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Abstract

SuiteSparse:GraphBLAS is a full implementation of the Graph-
BLAS standard, which defines a set of sparse matrix operations on
an extended algebra of semirings using an almost unlimited variety
of operators and types. When applied to sparse adjacency matrices,
these algebraic operations are equivalent to computations on graphs.
GraphBLAS provides a powerful and expressive framework for cre-
ating graph algorithms based on the elegant mathematics of sparse
matrix operations on a semiring.
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1 Introduction

The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Sup-
pose A and B are sparse n-by-n Boolean adjacency matrices of two undi-
rected graphs. If the matrix multiplication is redefined to use logical AND
instead of scalar multiply, and if it uses the logical OR instead of add, then
the matrix C is the sparse Boolean adjacency matrix of a graph that has an
edge (i, j) if node i in A and node j in B share any neighbor in common. The
OR-AND pair forms an algebraic semiring, and many graph operations like
this one can be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides a wide range
of built-in types and operators, and allows the user application to create new
types and operators without needing to recompile the GraphBLAS library.

A full and precise definition of the GraphBLAS specification is provided
in The GraphBLAS C API Specification by Aydın Buluç, Timothy Matt-
son, Scott McMillan, José Moreira, and Carl Yang [BMM+17], based on
GraphBLAS Mathematics by Jeremy Kepner [Kep17]. The GraphBLAS C
API Specification is available at http://graphblas.org. This version of
SuiteSparse:GraphBLAS fully conforms to Version 1.1.0 of that specification.
In this User Guide, aspects of the GraphBLAS specification that would be
true for any GraphBLAS implementation are simply called “GraphBLAS.”
Details unique to this particular implementation are referred to as Suite-
Sparse:GraphBLAS.

SPEC: See the tag SPEC: for extensions to the spec. They are also
placed in text boxes like this one. All functions and objects with a
name of the form GxB_* and all macros with a name of the form GXB_

are extensions to the spec. Functions and objects prefixed with GB_ are
internal to SuiteSparse:GraphBLAS and should not be referenced by user
applications.
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2 Basic Concepts

Since the GraphBLAS C API Specification provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the GraphBLAS C API Specification.
However, including them here is not essential and the additional information
on the page might detract from a clearer view of the essential features of the
GraphBLAS functions.

This User Guide also assumes the reader is familiar with the MATLAB
language, created by Cleve Moler. MATLAB supports only the conventional
plus-times semiring on sparse double and complex matrices, but a MATLAB-
like notation easily extends to the arbitrary semirings used in GraphBLAS.
The matrix multiplication in the example in the Introduction can be written
in MATLAB notation as C=A*B, if the Boolean OR-AND semiring is under-
stood. Relying on a MATLAB-like notation allows the description in this
User Guide to be expressive, easy to understand, and terse at the same time.
The GraphBLAS C API Specification also makes use of some MATLAB-like
language, such as the colon notation.

MATLAB notation will always appear here in fixed-width font, such as
C=A*B(:,j). In standard mathematical notation it would be written as the
matrix-vector multiplication C = Abj where bj is the jth column of the ma-
trix B. The GraphBLAS standard is a C API and SuiteSparse:GraphBLAS
is written in C, and so a great deal of C syntax appears here as well, also
in fixed-width font. This User Guide alternates between all three styles as
needed.

2.1 Graphs and sparse matrices

Graphs can be huge, with many nodes and edges. A dense adjacency ma-
trix for a graph of n nodes takes O(n2) memory, which is impossible if n is,
say, a million. Most graphs are sparse, however, with only O(n) edges, and
graphs with millions of nodes and edges can easily be created by represent-
ing them as sparse matrices, where only explicit values need to be stored.
In SuiteSparse:GraphBLAS, creating a million-by-million sparse matrix or
a trillion-by-1 column vector can be done on quite easily on a commodity
laptop, as long as it does not have too many explicit entries.
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A sparse matrix data structure only stores a subset of the possible n2

entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it differs
with different semirings. Explicit values are called entries and they appear
in the data structure. The pattern of a matrix defines where its explicit
entries appear. It will be referenced in one of two equivalent ways. It can
be viewed as a set of indices (i, j), where (i, j) is in the pattern of a matrix
A if A(i, j) is an explicit value. It can also be viewed as a Boolean matrix
S where S(i, j) is true if (i, j) is an explicit entry and false otherwise. In
MATLAB notation, S=spones(A) or S=(A~=0), if the implicit value is zero.
Later on in this User Guide, this pattern of A, however it is stored, is called
A.pattern when used in MATLAB notation. The (i,j) pairs, and their
values, can also be extracted from the matrix via the MATLAB expression
[I,J,X]=find(A), where the kth tuple (I(k),J(k),X(k)) represents the
explicit entry A(I(k),J(k)), with numerical value X(k) equal to aij, with
row index i=I(k) and column index j=J(k).

The entries in the pattern of A can take on any value, including the
implicit value, whatever it happens to be. This differs slightly from MAT-
LAB, which always drops all explicit zeros from its sparse matrices. This
is a minor difference but it cannot be done in GraphBLAS. For example, in
the max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that
no explicit entries are ever dropped because their explicit value happens to
match the implicit value.

Graph Algorithms in the Language on Linear Algebra, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations [KG11]. For additional background on
sparse matrix algorithms, see also [Dav06] and [DRSL16].

2.2 Overview of GraphBLAS methods and operations

GraphBLAS provides a collection of methods to create, query, and free each
of its nine different types of objects: sparse matrices, sparse vectors, types,
operators (binary, unary and select), monoids, semirings, and a descriptor
object used for parameter settings. Details are given in Section 4.

Once these objects are created they can be used in mathematical opera-
tions (not to be confused with the how the term operator is used in Graph-
BLAS). A short summary of these operations and their nearest MATLAB
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analog is given in the table below.
operation approximate MATLAB analog
matrix multiplication C=A*B

element-wise operations C=A+B and C=A.*B

reduction to a vector or scalar s=sum(A)

apply unary operator C=-A

transpose C=A’

submatrix extraction C=A(I,J)

submatrix assignment C(I,J)=A

GraphBLAS can do far more than what MATLAB can do in these rough
analogs, but the list provides a first step in describing what GraphBLAS can
do. Details of each GraphBLAS operation are given in Section 5. With this
brief overview, the full scope of GraphBLAS extensions of these operations
can now be described.

GraphBLAS has 11 built-in scalar types: Boolean, single and double
precision floating-point, and 8, 16, 32, and 64-bit signed and unsigned inte-
gers. In addition, user-defined scalar types can be created from nearly any
C typedef, as long as the entire type fits in a fixed-size contiguous block of
memory (of arbitrary size). All of these types can be used to create Graph-
BLAS sparse matrices or vectors.

The scalar addition of conventional matrix multiplication is replaced with
a monoid. A monoid is an associative and commutative binary operator
z=f(x,y) where all three domains are the same (the types of x, y, and z), and
where the operator has an identity value id such that f(x,id)=f(id,x)=x.
Performing matrix multiplication with a semiring uses a monoid in place of
the “add” operator, scalar addition being just one of many possible monoids.
The identity value of addition is zero, since x + 0 = 0 + x = x. GraphBLAS
includes eight built-in operators suitable for use as a monoid: min (with an
identity value of positive infinity), max (whose identity is negative infinity),
add (identity is zero) multiply (with an identity of one), and four logical oper-
ators: AND, OR, exclusive-OR, and Boolean equality. User-created monoids
can be defined with any associative and commutative operator that has an
identity value.

Finally, a semiring can use any built-in or user-defined binary operator
z=f(x,y) as its “multiply” operator, as long as the type of its output, z

matches the type of the semiring’s monoid. The user application can create
any semiring based on any types, monoids, and multiply operators, as long
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these few rules are followed.
Just considering built-in types and operators, GraphBLAS can perform

C=A*B in 960 unique semirings. With typecasting, any of these 960 semirings
can be applied to matrices C, A, and B of any of the 11 types, in any com-
bination. This gives 960 × 113 = 1, 277, 760 possible kinds of sparse matrix
multiplication supported by GraphBLAS, and this is counting just built-in
types and operators. By contrast, MATLAB provides just two semirings
for its sparse matrix multiplication C=A*B: plus-times-double and plus-times-
complex, not counting the typecasting that MATLAB does when multiplying
a real matrix times a complex matrix. All of the 1.3 million forms of ma-
trix multiplication methods in SuiteSparse:GraphBLAS are typically just as
fast as computing C=A*B in MATLAB using its own native sparse matrix
multiplication methods, and sometimes faster.

A monoid can also be used in a reduction operation, like s=sum(A) in
MATLAB. MATLAB provides the plus, times, min, and max reductions of
a real or complex sparse matrix as s=sum(A), s=prod(A), s=min(A), and
s=max(A), respectively. In GraphBLAS, any monoid can be used (min, max,
plus, times, AND, OR, exclusive-OR, equality, or any user-defined monoid,
on any user-defined type).

Element-wise operations are also expanded from what can be done in
MATLAB. Consider matrix addition, C=A+B in MATLAB. The pattern of
the result is the set union of the pattern of A and B. In GraphBLAS, any
binary operator can be used in this set-union “addition.” The operator is
applied to entries in the intersection. Entries in A but not B, or visa-versa,
are copied directly into C, without any application of the binary operator.
The accumulator operation for Z = C�T described in Section 2.3 is one
example of this set-union application of an arbitrary binary operator.

Consider element-wise multiplication, C=A.*B in MATLAB. The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of C just this set intersection. Entries in A but not B, or visa-versa,
do not appear in C. In GraphBLAS, any binary operator can be used in this
manner, not must scalar multiplication. The difference between element-wise
“add” and “multiply” is not the operators, but whether or not the pattern of
the result is the set union or the set intersection. In both cases, the operator
is only applied to the set intersection.

Finally, GraphBLAS includes a non-blocking mode where operations can
be left pending, and saved for later. This is very useful for submatrix assign-
ment (C(I,J)=A where I and J are integer vectors), or or scalar assignment
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(C(i,j)=x where i and j are scalar integers). Because of how MATLAB
stores its matrices, adding and deleting individual entries is very costly. For
example, this is very slow in MATLAB, taking O(nz2) time:

A = sparse (m,n) ; % an empty sparse matrix

for k = 1:nz

compute a value x, row index i, and column index j

A (i,j) = x ;

end

The above code is very easy read and simple to write, but exceedingly
slow. In MATLAB, the method below is preferred and is far faster, taking
only O(nz) time. It can easily be a million times faster than the method
above. Unfortunately the second method below is a little harder to read and
a little less natural to write:

I = zeros (nz,1) ;

J = zeros (nz,1) ;

X = zeros (nz,1) ;

for k = 1:nz

compute a value x, row index i, and column index j

I (k) = i ;

J (k) = j ;

X (k) = x ;

end

A = sparse (I,J,X,m,n) ;

GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its
matrices in the same way as MATLAB except that it allows for pending
computations, and as a result it can do both methods above equally as fast
as the MATLAB sparse function, allowing the user to write simpler code.

2.3 The accumulator and the mask

Most GraphBLAS operations can be modified via transposing input matrices,
using an accumulator operator, applying a mask or its complement, and by
clear all entries the matrix C after using it in the accumulator operator but
before the final results are written back into it. All of these steps are optional,
and are controlled by a descriptor object that holds parameter settings (see
Section 4.9) that control the following options:

• the input matrices A and/or B can be transposed first.
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• an accumulator operator can be used, like the plus in the statement
C=C+A*B. The accumulator operator can be any binary operator, and
an element-wise “add” (set union) is performed using the operator.

• an optional mask can be used to selectively write the results to the
output. The mask is a sparse Boolean matrix Mask whose size is the
same size as the result. If Mask(i,j) is true, then the corresponding
entry in the output can be modified by the computation. If Mask(i,j)
is false, then the corresponding in the output is protected and cannot
be modified by the computation. The Mask matrix acts exactly like
logical matrix indexing in MATLAB, with one minor difference: in
GraphBLAS notation, the mask operation is C〈M〉 = Z, where the
mask M appears only on the left-hand side. In MATLAB, it would
appear on both sides as C(Mask)=Z(Mask). If no mask is provided, the
Mask matrix is implicitly all true. This is indicated by passing the value
GrB_NULL in place of the Mask argument in GraphBLAS operations.

