassign) are the only operations that exploit the mask during
computations. All other operations compute their result and only then do they write
their results into the output matrix via the mask.

4.2.2. Element-wise operations. Element-wise operations in GraphBLAS can use any bi-
nary operator. They are applied in either a set-union (GrB_eWiseAdd) or set-intersection
(GrB_eWiseMult) manner. The set-union is like a sparse matrix addition, C=A+B. If an
entry appears in just A or B, the value is copied into C without applying the binary op-
erator. The set-intersection is like C=A.*B in MATLAB, which is the Hadamard matrix
product if the binary multiply operator is used. For both methods, however, any binary
operator can be used, which is only applied to entries in the set-intersection.

The implementation of GrB_eWiseAdd is straightforward, taking O(n+ |A|+ |B|) time
where |...| denotes the number of entries in a matrix and where n is the number of
columns in the three matrices. Each column of C is computed with a merge of the
corresponding columns of A and B, since columns are always kept with sorted row
indices. Unless the matrices have fewer than O(n) entries, this time is optimal.

The GrB_eWiseMult operation is more subtle, since the lower bound on the ideal
time is the size of the set-intersection, Ω(|C|), which is smaller than either |A| or
|B|. For each column j, if the number of nonzeros in A∗j and B∗j are similar, then
a conventional merge is used, taking O(|A∗j | + |B∗j |) time. This is just like set-union
“add,” except that entries outside the set-intersection are not copied into C. Suppose
instead that the jth column of A has far fewer entries than the jth column of B. In this
case, during the merge, each entry of Aij is examined and a trimmed binary search is
used to find the corresponding entry in B∗j . The search is trimmed since B∗j is sorted,
and once an entry i is found this result is used to reduce the search for subsequent row
indices i′ > i.

Additional tests for special cases reduce the time even further. For example, if the
last entry in column A∗j comes before the first entry in B∗j , then the intersection is
empty and no traversal is done of either A∗j or B∗j .
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These tests are performed column-by-column. In the extreme case, if A is very sparse
and B is completely dense, the time complexity of GrB_eWiseMult is O(n + |A| logm).
This is much smaller than the O(n2) time that would result if a simple merge is used,
like the set-union “add” method used in GrB_eWiseAdd.

4.2.3. Submatrix extraction. GrB_extract extracts a submatrix, C = A(i, j) where i and
j are integer vectors, like C=A(I,J) in MATLAB notation. It is a meta-algorithm that
selects different methods for traversing the matrix A, depending on the length |i| of
the row index list i and the number of entries in a given column of the matrix A.

The matrix C is built one column C(:,k) at a time, by examining A(:,j) where
j=J[k]. Let a = |A∗j | be the number of entries in the jth column of A, and let c = |C∗k|
be the number of entries in the kth column of C. If I has duplicate entries, then c > a
is possible; otherwise c ≤ a must hold.

If the list I is long, and not contiguous (nor GrB_ALL, which acts just like the colon in
A(:,j) in MATLAB), then an multiset inverse of I is created in O(m + |i|) workspace,
where m is the number of rows of A, taking O(|i|) time. The inverse is a multiset if I
contains duplicate entries. This workspace is needed only for cases 5 to 7, below.

Except for case 2, the method starts with a binary search for the first row index,
I[0], taking at most O(log a) time. The method then considers seven cases, for each
column of C and A; the first case that holds is utilized.

(1) I is a single row index: the entry is extracted in O(1) time. Total time is O(log a).
(2) I is GrB_ALL (the colon C=A(:,j) in MATLAB notation): the entire column is copied.

Time is optimal: O(c).
(3) I is a contiguous list (C=A(imin:imax,j)): the entire column is copied starting at

imin=I[0] until reaching imax. Time is O(log a + c), which is nearly equal to the
lower bound of O(c).

(4) The inverse of I has not been computed, or the size of I is small compared with the
number of entries in A(:,j): a binary search in A(:,j) is performed for each entry
in I. If found, the entry is appended to C(:,k). Time is O(|i| log a). Case 4 is faster
than cases 5 to 7 when |i| is smaller than a.

(5) The list I is not in order (and may include duplicates): all of A(:,j) is examined.
If A(i,j) is nonzero, then all row indices t for which t=I[k] (if any) are appended
to the column C(:,k), along with their positions in A(:,j). This traversal relies
on the multi-inverse of I computed in the initialization phase. Once the traversal
of the pattern of A(:,j) is completed, the row indices and positions in C(:,k) are
sorted. Next the corresponding numerical values are copied from A(I,j) to C(:,k).
Time is (c log c + a).

(6) The list I is sorted but has duplicates: all of A(:,j) is examined. This method is
just like case (5), except that no sort is needed, and it is done in a single pass. Time
is O(c + a).