This process can be described in mathematical notation as:

A = A′, if requested via descriptor (first input option)
B = B′, if requested via descriptor (second input option)
T is computed according to the specific operation
C〈M〉 = C�T, accumulating and writing the results back via the mask

The application of the mask and the accumulator operator is written as
C〈M〉 = C�T where Z = C�T denotes the application of the accumu-
lator operator, and C〈M〉 = Z denotes the mask operator via the Boolean
matrix M. The Accumulator Phase, Z = C�T, is performed as follows:

Accumulator Phase: compute Z = C�T:
if accum is NULL

Z = T
else

Z = C�T

The accumulator operator is � in GraphBLAS notation, or accum in the
code. The pattern of C�T is the set union of the patterns of C and T, and
the operator is applied only on the set intersection of C and T. Entries in
neither the pattern of C nor T do not appear in the pattern of Z. That is:
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for all entries (i, j) in C ∩T (that is, entries in both C and T)
zij = cij � tij

for all entries (i, j) in C \T (that is, entries in C but not T)
zij = cij

for all entries (i, j) in T \C (that is, entries in T but not C)
zij = tij

The Accumulator Phase is followed by the Mask/Replace Phase, C〈M〉 = Z
as controlled by the GrB_REPLACE and GrB_SCMP descriptor options:

Mask/Replace Phase: compute C〈M〉 = Z:
if (GrB_REPLACE) delete all entries in C
if Mask is NULL

if (GrB_SCMP)
C is not modified

else
C = Z

else
if (GrB_SCMP)

C〈¬M〉 = Z
else

C〈M〉 = Z

Both phases of the accum/mask process are illustrated in MATLAB no-
tation in Figure 1. A GraphBLAS operation starts with its primary compu-
tation, producing a result T; for matrix multiply, T=A*B, or if A is transposed
first, T=A’*B, for example. Applying the accumulator, mask (or its comple-
ment) to obtain the final result matrix C can be expressed in the MATLAB
accum_mask function shown in the figure. This function is an exact, fully
functional, and nearly-complete description of the GraphBLAS accumula-
tor/mask operation. The only aspects it does not consider are typecasting
(see Section 2.4), and the value of the implicit identity (for those, see another
version in the Test folder).

One aspect of GraphBLAS cannot be as easily expressed in a MATLAB
sparse matrix: namely, what is the implicit value of entries not in the pat-
tern? To accommodate this difference in the accum_mask MATLAB func-
tion, each sparse matrix A is represented with its values A.matrix and its
pattern, A.pattern. The latter could be expressed as the sparse matrix
A.pattern=spones(A) or A.pattern=(A~=0) in MATLAB, if the implicit
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function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)

[m n] = size (C.matrix) ;

Z.matrix = zeros (m, n) ;

Z.pattern = false (m, n) ;

if (isempty (accum))

Z = T ; % no accum operator

else

% Z = accum (C,T), like Z=C+T but with an binary operator, accum

p = C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));

p = C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;

p = ~C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;

Z.pattern = C.pattern | T.pattern ;

end

% apply the mask to the values and pattern

C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;

C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;

end

function C = mask (C, Mask, Z, C_replace, Mask_complement)

% replace C if requested

if (C_replace)

C (:,:) = 0 ;

end

if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)

% implicitly, Mask = ones (size (C))

if (~Mask_complement)

C = Z ; % this is the default

else

C = C ; % Z need never have been computed

end

else

% apply the mask

if (~Mask_complement)

C (Mask) = Z (Mask) ;

else

C (~Mask) = Z (~Mask) ;

end

end

end

Figure 1: Applying the mask and accumulator, C〈M〉 = C�T
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value is zero. With different semirings, entries not in the pattern can be 1,
+Inf, -Inf, or whatever is the identity value of the monoid. As a result,
Figure 1 performs its computations on two MATLAB matrices: the values in
A.matrix and the pattern in the logical matrix A.pattern. Implicit values
are untouched.

The final computation in Figure 1 with a complemented Mask is easily
expressed in MATLAB as C(~Mask)=Z(~Mask) but this is costly if Mask is
very sparse (the typical case). It can be computed much faster in MATLAB
without complementing the sparse Mask via:

R = Z ; R (Mask) = C (Mask) ; C = R ;

A set of MATLAB functions that precisely compute the C〈M〉 = C�T
operation according to the full GraphBLAS specification is provided in Suite-
Sparse:GraphBLAS as GB_spec_accum.m, which computes Z = C�T, and
GB_spec_mask.m, which computes C〈M〉 = Z. SuiteSparse:GraphBLAS in-
cludes a complete list of GB_spec_* functions that illustrate every Graph-
BLAS operation; these are discussed in in Section 5.1.

The methods in Figure 1 rely heavily on MATLAB’s logical matrix in-
dexing. For those unfamiliar with logical indexing in MATLAB, here is short
summary. Logical matrix indexing in MATLAB is written as A(Mask) where
A is any matrix and Mask is a logical matrix the same size as A. The expression
x=A(Mask) produces a column vector x consisting of the entries of A where
Mask is true. On the left-hand side, logical submatrix assignment A(Mask)=x
does the opposite, copying the components of the vector x into the places in
A where Mask is true. For example, to negate all values greater than 10 using
logical indexing in MATLAB:

>> A = magic (4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> A (A>10) = - A (A>10)

A =

-16 2 3 -13

5 -11 10 8

9 7 6 -12

4 -14 -15 1
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In MATLAB, logical indexing with a sparse matrix A and sparse logical
matrix Mask is very efficient since MATLAB supports sparse logical matrices.
The Mask operator in GraphBLAS works identically as sparse logical index-
ing in MATLAB, and is equally as fast (or faster) in SuiteSparse:GraphBLAS.

2.4 Typecasting

If an operator z=f(x) or z=f(x,y) is used with inputs that do not match
its inputs x or y, or if its result z does not match the type of the matrix it
is being stored into, then the values are typecasted. Typecasting in Graph-
BLAS extends beyond just operators. Almost all GraphBLAS methods and
operations are able to typecast their results, as needed.

If one type can be typecasted into the other, they are said to be compat-
ible. All built-in types are compatible with each other. GraphBLAS cannot
typecast user-defined types thus any user-defined type is only compatible
with itself. When GraphBLAS requires inputs of a specific type, or when
one type cannot be typecast to another, the GraphBLAS function returns an
error code, GrB_DOMAIN_MISMATCH (refer to Section 3.4 for a complete list of
error codes). Typecasting can only be done between built-in types, and it
follows the rules of the C language (not MATLAB) wherever the rules of C
are well-defined. In particular, a large integer outside the range of a smaller
one is wrapped, modulo style. This differs from MATLAB.

However, unlike MATLAB, the C language specification states that the
results of typecasting a float or double to an integer type is not always
defined. In SuiteSparse:GraphBLAS, whenever C leaves the result undefined
the rules used in MATLAB are followed. In particular +Inf converts to
the largest integer value, -Inf converts to the smallest (zero for unsigned
integers), and NaN converts to zero. Other than these special cases, Suite-
Sparse:GraphBLAS trusts the C compiler for the rest of its typecasting.

Typecasting to bool is fully defined in the C language specification, even
for NaN. The result is false if the value compares equal to zero, and true
otherwise. Thus NaN converts to true.

SPEC: the GraphBLAS API Specification states that typecasting fol-
lows the rules of C. Yet C leaves some typecasting undefined. Suite-
Sparse:GraphBLAS provides a precise definition for all typecasting as an
extension to the spec.
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2.5 Notation and list of GraphBLAS operations

As a summary of what GraphBLAS can do, the following table lists all Graph-
BLAS operations. Upper case letters denote a matrix, and lower case letters
are vectors. Let AB denote the multiplication of two matrices over a semir-
ing. The semiring can use any binary operator as its “multiply” operator,
and any commutative and associative monoid as its “add” operator.

GrB_mxm matrix-matrix multiply C〈M〉 = C�AB
GrB_vxm vector-matrix multiply w′〈m′〉 = w′ � u′A
GrB_mxv matrix-vector multiply w〈m〉 = w �Au
GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set union w〈m〉 = w � (u⊗ v)
GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)

set intersection w〈m〉 = w � (u⊕ v)
GrB_extract extract submatrix C〈M〉 = C�A(I,J)

w〈m〉 = w � u(i)
GxB_subassign assign submatrix C(I,J)〈M〉 = C(I,J)�A

(with submask for C(I,J)) w(i)〈m〉 = w(i)� u
GrB_assign assign submatrix C〈M〉(I,J) = C(I,J)�A

(with mask for C) w〈m〉(i) = w(i)� u
GrB_apply apply unary operator C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GxB_select apply select operator C〈M〉 = C�f(A,k)

w〈m〉 = w�f(u,k)
GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(I, J)]
GrB_transpose transpose C〈M〉 = C�A′

Each operation takes an optional GrB_Descriptor argument that modi-
fies the operation. The input matrices A and B can be optionally transposed,
the mask M can be complemented, and C can be cleared of its entries after
it is used in Z = C�T but before the C〈M〉 = Z assignment. Vectors are
never transposed via the descriptor.

Let A⊕B denote the element-wise operator that produces a set union
pattern (like A+B in MATLAB). Any binary operator can be used this way
in GraphBLAS, not just plus. Let A⊗B denote the element-wise operator
that produces a set intersection pattern (like A.*B in MATLAB); any binary
operator can be used this way, not just times.

Reduction of a matrix A to a vector reduces the ith row of A to a scalar
wi. This is like w=sum(A’) since by default, MATLAB reduces down the
columns, not across the rows. Since the input matrix can be optionally
transposed, selecting this option obtains the behavior of sum in MATLAB.
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3 GraphBLAS Context and Sequence

A user application that directly relies on GraphBLAS must include the
GraphBLAS.h header file:

#include "GraphBLAS.h"

The GraphBLAS.h file defines functions, types, and macros prefixed with
GrB_, GRB_, GxB_, and GXB_ that may be used in user applications. The
prefixes GrB_ and GRB_ denote items that appear in the official GraphBLAS
API C Specification. The prefixes GxB_ and GXB_ refer to SuiteSparse-specific
extensions to the GraphBLAS API. Both may be used in user applications
but be aware that items with prefixes GxB_ and GXB_ will not appear in other
implementations of the GraphBLAS standard.

There are a few functions and objects prefixed with GB_ that also ap-
pear in GraphBLAS.h, but all names with this prefix are internal to Suite-
Sparse:GraphBLAS and must not be referenced by user applications. They
are not documented in this User Guide, and no guarantee at all is made
about them in future versions of this package. They can change or even be
removed without notice. In addition, no contents of any GraphBLAS object
(A, say) should be dereferenced with A->whatever. This content is opaque
to end user applications and can change without notice in future versions of
this package. These names and content are technically visible to end-user
applications, but this is only to enable the creation and use of polymorphic
functions via the _Generic keyword in ANSI C11.

SPEC: The following macros are extensions to the spec.

The GraphBLAS.h file includes all the definitions required to use Graph-
BLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.

There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the GraphBLAS API Specification it conforms to, and the
version of the implementation itself. These can be used in the following
manner in a user application:

#if GXB >= GXB_VERSION (2,0,3)

... use features in GraphBLAS specification 2.0.3 ...

#else

... only use features in early specifications
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#endif

#if GXB_IMPLEMENTATION > GXB_VERSION (1,4,0)

... use features from version 1.4.0 of a specific GraphBLAS implementation

#endif

SuiteSparse:GraphBLAS also defines the following strings with #define.
Refer to the GraphBLAS.h file for details.

• GXB_ABOUT: describes this particular implementation, copyright, and
URL.

• GXB_DATE: the date of this implementation.

• GXB_SPEC: describes the GraphBLAS specification

• GXB_SPEC_DATE: the date of the GraphBLAS specification

• GXB_LICENSE: the license for this particular implementation

Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
GXB_SUITESPARSE_GRAPHBLAS that the user application can use in #ifdef

tests. This is helpful in case a particular implementation provides non-
standard features that extend the GraphBLAS specification, such as ad-
ditional predefined built-in operators, or if a GraphBLAS implementation
does not yet fully implement all of the GraphBLAS specification. The Suite-
Sparse:GraphBLAS name is provided in its GraphBLAS.h file as:

#define GXB_SUITESPARSE_GRAPHBLAS

For example, SuiteSparse:GraphBLAS predefines additional built-in op-
erators not in the specification. If the user application wishes to use these
in any GraphBLAS implementation, an #ifdef can control when they are
used. Refer to the examples in the GraphBLAS/Demo folder.

As another example, the GraphBLAS API Specification states that an im-
plementation need not define the order in which GrB_Matrix_build assem-
bles duplicate tuples in its [I,J,X] input arrays. As a result, no particular
ordering should be relied upon in general. However, SuiteSparse:GraphBLAS
does guarantee an ordering, and this guarantee will be kept in future versions
of SuiteSparse:GraphBLAS as well. Since not all implementations will en-
sure a particular ordering, the following can be used to exploit the ordering
returned by SuiteSparse:GraphBLAS.
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#ifdef GXB_SUITESPARSE_GRAPHBLAS

// duplicates in I, J, X assembled in a specific order;

// results are well-defined even if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#else

// duplicates in I, J, X assembled in no particular order;

// results are undefined if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#endif

The remainder of this section describes GraphBLAS functions that create,
modify, and destroy the GraphBLAS context, or provide utility methods for
dealing with errors:

GraphBLAS function purpose Section
GrB_init start up GraphBLAS 3.1
GrB_wait force completion of pending operations 3.2
GrB_Info status code returned by GraphBLAS functions 3.3
GrB_error get more details on the last error 3.4
GrB_finalize finish GraphBLAS 3.5

20



3.1 GrB init: initialize GraphBLAS

typedef enum

{

GrB_NONBLOCKING, // methods may return with pending computations

GrB_BLOCKING // no computations are ever left pending

}

GrB_Mode ;

GrB_Info GrB_init // start up GraphBLAS

(

const GrB_Mode mode // blocking or non-blocking mode

) ;

GrB_init must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user applica-
tion. With non-blocking mode, operations can be left pending, and are
computed only when needed. Non-blocking mode can be much faster than
blocking mode, by many orders of magnitude in extreme cases. Blocking
mode should be used only when debugging a user application. The mode
cannot be changed once it is set by GrB_init.

GraphBLAS objects are opaque to the user application. This allows
GraphBLAS to postpone operations and then do them later in a more efficient
manner by rearranging them and grouping them together. In non-blocking
mode, the computations required to construct an opaque GraphBLAS object
might not be finished when the GraphBLAS method or operation returns to
the user. However, user-provided arrays are not opaque, and GraphBLAS
methods and operations that read them (such as GrB_Matrix_build) or write
to them (such as GrB_Matrix_extractTuples) always finish reading them,
or creating them, when the method or operation returns to the user applica-
tion.

In addition, all methods and operations that extract values from a Graph-
BLAS object and return them into non-opaque user arrays always ensure that
the computations for that object are completed when the method returns,
namely: GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples, and
GrB_*_reduce (to scalar). These methods only ensure that the computations
for a single object are completed. Use GrB_wait to ensure that all computa-
tions are completed (see Section 3.2).
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3.2 GrB wait: wait for pending operations to finish

GrB_Info GrB_wait ( ) ; // finish all pending computations

GrB_wait forces all pending operations to complete. Blocking mode acts
as if GrB_wait is called whenever a GraphBLAS method or operation returns
to the user application.

Unless specific rules are followed, non-blocking mode can be unpredictable
if user-defined functions have side effects or if they rely on global variables not
under the control of GraphBLAS. Suppose the user application creates a user-
defined operator that accesses a global variable. That operator is then used
in a GraphBLAS operation, which is left pending. If the user application
then changes the global variable before pending operations complete, the
pending operations will be eventually computed with this different value.

Worse yet, a user-defined operator might be freed before it is needed to
finish a pending operation. This causes undefined behavior.

For best results with GraphBLAS, user-defined functions should not have
side effects, nor should they access global variables outside the control of
GraphBLAS. This allows the non-blocking mode to be used at its fullest
level of performance. However, both of these features can safely be used in
user-defined functions if the following specific rules are followed.

• User-defined functions may be called in any order when used in a
GraphBLAS operation. This order may change in non-obvious ways,
even in the same GraphBLAS operation. For example, SuiteSparse:-
GraphBLAS relies on two different algorithms for computing the ma-
trix multiplication C = A′B. If C is small, or if A is a vector, then
it does not transpose A explicitly, but uses dot-products between col-
umn vectors of A and B instead. Otherwise, it transposes A and uses
a sequence of sparse-matrix-times-sparse-vector operations. MATLAB
uses the same algorithm in its built-in sparse matrix multiplication,
C=A*B, also written by this author. A user application in GraphBLAS
has no control over the decision on which algorithm is used, and the
heuristic used to select the algorithm may change in the future. Other
GraphBLAS implementations may use entirely different algorithms.
The GrB_wait function has no effect on this order and the user ap-
plication should not rely on any particular order used in a specific
implementation of GraphBLAS.

22



• User-defined functions are permitted to access global variables. How-
ever, if they do so, the global variables they rely on should not be
changed if any GraphBLAS methods or operations are still pending,
assuming GraphBLAS is executing in non-blocking mode (see Sec-
tion 3.1). To ensure this, the user application must call GrB_wait

before changing any global variables relied upon by user-defined func-
tions. Alternatively, computations can be forced to complete on se-
lected matrices and vectors via GrB_*_nvals, GrB_*_extractElement,
GrB_*_extractTuples, and GrB_*_reduce (to scalar) applied to se-
lected matrices and vectors. The GrB_*_nvals function is particularly
well-suited for this purpose since it is otherwise an extremely light-
weight computation in SuiteSparse:GraphBLAS.

• If any GraphBLAS methods or operations are still pending, freeing
user-defined types, operators, monoids, semirings, vectors, matrices,
or descriptors leads to undefined behavior. A user application must
call GrB_wait before freeing any user-defined object, if a pending op-
eration relies on it, or by selective completion via, say, GrB_*_nvals.
Alternatively, if the user application is about to terminate GraphBLAS
(see GrB_finalize below), then all GraphBLAS objects may be freed
in any order, without calling GrB_wait. Pending computations will
simply be abandoned.

GrB_wait ensures that all computations are completed for all objects. For
specific objects, GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples,
and GrB_*_reduce (to scalar) ensure that the pending operations are com-
pleted just for the matrix or vector they operate on. No other GraphBLAS
method or operation guarantees the completion of pending computations,
even though they may happen to do so in any particular implementation. In
the current version, SuiteSparse:GraphBLAS exploits the non-blocking mode
in the GrB_*_setElement methods and the GrB_assign and GxB_subassign

operations. Future versions of SuiteSparse:GraphBLAS may extend this to
other methods and operations. Refer to the example at the end of Section 2.2.
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3.3 GrB Info: status code returned by GraphBLAS

Each GraphBLAS method and operation returns its status to the caller as
its return value, an enumerated type (an enum) called GrB_Info. The first
two values in the following table denote a successful status, the rest are error
codes.

GrB_SUCCESS the method or operation was successful
GrB_NO_VALUE A(i,j) requested but not there. Its value is

implicit.

GrB_UNINITIALIZED_OBJECT object has not been initialized
GrB_INVALID_OBJECT object is corrupted
GrB_NULL_POINTER input pointer is NULL

GrB_INVALID_VALUE generic error code; some value is bad
GrB_INVALID_INDEX a row or column index is out of bounds; for

indices passed as scalars, not in a list.
GrB_DOMAIN_MISMATCH object domains are not compatible
GrB_DIMENSION_MISMATCH matrix dimensions do not match
GrB_OUTPUT_NOT_EMPTY output matrix already has values in it

GrB_OUT_OF_MEMORY out of memory
GrB_INDEX_OUT_OF_BOUNDS a row or column index is out of bounds; for

indices in a list of indices.

GrB_PANIC unrecoverable error. SuiteSparse:GraphBLAS
never panics, however.

Not all GraphBLAS methods or operations can return all status codes.
According to the GraphBLAS specification, any GraphBLAS method or op-
eration can return an out-of-memory condition, GrB_OUT_OF_MEMORY, or a
panic, GrB_PANIC. These two errors, and the GrB_INDEX_OUT_OF_BOUNDS er-
ror, are called execution errors. The other errors are called API errors. An
API error is detecting immediately, regardless of the blocking mode. The
detection of an execution error may be deferred until the pending operations
complete.

In the discussions of each method and operation in this User Guide, most
of the obvious error code returns are not discussed. For example, if a required
input is a NULL pointer, then GrB_NULL_POINTER is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to The GraphBLAS C API Specification [BMM+17].
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3.4 GrB error: get more details on the last error

const char *GrB_error ( ) ; // return a string describing the last error

Each GraphBLAS method and operation returns a GrB_Info error code.
The GrB_error function returns additional information on the error in a
thread-safe null-terminated string. The string returned by GrB_error is
statically allocated in thread local storage and must not be freed or modified.
The simplest way to use it is just to print it out, such as:

info = GrB_some_method_here (...) ;

if (info != GrB_SUCCESS)

{

printf ("%s\n", GrB_error ( )) ;

}

SuiteSparse:GraphBLAS reports many helpful details. For example, if
a row or column index is out of bounds, the report will state what those
bounds are. If a matrix dimension is incorrect, the mismatching dimensions
will be provided. GrB_BinaryOp_new and GrB_UnaryOp_new record the name
the function passed to them, and GrB_Type_new records the name of its type
parameter, and these are printed if the user-defined types and operators are
used incorrectly. Refer to the output of the example programs in the Demo

folder, which intentionally generate errors to illustrate the use of GrB_error.

3.5 GrB finalize: finish GraphBLAS

GrB_finalize must be called as the last GraphBLAS operation, even after
all calls to GrB_free. All GraphBLAS objects created by the user application
should be freed first, before calling GrB_finalize since GrB_finalize will
not free those objects.

In non-blocking mode, GraphBLAS may leave some computations as
pending. These computations can be safely abandoned if the user applica-
tion frees all GraphBLAS objects it has created and then calls GrB_finalize.
There is no need to call GrB_wait in this case.
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4 GraphBLAS Objects and their Methods

GraphBLAS defines nine different objects to represent matrices and vectors,
their scalar data type (or domain), binary and unary operators on scalar
types, operators for selecting entries from a matrix or vector, monoids, semir-
ings, and a descriptor object used to specify optional parameters that modify
the behavior of a GraphBLAS operation.

The GraphBLAS API makes a distinction between methods and opera-
tions. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.

GrB_Type a scalar data type
GrB_UnaryOp a unary operator z = f(x), where z and x are scalars
GrB_BinaryOp a binary operator z = f(x, y), where z, x, and y are scalars
GxB_SelectOp a select operator
GrB_Monoid an associative and commutative binary operator

and its identity value
GrB_Semiring a monoid that defines the “plus” and a binary operator

that defines the “multiply” for an algebraic semiring
GrB_Matrix a 2D sparse matrix of any type
GrB_Vector a 1D sparse column vector of any type
GrB_Descriptor a collection of parameters that modify an operation

Each of these objects is implemented in C as an opaque handle, which
is a pointer to a data structure held by GraphBLAS. User applications may
not examine the content of the object directly; instead, they can pass the
handle back to GraphBLAS which will do the work. Assigning one handle
to another is valid but it does not make a copy of the underlying object.

GraphBLAS provides 11 built-in types and 253 built-in operators. With
these, 44 unique monoids and 960 unique semirings can be constructed.

SPEC: SuiteSparse:GraphBLAS predefines all unique monoids and semir-
ings that can be constructed from built-in types and operators, as an ex-
tension to the spec. They appear in GraphBLAS.h. The GxB_SelectOp

object is an extension to GraphBLAS.
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4.1 The GraphBLAS type: GrB Type

A GraphBLAS GrB_Type defines the type of scalar values that a matrix
or vector contains, and the type of scalar operands for a unary or binary
operator. There are eleven built-in types, and a user application can define
any types of its own as well. The built-in types correspond to built-in types
in C (#include <stdbool.h> and #include <stdint.h>), and the classes
in MATLAB, as listed in the following table.