(7) the list I is sorted, with no duplicates: this is a simplified version of case (6). Time
is O(a).

There is no simple expression for the total time to construct all of C = A(i, j), since
each column is treated differently in one of the above seven cases.

4.2.4. Submatrix assignments. The GrB_assign and GxB_subassign operations
modify a submatrix of C. The GraphBLAS operation GrB_assign computes
C〈M〉(i, j) = C(i, j)�A, where the mask matrix M has the same size as C. Suite-
Sparse:GraphBLAS adds an extension to the GraphBLAS specification, via the
operation GxB_subassign, which computes C(i, j)〈M〉 = C(i, j)�A. In this case, the
mask matrix is the same size as the submatrix C(i, j). Details of the two operations
are shown in Table III.
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Table III. GrB assign and GxB subassign

Step GrB assign GxB subassign
1 S = C(I,J) S = C(I,J)
2 S = S�A S〈M〉 = S�A
3 Z = C C(I,J) = S
4 Z(I,J) = S
5 C〈M〉 = Z

These two operations are the most intricate operations in SuiteSparse:GraphBLAS.
They fully exploit non-blocking mode to obtain high performance.

If a sequence of assignments uses the same accumulator operator, portions of the
assignment are postponed, via zombies and pending tuples. In most cases, the method
starts with a specialized form of submatrix extraction, S = C(i, j), where the scalar
entries in S are pointers to where the entries reside in C. Next S = S�A is computed,
where entries that appear in both S and A are modified directly in C. Entries that
appear in S but not A become zombies in C. Entries that appear in A but not S become
pending tuples in C.

No workspace is required beyond that needed by the submatrix extraction to com-
pute S. As a result, if C is m-by-n, in most cases no size m or size n workspace is
needed. This makes the method much more efficient for very large, very sparse ma-
trices, as compared to C(I,J)=A in MATLAB, even when the non-blocking mode is not
exploited. In particular, for one square matrix C of dimension 3 million, containing 14.3
million nonzeros, C(I,J)=A takes 87 seconds in MATLAB on a MacBook Pro but only
0.74 seconds in SuiteSparse:GraphBLAS (where A is 5500-by-7000 with 38,500 nonze-
ros). This 0.74 seconds includes the time to return the result back to MATLAB as a
valid MATLAB sparse matrix with all zombies and pending tuples removed.

The GrB_Matrix_setElement method modifies a single entry, C(i,j)=x where i and
j are scalars. It first performs a binary search of column C(:,j) to see if the entry is
present. If so, the value is modified; a zombie may come back to life in this case. If it is
not present, the entry is added to the list of pending tuples.

4.3. Testing
SuiteSparse:GraphBLAS includes a Test folder that contains a full MATLAB imple-
mentation of the GraphBLAS API Specification, so that each method and operation in
the C-callable SuiteSparse:GraphBLAS can be tested and their results compared with
the GraphBLAS specification.

5. EXAMPLE GRAPH ALGORITHMS IN GRAPHBLAS
This section describes two of the graph algorithms provided as demos in the Suite-
Sparse:GraphBLAS package: breadth-first search, and Luby’s method for finding a
maximal independent set.

5.1. Breadth-first search
Figure 1 gives an algorithm in GraphBLAS for computing the breadth-first search of
a graph. Each step consists of a matrix-vector multiplication, which finds the nodes
in the next level of the traversal. Space does not permit all the details of the C API
syntax to be described, so the algorithm is repeated in pseudo-MATLAB notation in
Figure 2. The single call to GrB_mxv computes a masked matrix-vector product using
the logical OR-AND semiring. Internally, it first computes t=A*q using the Boolean
OR-AND semiring. It then clears all entries in q, via the GrB_REPLACE parameter in
the descriptor. Finally, it assigns t to q using a complemented mask, which is q(~v)=t
in MATLAB notation.
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GrB_Info bfs // BFS of a graph (using vector assign & reduce)
(

GrB_Vector *v_output, // v [i] is the BFS level of node i in the graph
const GrB_Matrix A, // input graph, treated as if boolean in semiring
GrB_Index s // starting node of the BFS

)
{

GrB_Info info ;
GrB_Index n ; // # of nodes in the graph
GrB_Vector q = NULL ; // nodes visited at each level
GrB_Vector v = NULL ; // result vector
GrB_Descriptor desc = NULL ; // Descriptor for mxv
GrB_Matrix_nrows (&n, A) ; // n = # of rows of A
GrB_Vector_new (&v, GrB_INT32, n) ; // Vector<int32_t> v(n) = 0
for (int32_t i = 0 ; i < n ; i++)