GraphBLAS C type MATLAB description range
type class
GrB_BOOL bool logical Boolean true (1), false (0)
GrB_INT8 int8_t int8 8-bit signed integer -128 to 127
GrB_UINT8 uint8_t uint8 8-bit unsigned integer 0 to 255
GrB_INT16 int16_t int16 16-bit integer −215 to 215 − 1
GrB_UINT16 uint16_t uint16 16-bit unsigned integer 0 to 216 − 1
GrB_INT32 int32_t int32 32-bit integer −231 to 231 − 1
GrB_UINT32 uint32_t uint32 32-bit unsigned integer 0 to 232 − 1
GrB_INT64 int64_t int64 64-bit integer −263 to 263 − 1
GrB_UINT64 uint64_t uint64 64-bit unsigned integer 0 to 264 − 1
GrB_FP32 float single 32-bit IEEE 754 -Inf to +Inf

GrB_FP64 double double 64-bit IEEE 754 -Inf to +Inf

The user application can also define new types based on any typedef in
the C language whose values are held in a contiguous region of memory. For
example, a user-defined GrB_Type could be created to hold any C struct

whose content is self-contained. A C struct containing pointers might be
problematic because GraphBLAS would not know to dereference the pointers
to traverse the entire “scalar” entry, but this can be done if the objects ref-
erenced by these pointers are not moved. A user-defined complex type with
real and imaginary types can be defined, or even a “scalar” type containing
a fixed-sized dense matrix (see Section 4.1.1). The possibilities are endless.
GraphBLAS can create and operate on sparse matrices and vectors in any of
these types, including any user-defined ones. For user-defined types, Graph-
BLAS simply moves the data around itself (via memcpy), and then passes the
values back to user-defined functions when it needs to do any computations
on the type. The next sections describe the methods for the GrB_Type object:

GrB_Type_new create a user-defined type
GxB_Type_size return the size of a type
GrB_Type_free free a user-defined type
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4.1.1 GrB Type new: create a user-defined type

GrB_Info GrB_Type_new // create a new GraphBLAS type

(

GrB_Type *type, // handle of user type to create

<ctype> // a C type

) ;

GrB_Type_new creates a new user-defined type. The type is a handle,
or a pointer to an opaque object. The handle itself must not be NULL on
input, but the content of the handle can be undefined. On output, the
handle contains a pointer to a newly created type. The ctype parameter is
peculiar because GrB_Type_new is a C macro, not an actual function. The
ctype parameter is not a variable, but an actual type in C, either built-in or
defined by a typedef. The only requirement on ctype is that sizeof(ctype)
is valid in C, and that the type reside in a contiguous block of memory so
that it can be moved with memcpy. For example, to create a user-defined
type called Complex for double-precision complex values using the ANSI C11
double complex type, the following can be used. A complete example can
be found in the usercomplex.c and usercomplex.h files in the Demo folder.

#include <math.h>

#include <complex.h>

GrB_Type Complex ;

GrB_Type_new (&Complex, double complex) ;

To demonstrate the flexibility of the GrB_Type, consider a “scalar” con-
sisting of 4-by-4 floating-point matrix and a string. This type might be useful
for the 4-by-4 translation/rotation/scaling matrices that arise in computer
graphics, along with a string containing a description or even a regular ex-
pression that can be parsed and executed in a user-defined operator. All that
is required is a fixed-size type, where sizeof(ctype) is a constant.

typedef struct

{

float stuff [4][4] ;

char whatstuff [64] ;

}

wildtype ;

GrB_Type WildType ;

GrB_Type_new (&WildType, wildtype) ;
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With this type a sparse matrix can be created in which each entry con-
sists of a 4-by-4 dense matrix stuff and a 64-character string whatstuff.
GraphBLAS treats this 4-by-4 as a “scalar.” Any GraphBLAS method or
operation that simply moves data can be used with this type without any
further information from the user application. For example, entries of this
type can be assigned to and extracted from a matrix or vector, and matrices
containing this type can be transposed. A working example (wildtype.c
in the Demo folder) creates matrices and multiplies them with a user-defined
semiring with this type.

Performing arithmetic on matrices and vectors with user-defined types
requires operators to be defined. For example, the user application can de-
fine its own type for complex numbers, but then transposing the matrix with
GraphBLAS will not compute the complex conjugate transpose. This corre-
sponds to the array transpose in MATLAB (C=A.’) instead of the complex
conjugate transpose (C=A’). To compute the complex conjugate transpose,
the application would need to create a user-defined unary operator to conju-
gate a user-defined complex scalar, and then apply it to the matrix before or
after the transpose, via GrB_apply. An extensive set of complex operators
are provided in the usercomplex.c example in the Demo folder, along with
an include file, usercomplex.h, that is suitable for inclusion in any user ap-
plication. Thus, while GraphBLAS does not include any complex types or
operators, SuiteSparse:GraphBLAS provides them in two simple “user” files
in the Demo folder.

Refer to Section 6.7 for more details on these two example user-defined
types.

4.1.2 GxB Type size: return the size of a type

GrB_Info GxB_Type_size // determine the size of the type

(

size_t *size, // the sizeof the type

GrB_Type type // type to determine the sizeof

) ;

This function acts just like sizeof(type) in the C language. For example
GxB_Type_size (&s, GrB_INT32) sets s to 4, the same as sizeof(int32_t).

SPEC: The GxB_Type_size function is an extension to the spec.
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4.1.3 GrB Type free: free a user-defined type

GrB_Info GrB_free // free a user-defined type

(

GrB_Type *type // handle of user-defined type to free

) ;

GrB_Type_free frees a user-defined type. Either usage:

GrB_Type_free (&type) ;

GrB_free (&type) ;

frees the user-defined type and sets type to NULL. It safely does nothing if
passed a NULL handle, or if type == NULL on input.

It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS
silently ignores the request and returns GrB_SUCCESS. A user-defined type
should not be freed until all operations using the type are completed. Suite-
Sparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended. Oper-
ations on such objects whose type has been freed leads to undefined behavior.

It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.

Note the function signature of GrB_Type_free, above. It is illustrated
with the generic name, GrB_free. Any of the nine GraphBLAS objects can
be freed with the single function, GrB_free. Refer to Section 4.10 for more
details.

GraphBLAS includes many such generic functions. When describing a
specific variation, a function is described with its specific name in this User
Guide (such as GrB_Type_free). When discussing features applicable to all
specific forms, the generic name is used instead (such as GrB_free).
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4.2 GraphBLAS unary operators: GrB UnaryOp, z =
f(x)

A unary operator is a scalar function of the form z = f(x). The domain
(type) of z and x need not be the same.

There are six kinds of built-in unary operators: one, identity, additive in-
verse, absolute value, multiplicative inverse, and logical negation. In the no-
tation in the table below, T is any of the 11 built-in types and is a place-holder
for BOOL, INT8, UINT8, ... FP32, or FP64. For example, GrB_AINV_INT32 is a
unary operator that computes z=-x for two values x and z of type GrB_INT32.

The logical negation operator GrB_LNOT only works on Boolean types.
The GxB_LNOT_T functions operate on inputs of type T , implicitly typecast-
ing their input to Boolean and returning result of type T , with a value 1 for
true and 0 for false. The operators GxB_LNOT_BOOL and GrB_LNOT are identi-
cal. Considering all combinations, there are thus 67 built-in unary operators
((6 kinds of operators) × (11 types), and GrB_LNOT).

GraphBLAS name types (domains) expression description
z = f(x)

GxB_ONE_T T → T z = 1 one
GrB_IDENTITY_T T → T z = x identity
GrB_AINV_T T → T z = −x additive inverse
GxB_ABS_T T → T z = |x| absolute value
GrB_MINV_T T → T z = 1/x multiplicative inverse
GxB_LNOT_T T → T z = ¬(x 6= 0) logical negation
GrB_LNOT bool → bool z = ¬x logical negation

SPEC: GxB_ONE_T , GxB_ABS_T and GxB_LNOT_T are extensions to the
spec.

Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary GrB_DIV_T
operators.

SPEC: The definition of integer division by zero is an extension to the
spec.

The next sections define the following methods for the GrB_UnaryOp ob-
ject:
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GrB_UnaryOp_new create a user-defined unary operator
GxB_UnaryOp_ztype return the type of the output z for z = f(x)
GxB_UnaryOp_xtype return the type of the input x for z = f(x)
GrB_UnaryOp_free free a user-defined unary operator

4.2.1 GrB UnaryOp new: create a user-defined unary operator

GrB_Info GrB_UnaryOp_new // create a new user-defined unary operator

(

GrB_UnaryOp *unaryop, // handle for the new unary operator

void *function, // pointer to the unary function

const GrB_Type ztype, // type of output z

const GrB_Type xtype // type of input x

) ;

GrB_UnaryOp_new creates a new unary operator. The new operator is
returned in the unaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new unary operator.

The two types xtype and ztype are the GraphBLAS types of the input
x and output z of the user-defined function z = f(x). These types may be
built-in types or user-defined types, in any combination. The two types need
not be the same, but they must be previously defined before passing them
to GrB_UnaryOp_new.

The function argument to GrB_UnaryOp_new is a pointer to a user-
defined function with the following signature:

void (*f) (void *z, const void *x) ;

When the function f is called, the arguments z and x are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype and xtype, respectively, when the operator was created.
The pointers will be unique. That is, the user function is never called with
pointers that point to the same space.
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4.2.2 GxB UnaryOp ztype: return the type of z

GrB_Info GxB_UnaryOp_ztype // return the type of z

(

GrB_Type *ztype, // return type of output z

const GrB_UnaryOp unaryop // unary operator

) ;

GxB_UnaryOp_ztype returns the ztype of the unary operator, which is
the type of z in the function z = f(x).

SPEC: The GxB_UnaryOp_ztype function is an extension to the spec.

4.2.3 GxB UnaryOp xtype: return the type of x

GrB_Info GxB_UnaryOp_xtype // return the type of x

(

GrB_Type *xtype, // return type of input x

const GrB_UnaryOp unaryop // unary operator

) ;

GxB_UnaryOp_xtype returns the xtype of the unary operator, which is
the type of x in the function z = f(x).

SPEC: The GxB_UnaryOp_xtype function is an extension to the spec.

4.2.4 GrB UnaryOp free: free a user-defined unary operator

GrB_Info GrB_free // free a user-created unary operator

(

GrB_UnaryOp *unaryop // handle of unary operator to free

) ;

GrB_UnaryOp_free frees a user-defined unary operator. Either usage:

GrB_UnaryOp_free (&unaryop) ;

GrB_free (&unaryop) ;

frees the unaryop and sets unaryop to NULL. It safely does nothing if passed
a NULL handle, or if unaryop == NULL on input. It does nothing at all if
passed a built-in unary operator.
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4.3 GraphBLAS binary operators: GrB BinaryOp, z =
f(x, y)

A binary operator is a scalar function of the form z = f(x, y). The types of
z, x, and y need not be the same.

SuiteSparse:GraphBLAS has 17 kinds of built-in binary operators of the
form T × T → T that work on all 11 of the built-in types, T , for a total of
187 binary operators of this form. These are listed in the table below. For
each of these operators, all domains (types) of the three operands are the
same. The six comparison operators and three logical operators all return
a result one for true and zero for false, in the same domain T as their in-
puts. These six comparison operators are useful as “multiply” operators for
creating semirings with non-Boolean monoids.

GraphBLAS types (domains) expression description
name z = f(x, y)
GrB_FIRST_T T × T → T z = x first argument
GrB_SECOND_T T × T → T z = y second argument
GrB_MIN_T T × T → T z = min(x, y) minimum
GrB_MAX_T T × T → T z = max(x, y) maximum
GrB_PLUS_T T × T → T z = x + y addition
GrB_MINUS_T T × T → T z = x− y subtraction
GrB_TIMES_T T × T → T z = xy multiplication
GrB_DIV_T T × T → T z = x/y division
GxB_ISEQ_T T × T → T z = (x == y) equal
GxB_ISNE_T T × T → T z = (x 6= y) not equal
GxB_ISGT_T T × T → T z = (x > y) greater than
GxB_ISLT_T T × T → T z = (x < y) less than
GxB_ISGE_T T × T → T z = (x ≥ y) greater than or equal
GxB_ISLE_T T × T → T z = (x ≤ y) less than or equal
GxB_LOR_T T × T → T z = (x 6= 0) ∨ (y 6= 0) logical OR
GxB_LAND_T T × T → T z = (x 6= 0) ∧ (y 6= 0) logical AND
GxB_LXOR_T T × T → T z = (x 6= 0) Y (y 6= 0) logical XOR

SPEC: The GxB_IS*_T operators and the Boolean GxB_L*_T are ex-
tensions to the spec.

Another set of six kinds of built-in comparison operators have the form
T ×T →bool. They are defined for all eleven built-in types, for a total of 66
binary operators. Note that when T is bool, the six operators give the same
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results as the six GxB_IS*_BOOL operators in the table above. These six com-
parison operators are useful as “multiply” operators for creating semirings
with Boolean monoids.

GraphBLAS types (domains) expression description
name z = f(x, y)
GrB_EQ_T T × T →bool z = (x == y) equal
GrB_NE_T T × T →bool z = (x 6= y) not equal
GrB_GT_T T × T →bool z = (x > y) greater than
GrB_LT_T T × T →bool z = (x < y) less than
GrB_GE_T T × T →bool z = (x ≥ y) greater than or equal
GrB_LE_T T × T →bool z = (x ≤ y) less than or equal

Finally, GraphBLAS has three built-in binary operators that operate
purely in the Boolean domain. These three are identical to the GxB_L*_BOOL

operators described above, just with a shorter name.

GraphBLAS types (domains) expression description
name z = f(x, y)
GrB_LOR bool × bool → bool z = x ∨ y logical OR
GrB_LAND bool × bool → bool z = x ∧ y logical AND
GrB_LXOR bool × bool → bool z = x Y y logical XOR

This gives a total of 256 built-in binary operators listed in the tables
above: 187 of the form T × T → T , 66 of the form T × T → bool, and three
purely Boolean. There are 240 unique operators since 16 of the 26 Boolean
operators are redundant.

There are two sets of built-in comparison operators in SuiteSparse:Graph-
BLAS, but they are not redundant. They are identical except for the type
(domain) of their output, z. The GrB_EQ_T and related operators compare
their inputs of type T and produce a Boolean result of true or false. The
GxB_ISEQ_T and related operators do the same comparison and produce a re-
sult with same type T as their input operands, returning one for true or zero
for false. The IS* comparison operators are useful when combining compar-
isons with other non-Boolean operators. For example, a PLUS-ISEQ semiring
counts how many terms of the comparison are true. With this semiring,
matrix multiplication C = AB for two weighted undirected graphs A and B
computes cij as the number of edges node i and j have in common that have
identical edge weights. Since the output type of the “multiplier” operator
in a semiring must match the type of its monoid, the Boolean EQ cannot be
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combined with a non-Boolean PLUS monoid to perform this operation.
Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and

XOR operators. Without the _T suffix, the three operators GrB_LOR, GrB_LAND,
and GrB_LXOR operate purely in the Boolean domain, where all input and
output types are GrB_BOOL. The second set (GxB_LOR_T GxB_LAND_T and
GxB_LXOR_T ) provides Boolean operators to all 11 domains, implicitly type-
casting their inputs from type T to Boolean and returning a value of type T
that is 1 for true or zero for false. The set of GxB_L*_T operators are useful
since they can be combined with non-Boolean monoids in a semiring.

SPEC: The definition of integer division by zero is an extension to the
spec.

Floating-point operations follow the IEEE 754 standard. Thus, comput-
ing x/0 for a floating-point x results in +Inf if x is positive, -Inf if x is
negative, and NaN if x is zero. The application is not terminated. How-
ever, integer division by zero normally terminates an application. Suite-
Sparse:GraphBLAS avoids this by adopting the same rules as MATLAB,
which are analogous to how the IEEE standard handles floating-point di-
vision by zero. For integers, when x is positive, x/0 is the largest positive
integer, for negative x it is the minimum integer, and 0/0 results in zero.
For example, for an integer x of type GrB_INT32, 1/0 is 231− 1 and (-1)/0 is
−231. Refer to Section 4.1 for a list of integer ranges.

The next sections define the following methods for the GrB_BinaryOp

object:

GrB_BinaryOp_new create a user-defined binary operator
GxB_BinaryOp_ztype return the type of the output z for z = f(x, y)
GxB_BinaryOp_xtype return the type of the input x for z = f(x, y)
GxB_BinaryOp_ytype return the type of the input y for z = f(x, y)
GrB_BinaryOp_free free a user-defined binary operator
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4.3.1 GrB BinaryOp new: create a user-defined binary operator

GrB_Info GrB_BinaryOp_new

(

GrB_BinaryOp *binaryop, // handle for the new binary operator

void *function, // pointer to the binary function

const GrB_Type ztype, // type of output z

const GrB_Type xtype, // type of input x

const GrB_Type ytype // type of input y

) ;

GrB_BinaryOp_new creates a new binary operator. The new operator is
returned in the binaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new binary operator.

The three types xtype, ytype, and ztype are the GraphBLAS types of
the inputs x and y, and output z of the user-defined function z = f(x, y).
These types may be built-in types or user-defined types, in any combination.
The three types need not be the same, but they must be previously defined
before passing them to GrB_BinaryOp_new.

The final argument to GrB_BinaryOp_new is a pointer to a user-defined
function with the following signature:

void (*f) (void *z, const void *x, const void *y) ;

When the function f is called, the arguments z, x, and y are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype, xtype, and ytype, respectively, when the operator was
created. The pointers will be unique. That is, the user function is never
called with pointers that point to the same space.

4.3.2 GxB BinaryOp ztype: return the type of z

GrB_Info GxB_BinaryOp_ztype // return the type of z

(

GrB_Type *ztype, // return type of output z

const GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_ztype returns the ztype of the binary operator, which is
the type of z in the function z = f(x, y).

37



SPEC: The GxB_BinaryOp_ztype function is an extension to the spec.

4.3.3 GxB BinaryOp xtype: return the type of x

GrB_Info GxB_BinaryOp_xtype // return the type of x

(

GrB_Type *xtype, // return type of input x

const GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_xtype returns the xtype of the binary operator, which is
the type of x in the function z = f(x, y).

SPEC: The GxB_BinaryOp_xtype function is an extension to the spec.

4.3.4 GxB BinaryOp ytype: return the type of y

GrB_Info GxB_BinaryOp_ytype // return the type of y

(

GrB_Type *ytype, // return type of input y

const GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_ytype returns the ytype of the binary operator, which is
the type of y in the function z = f(x, y).

SPEC: The GxB_BinaryOp_ytype function is an extension to the spec.

4.3.5 GrB BinaryOp free: free a user-defined binary operator

GrB_Info GrB_free // free a user-created binary operator

(

GrB_BinaryOp *binaryop // handle of binary operator to free

) ;

GrB_BinaryOp_free frees a user-defined binary operator. Either usage:

GrB_BinaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. It does nothing at all if passed a built-in
binary operator.
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4.4 GraphBLAS select operators: GxB SelectOp

A select operator is a scalar function of the form z = f(i, j,m, n, aij, k) that
is applied to the entries aij of an m-by-n matrix. The domain (type) of z is
always boolean. The domain (type) of aij can be any built-in or user-defined
type, or it can be GrB_NULL if the operator is type-generic.

The GxB_SelectOp operator is used by GxB_select (see Section 5.12)
to select entries from a matrix. Each entry A(i,j) is evaluated with the
operator, which returns true if the entry is to be kept in the output, or false
if it is not to appear in the output. The signature of the select function f

are as follows:

bool f // returns true if A(i,j) is kept

(

const GrB_Index i, // row index of A(i,j)

const GrB_Index j, // column index of A(i,j)

const GrB_Index nrows, // number of rows of A

const GrB_Index ncols, // number of columns of A

const void *x, // value of A(i,j), or NULL if f is type-generic

const void *k // user-defined auxiliary data

) ;

There are five built-in select operators listed in the table below. For the
first four operators, k is a pointer to a single scalar of type int64_t. Each
operator can be used on any type, including user-defined types. User-defined
select operators can also be created.

GraphBLAS name MATLAB description
analog

GxB_TRIL C=tril(A,k) true for A(i,j) if (j-i) <= k

GxB_TRIU C=triu(A,k) true for A(i,j) if (j-i) >= k

GxB_DIAG C=diag(A,k) true for A(i,j) if (j-i) == k

GxB_OFFDIAG C=A-diag(A,k) true for A(i,j) if (j-i) != k

GxB_NONZERO C=A(A~=0) true if A(i,j) is nonzero

SPEC: GxB_SelectOp and all built-in functions in the table above are
extensions to the spec.

The built-in GxB_NONZERO select operator is unique in that it is a function
of the value of the entry aij, but it is still type-generic. It does this by simply
returning false all bits in the value are zero, or true otherwise. This gives

39



the proper result for any built-in type, since integer and floating-point zeros
are represented this way. For user-defined types, the function returns the
same thing. This action is well-defined but its suitability for any particular
user-defined type must be determined according to how the user application
defines the type, and what a value with all bits zero means for this type.
Whatever it means, if the bits of a value with a user-defined type are all zero,
the function returns false, and if any bit is one, the GxB_NONZERO function
returns true.

The next sections define the following methods for the GxB_SelectOp

object:

GxB_SelectOp_new create a user-defined select operator
GxB_SelectOp_xtype return the type of the input x
GxB_SelectOp_free free a user-defined select operator

4.4.1 GxB SelectOp new: create a user-defined select operator

GrB_Info GxB_SelectOp_new // create a new user-defined select operator

(

GxB_SelectOp *selectop, // handle for the new select operator

void *function, // pointer to the select function

const GrB_Type xtype // type of input x, or NULL if type-generic

) ;

GxB_SelectOp_new creates a new select operator. The new operator is
returned in the selectop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new select operator.

The function argument to GxB_SelectOp_new is a pointer to a user-
defined function with the signature described on the prior page. Given the
properties of an entry aij in an m-by-n matrix, the function should return
true if the entry should be kept in the output of GxB_select, or false if it
should not appear in the output.

The type xtype is the GraphBLAS type of the input x of the user-defined
function z = f(i, j,m, n, x, k). The type may be built-in or user-defined, or
it may even be GrB_NULL. If the xtype is GrB_NULL, then GxB_select does
not pass the value of x = aij to the select function, but passes GrB_NULL for
the input x to the user-defined select function.
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4.4.2 GxB SelectOp xtype: return the type of x

GrB_Info GxB_SelectOp_xtype // return the type of x

(

GrB_Type *xtype, // return type of input x

const GxB_SelectOp selectop // select operator

) ;

GxB_SelectOp_xtype returns the xtype of the select operator, which is
the type of x in the function z = f(i, j,m, n, x, k). If the select operator is
type-generic, xtype is returned as GrB_NULL.

4.4.3 GxB SelectOp free: free a user-defined select operator

GrB_Info GxB_free // free a user-created select operator

(

GxB_SelectOp *selectop // handle of select operator to free

) ;

GxB_SelectOp_free frees a user-defined select operator. Either usage:

GxB_SelectOp_free (&selectop) ;

GrB_free (&selectop) ;

frees the selectop and sets selectop to NULL. It safely does nothing if passed
a NULL handle, or if selectop == NULL on input. It does nothing at all if
passed a built-in select operator.
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4.5 GraphBLAS monoids: GrB Monoid

A monoid is defined on a single domain (that is, a single type), T . It consists
of an associative binary operator z = f(x, y) whose three operands x, y,
and z are all in this same domain T (that is T × T → T ). The associative
operator must also have an identity element, or “zero” in this domain, such
that f(x, 0) = f(0, x) = 0. Recall that an associative operator f(x, y) is one
for which the condition f(a, f(b, c)) = f(f(a, b), c) always holds. That is,
operator can be applied in any order and the results remain the same.

Four kinds of built-in operators (MIN, MAX, PLUS, TIMES) can be used to
form monoids for each of the ten non-Boolean built-in types, and 12 can be
used for Boolean monoids, all of which are listed in the table below. This is
a total of 52 valid monoids that can be constructed from built-in types and
operators, although 8 of the 12 Boolean monoids are redundant (the four
remaining being OR, AND, XOR, and EQ). There are thus a total of 44 unique
monoids that can be constructed using built-in binary operators. Since the
built-in monoids are also commutative, all of them can be used to create
a semiring. Recall that a commutative operator f(x, y) is one for which
the condition f(a, b) = f(b, a) always holds. That is, the two operands can
be swapped and the results remain the same. One of the components of a
semiring is a commutative monoid.

GraphBLAS types (domains) expression identity
name z = f(x, y)
GrB_MIN_T T × T → T z = min(x, y) +∞
GrB_MAX_T T × T → T z = max(x, y) −∞
GrB_PLUS_T T × T → T z = x + y 0
GrB_TIMES_T T × T → T z = xy 1
GrB_LOR, GxB_LOR_BOOL bool × bool → bool z = x ∨ y false
GrB_LAND, GxB_LAND_BOOL bool × bool → bool z = x ∧ y true
GrB_LXOR, GxB_LXOR_BOOL bool × bool → bool z = x Y y false
GrB_EQ_BOOL, GxB_ISEQ_BOOL bool × bool → bool z = (x == y) true

The next sections define the following methods for the GrB_Monoid object:

GrB_Monoid_new create a monoid
GxB_Monoid_operator return the monoid operator
GxB_Monoid_identity return the monoid identity value
GrB_Monoid_free free a monoid
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SPEC: The predefined monoids are an extension to the spec.

4.5.1 GrB Monoid new: create a monoid

GrB_Info GrB_Monoid_new // create a monoid

(

GrB_Monoid *monoid, // handle of monoid to create

const GrB_BinaryOp op, // binary operator of the monoid

const <type> identity // identity value of the monoid

) ;

GrB_Monoid_new creates a monoid. The operator, op, must be an asso-
ciative binary operator, either built-in or user-defined.

In the definition above, <type> is a type-generic place-holder. For built-
in types, it is the C type corresponding to the built-in type (see Section 4.1),
such as bool, int32_t, float, or double. In this case, identity is a const

scalar value of the particular type, not a pointer. For user-defined types,
<type> is void *, and thus identity is a not a scalar itself but a void *

pointer to a memory location containing the identity value of the user-defined
operator, op.