GrB_Vector_setElement (v, 0, i) ;
GrB_Vector_new (&q, GrB_BOOL, n) ; // Vector<bool> q(n) = false
GrB_Vector_setElement (q, s, true) ; // q[s] = true, false elsewhere
GrB_Descriptor_new (&desc) ;
GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ; // invert the mask
GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ; // clear q first

bool successor = true ; // true when some successor found
for (int32_t level = 1 ; successor && level <= n ; level++)
{

// v<q> = level, using vector assign with q as the mask
GrB_assign (v, q, NULL, level, GrB_ALL, n, NULL) ;
// q<!v> = A ||.&& q ; finds all the unvisited
// successors from current q, using !v as the mask
GrB_mxv (q, v, NULL, GrB_LOR_LAND_BOOL, A, q, desc) ;
// successor = ||(q)
GrB_reduce (&successor, NULL, GrB_LOR_BOOL_MONOID, q, NULL) ;

}
*v_output = v ; // return result
GrB_free (&q) ;
GrB_free (&desc) ;
return (GrB_SUCCESS) ;

}

Fig. 1. GraphBLAS breadth-first search: given an adjacency matrix A and a source node s, perform a BFS
traversal of the graph, setting v[i] to the level in which node i is visited.

v = zeros (1,n) ; % v(k) is the BFS level (1 for source node s)
q = false (1,n) ; % boolean vector of size n
q (s) = true ; % q(k) is true if node k is in current level
for level = 1:n

v (q) = level ; % set v(i)=level where q(i) is true
% new q = all unvisited neighbors of current q:
t = A*q ; % where ’*’ is the OR-AND semiring
q = false (1,n) ; % clear q of all entries
q (~v) = t ; % q (i) = t (i) but only where v(i) is zero
if (~any (q)) break ;

end

Fig. 2. Breadth-first search using pseudo-MATLAB notation. The only aspect of this code fragment that
is not pure MATLAB is the computation of A*q, since MATLAB does provide matrix multiplication with
the OR-AND semiring. The graphic shows the computation of t=A*q using the OR-AND semiring, where
q is at level three (nodes 2 and 6). Level 4 will be nodes 5 and 7; node 3 is excluded since v is used as a
complemented mask and v[3] is nonzero.
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5.2. Luby’s maximal independent set algorithm
A second algorithm provided with SuiteSparse:GraphBLAS is an implementation of
Luby’s parallel method for finding a maximal independent set [Luby 1986]. Suite-
Sparse:GraphBLAS is currently a sequential package, but it expresses the algorithm
using whole-graph operations that could be implemented in parallel in future versions.

The maximal independent set problem is to find a set of nodes S such that no two
nodes in S are adjacent to each other (an independent set), and all nodes not in S are
adjacent to at least one node in S (and thus S is maximal since it cannot be augmented
by any node while remaining an independent set).

In each phase, all candidate nodes are given a random score. If a node has a score
higher than all its neighbors, then it is added to the independent set. All new nodes
added to the set cause their neighbors to be removed from the set of candidates. The
process must be repeated for multiple phases until no new nodes can be added. This is
because in one phase, a node i might not be added because one of its neighbors j has
a higher score, yet that neighbor j might not be added because one of its neighbors k
is added to the independent set instead. The node j is no longer a candidate and can
never be added to the independent set, but node i could be added to S in a subsequent
phase.

Each phase of Luby’s algorithm consists of nine calls to GraphBLAS operations. The
inner loop of Luby’s method is shown in Figure 3. The descriptor r_desc causes the
result to be cleared first, and sr_desc selects that option in addition to complementing
the mask.

The two matrix-vector multiplications are the important parts and also take the
most time. They also make interesting use of semirings and masks. The first one dis-
cussed here computes the largest score of all the neighbors of each node in the candi-
date set:

// compute the max probability of all neighbors
GrB_mxv (neighbor_max, candidates, NULL, GxB_MAX_SECOND_FP32, A, prob, r_desc) ;

A is a Boolean matrix and prob is a sparse real vector of type FP32, which is
a float in C. prob(j) is nonzero only if node j is a candidate. The pre-defined
GxB_MAX_SECOND_FP32 semiring uses z=SECOND(x,y)=y as the “multiply” operator. The
row A(i,:) is the adjacency of node i, and the dot product A(i,:)*prob applies the
SECOND operator on all entries that appear in the intersection of A(i,:) and prob,
z=SECOND(A(i,j),prob(j)) which is just prob(j) if A(i,j) is present. If A(i,j) is not
an explicit entry in the matrix, then this term is not computed and does not take part
in the reduction by the MAX monoid.