4.5.2 GxB Monoid operator: return the monoid operator

GrB_Info GxB_Monoid_operator // return the monoid operator

(

GrB_BinaryOp *op, // returns the binary op of the monoid

const GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_operator returns the binary operator of the monoid.

SPEC: The GxB_Monoid_operator function is an extension to the spec.
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4.5.3 GxB Monoid identity: return the monoid identity

GrB_Info GxB_Monoid_identity // return the monoid identity

(

void *identity, // returns the identity of the monoid

const GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_identity returns the identity value of the monoid. The
void * pointer, identity, must be non-NULL and must point to a memory
space of size at least equal to the size of the type of the monoid. The type
size can be obtained via GxB_Monoid_operator to return the monoid addi-
tive operator, then GxB_BinaryOp_ztype to obtain the ztype, followed by
GxB_Type_size to get its size.

SPEC: The GxB_Monoid_identity function is an extension to the spec.

4.5.4 GrB Monoid free: free a monoid

GrB_Info GrB_free // free a user-created monoid

(

GrB_Monoid *monoid // handle of monoid to free

) ;

GrB_Monoid_frees frees a monoid. Either usage:

GrB_Monoid_free (&monoid) ;

GrB_free (&monoid) ;

frees the monoid and sets monoid to NULL. It safely does nothing if passed a
NULL handle, or if monoid == NULL on input. It does nothing at all if passed
a built-in monoid.
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4.6 GraphBLAS semirings: GrB Semiring

A semiring defines all the operators required to define the multiplication
of two sparse matrices in GraphBLAS, C = AB. The “add” operator is
a commutative and associative monoid, and the binary “multiply” opera-
tor defines a function z = fmult(x, y) where the type of z matches the
exactly with the monoid type. SuiteSparse:GraphBLAS includes 960 pre-
defined built-in semirings, which are all those that can be constructed from
built-in types and operators. The next sections define the following methods
for the GrB_Semiring object:

GrB_Semiring_new create a semiring
GxB_Semiring_add return the additive monoid of a semiring
GxB_Semiring_multipliy return the binary operator of a semiring
GrB_Semiring_free free a semiring

4.6.1 GrB Semiring new: create a semiring

GrB_Info GrB_Semiring_new // create a semiring

(

GrB_Semiring *semiring, // handle of semiring to create

const GrB_Monoid add, // add monoid of the semiring

const GrB_BinaryOp multiply // multiply operator of the semiring

) ;

GrB_Semiring_new creates a new semiring, with add being the additive
monoid and multiply being the binary “multiply” operator. In addition to
the standard error cases, the function returns GrB_DOMAIN_MISMATCH if the
output (ztype) domain of multiply does not match the domain of the add

monoid.
Using built-in types and operators, 960 unique semirings can be built.

This count excludes redundant Boolean operators (for example GrB_TIMES_BOOL
and GxB_LAND_BOOL are different operators but they are redundant since they
always return the same result).

• 680 semirings with a multiplier T × T → T where T is non-Boolean,
from the complete cross product of:

– 4 add monoids (MIN, MAX, PLUS, TIMES)
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– 17 multiply operators (FIRST, SECOND, MIN, MAX, PLUS, MINUS,
TIMES, DIV, ISEQ, ISNE, ISGT, ISLT, ISGE, ISLE, LOR, LAND, LXOR)

– 10 non-Boolean types, T

• 240 semirings with a comparison operator T × T → bool, where T is
non-Boolean, from the complete cross product of:

– 4 Boolean add monoids (LAND, LOR, LXOR, EQ)

– 6 multiply operators (EQ, NE, GT, LT, GE, LE)

– 10 non-Boolean types, T

• 40 semirings with purely Boolean types, bool × bool → bool, from
the complete cross product of:

– 4 Boolean add monoids (LAND, LOR, LXOR, EQ)

– 10 multiply operators (FIRST, SECOND, LOR, LAND, LXOR, EQ, GT,
LT, GE, LE)

SPEC: SuiteSparse:GraphBLAS pre-defines all 960 semirings that can
be constructed from built-in types and operators, as an extension to the
spec.

4.6.2 GxB Semiring add: return the additive monoid of a semiring

GrB_Info GxB_Semiring_add // return the add monoid of a semiring

(

GrB_Monoid *add, // returns add monoid of the semiring

const GrB_Semiring semiring // semiring to query

) ;

GxB_Semiring_add returns the additive monoid of a semiring.

SPEC: The GxB_Semiring_add function is an extension to the spec.
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4.6.3 GxB Semiring multiply: return multiply operator of a semiring

GrB_Info GxB_Semiring_multiply // return multiply operator of a semiring

(

GrB_BinaryOp *multiply, // returns multiply operator of the semiring

const GrB_Semiring semiring // semiring to query

) ;

GxB_Semiring_multiply returns the binary multiplicative operator of a
semiring.

SPEC: The GxB_Semiring_multiply function is an extension to the
spec.

4.6.4 GrB Semiring free: free a semiring

GrB_Info GrB_free // free a user-created semiring

(

GrB_Semiring *semiring // handle of semiring to free

) ;

GrB_Semiring_free frees a semiring. Either usage:

GrB_Semiring_free (&semiring) ;

GrB_free (&semiring) ;

frees the semiring and sets semiring to NULL. It safely does nothing if passed
a NULL handle, or if semiring == NULL on input. It does nothing at all if
passed a built-in semiring.

47



4.7 GraphBLAS vectors: GrB Vector

Many of the methods for GraphBLAS vectors require a row index or a size.
Many methods for matrices require both a row and column index, or a row
and column dimension. These are all integers of a specific type, GrB_Index,
which is defined in GraphBLAS.h as

typedef uint64_t GrB_Index ;

Row and column indices of an nrows-by-ncols matrix range from zero
to the nrows-1 for the rows, and zero to ncols-1 for the columns. In-
dices are zero-based, like C, and not one-based, like MATLAB. In Suite-
Sparse:GraphBLAS, the largest size permitted for any integer of GrB_Index
is 260. If compiled for use in MATLAB, this maximum size is reduced to
match the MATLAB maximum size, which is 248 − 1.

This section describes a set of methods that create, modify, query, and
destroy a GraphBLAS sparse vector, GrB_Vector:

GrB_Vector_new create a vector
GrB_Vector_dup copy a vector
GrB_Vector_clear clear a vector of all entries
GrB_Vector_size return the size of a vector
GrB_Vector_nvals return the number of entries in a vector
GxB_Vector_type return the type of a vector
GrB_Vector_build build a vector from a set of tuples
GrB_Vector_setElement add a single entry to a vector
GrB_Vector_extractElement get a single entry from a vector
GrB_Vector_extractTuples get all entries from a vector
GrB_Vector_free free a vector

4.7.1 GrB Vector new: create a vector

GrB_Info GrB_Vector_new // create a new vector with no entries

(

GrB_Vector *v, // handle of vector to create

const GrB_Type type, // type of vector to create

const GrB_Index n // vector dimension is n-by-1

) ;

GrB_Vector_new creates a new n-by-1 sparse vector with no entries in it,
of the given type. This is analogous to MATLAB statement v = sparse (n,1),
except that GraphBLAS can create sparse vectors any type. The pattern of
the new vector is empty.
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4.7.2 GrB Vector dup: copy a vector

GrB_Info GrB_Vector_dup // make an exact copy of a vector

(

GrB_Vector *w, // handle of output vector to create

const GrB_Vector u // input vector to copy

) ;

GrB_Vector_dup makes a deep copy of a sparse vector, like w=u in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

w = u ; // w is a shallow copy of u

Then w and u can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different vectors are needed, then this should be used instead:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy

Then w and u are two different vectors that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.

4.7.3 GrB Vector clear: clear a vector of all entries

GrB_Info GrB_Vector_clear // clear a vector of all entries;

( // type and dimension remain unchanged.

GrB_Vector v // vector to clear

) ;

GrB_Vector_clear clears all entries from a vector. All values v(i) are
now equal to the implicit value, depending on what semiring ring is used to
perform computations on the vector. The pattern of v is empty, just as if
it were created fresh with GrB_Vector_new. Analogous with v (:) = 0 in
MATLAB. The type and dimension of v do not change. In SuiteSparse:GraphBLAS,
any pending updates to the vector are discarded.
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4.7.4 GrB Vector size: return the size of a vector

GrB_Info GrB_Vector_size // get the dimension of a vector

(

GrB_Index *n, // vector dimension is n-by-1

const GrB_Vector v // vector to query

) ;

GrB_Vector_size returns the size of a vector (the number of rows). Anal-
ogous to n = length(v) or n = size(v,1) in MATLAB.

4.7.5 GrB Vector nvals: return the number of entries in a vector

GrB_Info GrB_Vector_nvals // get the number of entries in a vector

(

GrB_Index *nvals, // vector has nvals entries

const GrB_Vector v // vector to query

) ;

GrB_Vector_nvals returns the number of entries in a vector. Roughly
analogous to nvals = nnz(v) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”) in
MATLAB is better described as “number of explicit entries” in GraphBLAS.

Forced completion: All computations for the vector v are guaranteed
to be finished when GrB_Vector_nvals method returns. That is, it acts
like an object-specific GrB_wait for just this particular vector v, which is
a side-effect useful in its own right. For example, suppose the computa-
tions required for v rely upon a user-defined operator that accesses a user-
controlled global variable outside the scope or control of GraphBLAS. If
the user-application needs to modify or free the variable, GrB_Vector_nvals
can be used to force all pending operations for this vector v to complete.
The user application can then safely modify the global variable. A call to
GrB_Vector_nvals(&nvals,v) only ensures that the computations require
to compute v are finished; other pending computations for other objects
may remain. To ensure that all pending computations are complete for all
GraphBLAS objects, use GrB_wait instead.
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4.7.6 GxB Vector type: return the type of a vector

GrB_Info GxB_Vector_type // get the type of a vector

(

GrB_Type *type, // returns the type of the vector

const GrB_Vector v // vector to query

) ;

GxB_Vector_type returns the type of a vector. Analogous to type = class (v)

in MATLAB.

SPEC: The GxB_Vector_type function is an extension to the spec.

4.7.7 GrB Vector build: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,X) tuples

(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

const <type> *X, // array of values of tuples

const GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Vector_build constructs a sparse vector w from a set of tuples, I
and X, each of length nvals. The vector w must have already been initial-
ized with GrB_Vector_new, and it must have no entries in it before calling
GrB_Vector_build.

This function is just like GrB_Matrix_build (see Section 4.8.8), except
that it builds a sparse vector instead of a sparse matrix. For a description
of what GrB_Vector_build does, refer to GrB_Matrix_build. For a vector,
the list of column indices J in GrB_Matrix_build is implicitly a vector of
length nvals all equal to zero. Otherwise the methods are identical.

SPEC: As an extension to the spec, results are defined even if dup is
non-associative.
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4.7.8 GrB Vector setElement: add a single entry to a vector

GrB_Info GrB_Vector_setElement // w(i) = x

(

GrB_Vector w, // vector to modify

const <type> x, // scalar to assign to w(i)

const GrB_Index i // row index

) ;

GrB_Vector_setElement sets a single entry in a vector, w(i) = x. The
operation is exactly like setting a single entry in an n-by-1 matrix, A(i,0) = x,
where the column index for a vector is implicitly j=0. For further details of
this function, see GrB_Matrix_setElement in Section 4.8.9.

4.7.9 GrB Vector extractElement: get a single entry from a vector

GrB_Info GrB_Vector_extractElement // x = v(i)

(

<type> *x, // scalar extracted

const GrB_Vector v, // vector to extract an entry from

const GrB_Index i // row index

) ;

GrB_Vector_extractElement extracts a single entry from a vector, x = v(i).
The method is identical to extracting a single entry x = A(i,0) from an n-
by-1 matrix, so further details of this method are discussed in Section 4.8.10,
which discusses GrB_Matrix_extractElement. In this case, the column in-
dex is implicitly j=0.

Forced completion: All computations for the vector v are guaranteed to
be finished when the method returns.
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4.7.10 GrB Vector extractTuples: get all entries from a vector

GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)

(

GrB_Index *I, // array for returning row indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I, X size on input; # tuples on output

const GrB_Vector v // vector to extract tuples from

) ;

GrB_Vector_extractTuples extracts all tuples from a sparse vector,
analogous to [I,~,X] = find(v) in MATLAB. This function is identical
to its GrB_Matrix_extractTuples counterpart, except that the array of col-
umn indices J does not appear in this function. Refer to Section 4.8.11 where
further details of this function are described.

Forced completion: All computations for the vector v are guaranteed to
be finished when the method returns.

4.7.11 GrB Vector free: free a vector

GrB_Info GrB_free // free a vector

(

GrB_Vector *v // handle of vector to free

) ;

GrB_Vector_free frees a vector. Either usage:

GrB_Vector_free (&v) ;

GrB_free (&v) ;

frees the vector v and sets v to NULL. It safely does nothing if passed a NULL

handle, or if v == NULL on input. In SuiteSparse:GraphBLAS, any pending
updates to the vector are abandoned.
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4.8 GraphBLAS matrices: GrB Matrix

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse matrix, GrB_Matrix:

GrB_Matrix_new create a matrix
GrB_Matrix_dup copy a matrix
GrB_Matrix_clear clear a matrix of all entries
GrB_Matrix_nrows return the number of rows of a matrix
GrB_Matrix_ncols return the number of columns of a matrix
GrB_Matrix_nvals return the number of entries in a matrix
GxB_Matrix_type return the type of a matrix
GrB_Matrix_build build a matrix from a set of tuples
GrB_Matrix_setElement add a single entry to a matrix
GrB_Matrix_extractElement get a single entry from a matrix
GrB_Matrix_extractTuples get all entries from a matrix
GrB_Matrix_free free a matrix

4.8.1 GrB Matrix new: create a matrix

GrB_Info GrB_Matrix_new // create a new matrix with no entries

(

GrB_Matrix *A, // handle of matrix to create

const GrB_Type type, // type of matrix to create

const GrB_Index nrows, // matrix dimension is nrows-by-ncols

const GrB_Index ncols

) ;

GrB_Matrix_new creates a new nrows-by-ncols sparse matrix with no
entries in it, of the given type. This is analogous to the MATLAB statement
A = sparse (nrows, ncols), except that GraphBLAS can create sparse
matrices of any type.

4.8.2 GrB Matrix dup: copy a matrix

GrB_Info GrB_Matrix_dup // make an exact copy of a matrix

(

GrB_Matrix *C, // handle of output matrix to create

const GrB_Matrix A // input matrix to copy

) ;

GrB_Matrix_dup makes a deep copy of a sparse matrix, like C=A in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:
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GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

C = A ; // C is a shallow copy of A

Then C and A can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy

Then C and A are two different matrices that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.

4.8.3 GrB Matrix clear: clear a matrix of all entries

GrB_Info GrB_Matrix_clear // clear a matrix of all entries;

( // type and dimensions remain unchanged

GrB_Matrix A // matrix to clear

) ;

GrB_Matrix_clear clears all entries from a matrix. All values A(i,j)

are now equal to the implicit value, depending on what semiring ring is used
to perform computations on the matrix. The pattern of A is empty, just as if
it were created fresh with GrB_Matrix_new. Analogous with A (:,:) = 0 in
MATLAB. The type and dimensions of A do not change. In SuiteSparse:Graph-
BLAS, any pending updates to the matrix are discarded.

4.8.4 GrB Matrix nrows: return the number of rows of a matrix

GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix

(

GrB_Index *nrows, // matrix has nrows rows

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nrows returns the number of rows of a matrix (nrow=size(A,1)
in MATLAB).

55



4.8.5 GrB Matrix ncols: return the number of columns of a matrix

GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix

(

GrB_Index *ncols, // matrix has ncols columns

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_ncols returns the number of columns of a matrix (ncols=size(A,2)
in MATLAB).

4.8.6 GrB Matrix nvals: return the number of entries in a matrix

GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix

(

GrB_Index *nvals, // matrix has nvals entries

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nvals returns the number of entries in a matrix, like nnz(A)
in MATLAB.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns. That is, it acts like an object-specific
GrB_wait for just this particular matrix A. Other pending computations for
other objects may remain. To ensure that all pending computations are
complete for all GraphBLAS objects, used GrB_wait instead.

4.8.7 GxB Matrix type: return the type of a matrix

GrB_Info GxB_Matrix_type // get the type of a matrix

(

GrB_Type *type, // returns the type of the matrix

const GrB_Matrix A // matrix to query

) ;

GxB_Matrix_type returns the type of a matrix, like type=class(A) in
MATLAB.

SPEC: The GxB_Matrix_type function is an extension to the spec.
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4.8.8 GrB Matrix build: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Index *I, // array of row indices of tuples

const GrB_Index *J, // array of column indices of tuples

const <type> *X, // array of values of tuples

const GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Matrix_build constructs a sparse matrix C from a set of tuples, I,
J, and X, each of length nvals. The matrix C must have already been initial-
ized with GrB_Matrix_new, and it must have no entries in it before calling
GrB_Matrix_build. Thus the dimensions and type of C are not changed by
this function, but are inherited from the prior call to GrB_Matrix_new or
GrB_matrix_dup.

An error is returned (GrB_INDEX_OUT_OF_BOUNDS) if any row index in I

is greater than or equal to the number of rows of C, or if any column index
in J is greater than or equal to the number of columns of C

Any duplicate entries with identical indices are assembled using the bi-
nary dup operator provided on input. All three types (x, y, z for z=dup(x,y))
must be identical. The types of dup, C and X must all be compatible. See Sec-
tion 2.4 regarding typecasting and compatibility). The values in X are type-
casted, if needed, into the type of dup. Duplicates are then assembled into a
matrix T of the same type as dup, using T(i,j) = dup (T (i,j), X (k)).
After T is constructed, it is typecasted into the result C. That is, typecasting
does not occur at the same time as the assembly of duplicates.

SPEC: As an extension to the spec, results are defined even if dup is
non-associative.

The GraphBLAS API Specification requires dup to be associative so that
entries can be assembled in any order, and states that the result is unde-
fined if dup is not associative. However, SuiteSparse:GraphBLAS guarantees
a well-defined order of assembly. Entries in the tuples [I,J,X] are first
sorted in increasing order of row and column index, with ties broken by the
position of the tuple in the [I,J,X] list. If duplicates appear, they are as-
sembled in the order they appear in the [I,J,X] input. That is, if the same
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indices i and j appear in positions k1, k2, k3, and k4 in [I,J,X], where
k1 < k2 < k3 < k4, then the following operations will occur in order:

T (i,j) = X (k1) ;

T (i,j) = dup (T (i,j), X (k2)) ;

T (i,j) = dup (T (i,j), X (k3)) ;

T (i,j) = dup (T (i,j), X (k4)) ;

This is a well-defined order but the user should not depend upon it when
using other GraphBLAS implementations since the GraphBLAS API speci-
fication does not require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, and with this
well-defined order, several operators become very useful. In particular, the
SECOND operator results in the last tuple overwriting the earlier ones. The
FIRST operator means the value of the first tuple is used and the others are
discarded.

The acronym dup is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the _dup suffix
in the name of the function GrB_Matrix_dup. The latter function does not
apply any operator at all, nor any typecasting, but simply makes a pure deep
copy of a matrix.

The parameter X is a pointer to any C equivalent built-in type, or a
void * pointer. The GrB_Matrix_build function uses the _Generic feature
of ANSI C11 to detect the type of pointer passed as the parameter X. If X is
a pointer to a built-in type, then the function can do the right typecasting.
If X is a void * pointer, then it can only assume X to be a pointer to a user-
defined type that is the same user-defined type of C and dup. This function
has no way of checking this condition that the void * X pointer points to
an array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The GrB_Matrix_build method is analogous to C = sparse (I,J,X)

in MATLAB, with several important extensions that go beyond that which
MATLAB can do. In particular, the MATLAB sparse function only provides
one option for assembling duplicates (summation), and it can only build
double, double complex, and logical sparse matrices.
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4.8.9 GrB Matrix setElement: add a single entry to a matrix

GrB_Info GrB_Matrix_setElement // C (i,j) = x

(

GrB_Matrix C, // matrix to modify

const <type> x, // scalar to assign to C(i,j)

const GrB_Index i, // row index

const GrB_Index j // column index

) ;

GrB_Matrix_setElement sets a single entry in a matrix, C(i,j)=x. If the
entry is already present in the pattern of C, it is overwritten with the new
value. If the entry is not present, it is added to C. In either case, no entry
is ever deleted by this function. Passing in a value of x=0 simply creates an
explicit entry at position (i,j) whose value is zero, even if the implicit value
is assumed to be zero.

An error is returned (GrB_INVALID_INDEX) if the row index i is greater
than or equal to the number of rows of C, or if the column index j is greater
than or equal to the number of columns of C. Note that this error code
differs from the same kind of condition in GrB_Matrix_build, which re-
turns GrB_INDEX_OUT_OF_BOUNDS. This is because GrB_INVALID_INDEX is an
API error, and is caught immediately even in non-blocking mode, whereas
GrB_INDEX_OUT_OF_BOUNDS is an execution error whose detection may wait
until the computation completes sometime later.

The scalar x is typecasted into the type of C. Any value can be passed to
this function and its type will be detected, via the _Generic feature of ANSI
C11. For a user-defined type, x is a void * pointer that points to a memory
space holding a single entry of this user-defined type. This user-defined type
must exactly match the user-defined type of C since no typecasting is done
between user-defined types.

Performance considerations: SuiteSparse:GraphBLAS exploits the non-
blocking mode to greatly improve the performance of this method. Refer to
the example shown in Section 2.2. If the entry exists in the pattern already,
it is updated right away and the work is not left pending. Otherwise, it is
placed in a list of pending updates, and the later on the updates are done
all at once, using the same algorithm used for GrB_Matrix_build. In other
words, setElement in SuiteSparse:GraphBLAS builds its own internal list of
tuples [I,J,X], and then calls GrB_Matrix_build whenever the matrix is
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needed in another computation, or whenever GrB_wait is called.
As a result, if calls to setElement are mixed with calls to most other

methods and operations (even extractElement) then the pending updates
are assembled right away, which will be slow. Performance will be good if
many setElement updates are left pending, and performance will be poor if
the updates are assembled frequently.

A few methods and operations can be intermixed with setElement, in
particular, some forms of the GrB_assign and GxB_subassign operations are
compatible with the pending updates from setElement. Sections 5.10 gives
more details on which GxB_subassign and GrB_assign operations can be in-
terleaved with calls to setElement without forcing updates to be assembled.
Other methods that do not access the existing entries may also be done
without forcing the updates to be assembled, namely GrB_Matrix_clear

(which erases all pending updates), GrB_Matrix_free, GrB_Matrix_ncols,
GrB_Matrix_nrows, GxB_Matrix_type, and of course GrB_Matrix_setElement
itself. All other methods and operations cause the updates to be assembled.
Future versions of SuiteSparse:GraphBLAS may extend this list.

See Section 6.3 for an example of how to use GrB_Matrix_setElement.

4.8.10 GrB Matrix extractElement: get a single entry from a matrix

GrB_Info GrB_Matrix_extractElement // x = A(i,j)

(

<type> *x, // extracted scalar

const GrB_Matrix A, // matrix to extract a scalar from

const GrB_Index i, // row index

const GrB_Index j // column index

) ;

GrB_Matrix_extractElement extracts a single entry from a matrix x=A(i,j).
An error is returned (GrB_INVALID_INDEX) if the row index i is greater

than or equal to the number of rows of C, or if column index j is greater than
or equal to the number of columns of C.

If the entry is not present then GraphBLAS does not know its value,
since its value depends on the implicit value, which is the identity value
of the additive monoid of the semiring. It is not a characteristic of the
matrix itself, but of the semiring it is used in. A matrix can be used in any
compatible semiring, and even a mixture of semirings, so the implicit value
can change as the semiring changes.
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As a result, if the entry is present, x=A(i,j) is performed and the scalar
x is returned with this value. The method returns GrB_SUCCESS. If the entry
is not present, x is not modified, and GrB_NO_VALUE is returned to the caller.
What this means is up to the caller.

The function knows the type of the pointer x, so it can do typecasting as
needed, from the type of A into the type of x. User-defined types cannot be
typecasted, so if A has a user-defined type then x must be a void * pointer
that points to a memory space the same size as a single scalar of the type of
A.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns. In in particular, this method causes
all pending updates from GrB_setElement, GrB_assign, or GxB_subassign
to be assembled, so its use can have performance implications. Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions. Everything will work correctly and results will be predictable, it
will just be slow.

4.8.11 GrB Matrix extractTuples:get all entries from a matrix

GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)

(

GrB_Index *I, // array for returning row indices of tuples

GrB_Index *J, // array for returning col indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I,J,X size on input; # tuples on output

const GrB_Matrix A // matrix to extract tuples from

) ;

GrB_Matrix_extractTuples extracts all the entries from the matrix A,
returning them as a list of tuples, analogous to [I,J,X]=find(A) in MAT-
LAB. Entries in the tuples [I,J,X] are unique. No pair of row and column
indices (i,j) appears more than once.