Thus, each term z=SECOND(A(i,j),prob(j)) is the score, prob(j), of all neighbors j
of node i that have a score. Node j does not have a score if it is not also a candidate
and so this is skipped. These terms are then “summed” up by taking the maximum
score, using MAX as the additive monoid.

Finally, the results of this matrix-vector multiply are written to the re-
sult, neighbor_max. The r_desc descriptor has the REPLACE option enabled. Since
neighbor_max does not also take part in the computation A*prob, it is simply cleared
first. Next, is it modified only in those positions i where candidates(i) is true, using
candidates as a mask. This sets the neighbor_max only for candidate nodes, and leaves
the other components of neighbor_max as zero (implicit values not in the pattern of the
vector).

All of the above work is done in a single matrix-vector multiply, with an elegant use
of the max-second semiring coupled with a mask. The matrix-vector multiplication is
described above as if it uses dot products of rows of A with the column vector prob, but
SuiteSparse:GraphBLAS does not compute it that way. Sparse dot products are much
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// Iterate while there are candidates to check.
GrB_Index nvals ;
GrB_Vector_nvals (&nvals, candidates) ;
int64_t last_nvals = nvals ;

while (nvals > 0)
{

// compute a random probability scaled by inverse of degree
GrB_apply (prob, candidates, NULL, set_random, degrees, r_desc) ;

// compute the max probability of all neighbors
GrB_mxv (neighbor_max, candidates, NULL, GxB_MAX_SECOND_FP32, A, prob, r_desc) ;

// select node if its probability is > than all its active neighbors
GrB_eWiseAdd (new_members, NULL, NULL, GrB_GT_FP64, prob, neighbor_max, NULL) ;

// add new members to independent set.
GrB_eWiseAdd (iset, NULL, NULL, GrB_LOR, iset, new_members, NULL) ;

// remove new members from set of candidates c = c & !new
GrB_apply (candidates, new_members, NULL, GrB_IDENTITY_BOOL, candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;
if (nvals == 0) { break ; } // early exit condition

// Neighbors of new members can also be removed from candidates
GrB_mxv (new_neighbors, candidates, NULL, GxB_LOR_LAND_BOOL, A, new_members, NULL) ;
GrB_apply (candidates, new_neighbors, NULL, GrB_IDENTITY_BOOL, candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

// this will not occur, unless the input is corrupted somehow
if (last_nvals == nvals) { printf ("stall!\n") ; exit (1) ; }
last_nvals = nvals ;

}

Fig. 3. Luby’s maximal independent set method in GraphBLAS

slower than the optimal method for multiplying a sparse matrix times a sparse vector.
The result is the same, however.

6. PERFORMANCE
GraphBLAS allows a user application to express its graph algorithms in a powerful,
expressive, and simple manner. Details of the graph data structure and the implemen-
tation of the basic methods can be left to the author of the GraphBLAS library. The
key question, however, is whether or not performance of such an application can match
that of a graph algorithm written without GraphBLAS.

In [Davis 2018], two algorithms were written in GraphBLAS, and without Graph-
BLAS (both sequentially and in parallel). The first algorithm is to count the number
of triangles in a graph, which is the number of unique cliques of size 3 in the graph.
The second is construct the k-truss of a graph. In a 3-truss, all edges in the graph
are removed except for those in one or more triangles. In a k-truss, each edge that
remains must appear in at least k − 2 triangles. Both codes are very simple to write
using GraphBLAS.

The methods were tested on a large set of graphs from the MIT GraphChallenge
(https://graphchallenge.mit.edu). Considering just the sequential implementation, the
results show that triangle counting in SuiteSparse:GraphBLAS is competitive with a
highly optimized single-threaded method, and even faster for some larger graphs. An
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asymptotically optimal yet basic C implementation of triangle counting is much slower
than an implementation using SuiteSparse:GraphBLAS.

K-truss in SuiteSparse:GraphBLAS is also simple and the performance is compet-
itive with a highly optimized and complex algorithm in pure C, rarely taking more
than twice the time as the highly-optimized, sequential versions in pure C, and the
GraphBLAS implementations are sometimes faster. These results demonstrate that
GraphBLAS can be an efficient library that allows end users to write simple yet fast
code.

Full details of this experiment are available in [Davis 2018], and code is available at
http://suitesparse.com.

7. SUMMARY
The SuiteSparse:GraphBLAS library provides an efficient and highly optimized im-
plementation of the GraphBLAS API standard [Buluç et al. 2017]. It allows users to
write powerful and expressive graph algorithms with simple user-level code, whose
performance is competitive with a highly-tuned code written by an expert. The pack-
age is available as a Collected Algorithm of the ACM, at http://suitesparse.com, and it
is also available as a pre-packaged Debian and Ubuntu Linux distro in the suitesparse
package.
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