The GraphBLAS API specification states the tuples can be returned in
any order. SuiteSparse:GraphBLAS chooses to always return them in sorted
order, first by column index (all tuples in column 0 appear first, then col-
umn 1, and so on), and then within each column the tuples are sorted by
row index. SuiteSparse:GraphBLAS guarantees this ordering but this should

61



not be expected of all implementations of GraphBLAS since their internal
representation may differ from that used by SuiteSparse:GraphBLAS.

The number of tuples in the matrix A is given by GrB_Matrix_nvals(&anvals,A).
If anvals is larger than the size of the arrays (nvals in the parameter list),
an error GrB_INSUFFICIENT_SIZE is returned, and no tuples are extracted. If
nvals is larger than anvals, then only the first anvals entries in the arrays
I J, and X are modified, containing all the tuples of A, and the rest of I J,
and X are left unchanged. On output, nvals contains the number of tuples
extracted.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns.

4.8.12 GrB Matrix free: free a matrix

GrB_Info GrB_free // free a matrix

(

GrB_Matrix *A // handle of matrix to free

) ;

GrB_Matrix_free frees a matrix. Either usage:

GrB_Matrix_free (&A) ;

GrB_free (&A) ;

frees the matrix A and sets A to NULL. It safely does nothing if passed a NULL

handle, or if A == NULL on input. In SuiteSparse:GraphBLAS, any pending
updates to the matrix are abandoned.
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4.9 GraphBLAS descriptors: GrB Descriptor

A GraphBLAS descriptor modifies the behavior of a GraphBLAS operation
(not a operator). GraphBLAS operations are described in Section 5, and all
of them have a final parameter of a descriptor. If the descriptor is NULL,
defaults are used. No GraphBLAS method (Section 4) is modified by a
descriptor, and neither are any unary or binary operators.

SPEC: The GxB_DEFAULT option is an extension to the spec.

In the current GraphBLAS API Specification, there are four different
components in a descriptor. The access to these parameters and their values
is governed by two enum types, GrB_Desc_Field and GrB_Desc_Value:

typedef enum

{

GrB_OUTP, // descriptor for output of a method

GrB_MASK, // descriptor for the mask input of a method

GrB_INP0, // descriptor for the first input of a method

GrB_INP1 // descriptor for the second input of a method

}

GrB_Desc_Field ;

typedef enum

{

GxB_DEFAULT, // default behavior of the method

GrB_REPLACE, // clear the output before assigning new values to it

GrB_SCMP, // use the structural complement of the input

GrB_TRAN // use the transpose of the input

}

GrB_Desc_Value ;

The internal representation is opaque to the user, but in this User Guide
the four descriptor fields of a descriptor desc are illustrated as an array of
four items, as described in the list below. The underlying implementation
need not be an array:

• desc [GrB_OUTP] is a parameter that modifies the output of a Graph-
BLAS operation. Currently, there are two possible settings. In the
default case, the output is not cleared, and C〈M〉 = Z = C�T is
computed as-is, where T is the results of the particular GraphBLAS
operation.
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In the non-default case, Z = C�T is first computed, using the results
of T and the accumulator �. After this is done, if the GrB_OUTP de-
scriptor field is set to GrB_REPLACE, then the output is cleared of its
entries. Next, the assignment C〈M〉 = Z is performed.

• desc [GrB_MASK] is a parameter that modifies the Mask, even if the
mask is not present.

If this parameter is set to its default value, and if the mask is not present
(Mask==NULL) then implicitly Mask(i,j)=1 for all i and j. If the mask
is present then Mask(i,j)=1 means that C(i,j) is to be modified by
the C〈M〉 = Z update. Otherwise, if Mask(i,j)=0, then C(i,j) is not
modified, even if Z(i,j) is an entry with a different value; that value
is simply discarded.

If the desc [GrB_MASK] parameter is set to GrB_SCMP, then the use
of the mask is complemented. In this case, if the mask is not present
(Mask==NULL) then implicitly Mask(i,j)=0 for all i and j. This means
that none of C is modified and the entire computation of Z might as
well have been skipped. That is, a complemented empty mask means
no modifications are made to the output object at all, except per-
haps to clear it in accordance with the GrB_OUTP descriptor. With a
complemented mask, if the mask is present then Mask(i,j)=0 means
that C(i,j) is to be modified by the C〈M〉 = Z update. Otherwise, if
Mask(i,j)=1, then C(i,j) is not modified, even if Z(i,j) is an entry
with a different value; that value is simply discarded.

Using a parameter to complement the Mask is very useful because con-
structing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in C that should
be modified is very small, then use a sparse mask without complement-
ing it. If the number of places in C that should be protected from
modification is very small, then use a sparse mask to indicate those
places, and use a descriptor GrB_MASK that complements the use of the
mask.

• desc [GrB_INP0] and desc [GrB_INP1] modify the use of the first
and second input matrices A and B of the GraphBLAS operation.

If the desc [GrB_INP0] is set to GrB_TRAN, then A is transposed be-
fore using it in the operation. Likewise, if desc [GrB_INP1] is set to
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GrB_TRAN, then the second input, typically called B, is transposed.

Vectors are never transposed via the descriptor. If a method’s first
parameter is a matrix and the second a vector, then desc [GrB_INP0]

modifies the matrix parameter and desc [GrB_INP1] is ignored. If
a method’s first parameter is a vector and the second a matrix, then
desc [GrB_INP1] modifies the matrix parameter and desc [GrB_INP0]

is ignored.

To clarify this in each function, the inputs are labeled as first input:

and second input: in the function signatures.

4.9.1 GrB Descriptor new: create a new descriptor

GrB_Info GrB_Descriptor_new // create a new descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to create

) ;

GrB_Descriptor_new creates a new descriptor, with all fields set to their
defaults (output is not replaced, mask is not complemented, and neither
input matrix is transposed).

4.9.2 GrB Descriptor set: set a parameter in a descriptor

GrB_Info GrB_Descriptor_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

const GrB_Desc_Field field, // parameter to change

const GrB_Desc_Value val // value to change it to

) ;

GrB_Descriptor_set sets a descriptor field (GrB_OUTP, GrB_MASK, GrB_INP0,
or GrB_INP1) to a particular value (GxB_DEFAULT, GrB_SCMP, GrB_TRAN, or
GrB_REPLACE). In the current specification, the following settings can be
made:

65



Descriptor Default Non-default
field

GrB_OUTP GxB_DEFAULT: The output matrix is
not cleared. The operation computes
C〈M〉 = C�T.

GrB_REPLACE: After computing
Z = C�T, the output C is
cleared of all entries. Then
C〈M〉 = Z is performed.

GrB_MASK GxB_DEFAULT: The Mask is not com-
plemented. Mask(i,j)=1 means the
value Cij can be modified by the op-
eration, while Mask(i,j)=0 means
the value Cij shall not be modified
by the operation.

GrB_SCMP: The Mask is comple-
mented. Mask(i,j)=0 means the
value Cij can be modified by the
operation, while Mask(i,j)=1

means the value Cij shall not be
modified by the operation.

GrB_INP0 GxB_DEFAULT: The first input is not
transposed prior to using it in the
operation.

GrB_TRAN: The first input is
transposed prior to using it in
the operation. Only matrices are
transposed, never vectors.

GrB_INP1 GxB_DEFAULT: The second input is
not transposed prior to using it in
the operation.

GrB_TRAN: The second input is
transposed prior to using it in
the operation. Only matrices are
transposed, never vectors.

4.9.3 GxB Descriptor get: get a parameter from a descriptor

GrB_Info GxB_Descriptor_get // get a parameter from a descriptor

(

GrB_Desc_Value *val, // value of the parameter

const GrB_Descriptor desc, // descriptor to query; NULL means defaults

const GrB_Desc_Field field // parameter to query

) ;

GxB_Descriptor_get returns the value of a single field in a descriptor.

SPEC: The GxB_Descriptor_get function is an extension to the spec.

4.9.4 GrB Descriptor free: free a descriptor

GrB_Info GrB_free // free a descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to free

) ;
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GrB_Descriptor_free frees a descriptor. Either usage:

GrB_Descriptor_free (&descriptor) ;

GrB_free (&descriptor) ;

frees the descriptor and sets descriptor to NULL. It safely does nothing if
passed a NULL handle, or if descriptor == NULL on input.

There are currently no predefined descriptors, but if these are added in
the future, this function will do nothing if passed a built-in descriptor.

4.10 GrB free: free any GraphBLAS object

Each of the nine GraphBLAS objects has GrB_*_new and GrB_*_free meth-
ods that are specific to each object. They can also be accessed by a generic
function, GrB_free, that works for all nine objects. If G is any of the nine
GraphBLAS objects, the statement

GrB_free (&G) ;

frees the object and sets the variable G to NULL. It is safe to pass in a NULL

handle, or to free an object twice:

GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing

GrB_free (&G) ; // the object G is freed and G set to NULL

GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing

However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.

H = G ; // valid; creates a 2nd handle of the same object

GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined

GrB_some_method (H) ; // not valid; H is undefined

Some objects are predefined, such as the built-in types. If a user appli-
cation attempts to free a built-in object, SuiteSparse:GraphBLAS will safely
do nothing. In all cases, the GrB_free function in SuiteSparse:GraphBLAS
always returns GrB_SUCCESS.
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5 GraphBLAS Operations

The next sections define each of the GraphBLAS operations, also listed in
the table below.

GrB_mxm matrix-matrix multiply C〈M〉 = C�AB
GrB_vxm vector-matrix multiply w′〈m′〉 = w′ � u′A
GrB_mxv matrix-vector multiply w〈m〉 = w �Au

GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)
set union w〈m〉 = w � (u⊗ v)

GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)
set intersection w〈m〉 = w � (u⊕ v)

GrB_extract extract submatrix C〈M〉 = C�A(I,J)
w〈m〉 = w � u(i)

GxB_subassign assign submatrix C(I,J)〈M〉 = C(I,J)�A
(with submask for C(I,J)) w(i)〈m〉 = w(i)� u

GrB_assign assign submatrix C〈M〉(I,J) = C(I,J)�A
(with submask for C) w〈m〉(i) = w(i)� u

GrB_apply apply unary operator C〈M〉 = C�f(A)
w〈m〉 = w�f(u)

GxB_select apply select operator C〈M〉 = C�f(A,k)
w〈m〉 = w�f(u,k)

GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]
reduce to scalar s = s� [⊕ijA(I, J)]

GrB_transpose transpose C〈M〉 = C�A′
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5.1 The GraphBLAS specification in MATLAB

SuiteSparse:GraphBLAS includes a MATLAB implementation of nearly the
entire GraphBLAS specification, including all built-in types and operators.
The typecasting rules and integer operator rules from GraphBLAS are im-
plemented in MATLAB via mexFunctions that call the GraphBLAS rou-
tines in C. All other functions are written purely in MATLAB M-files, and
are given names of the form GB_spec_*. All of these MATLAB interfaces
and M-file functions they are provided in the software distribution of Suite-
Sparse:GraphBLAS. The purpose of this is two-fold:

• Illustration and documentation: MATLAB is so expressive, and so
beautiful to read and write, that the GB_spec_* functions read almost
like the exact specifications from the GraphBLAS C API Specification.
Excerpts and condensed versions of these functions have already been
used to this point in the User Guide, such as Figure 1, and the sub-
sequent sections rely on them as well. This is why the discussion here
is not just relegated to an Appendix on testing; the reader can benefit
from studying the GB_spec_* functions to understand what a Graph-
BLAS operation is computing. For example, GrB_mxm (Section 5.2)
includes a condensed and simplified version of GB_spec_mxm.

• Testing: Testing the C interface to SuiteSparse:GraphBLAS is a sig-
nificant challenge since it supports so many different kinds of operations
on a vast range of semirings. It is difficult to tell from looking at the
result from a C function in GraphBLAS if the result is correct. Thus,
each function has been written twice: once in a highly-optimized func-
tion in C, and again in a simple and elegant MATLAB function. The
latter is almost a direct translation of all the mathematics behind the
GraphBLAS API Specification, so it is much easier to visually inspect
the GB_spec_* version in MATLAB to ensure the correct mathematics
are being computed.

The following functions are included in the SuiteSparse:GraphBLAS soft-
ware distribution. Each has a name of the form GB_spec_*, and each of them
is a “mimic” of a corresponding C function in GraphBLAS. Not all functions
in the C API have a corresponding mimic; in particular, many of the vector
functions can be computed directly with the corresponding matrix version in
the MATLAB implementations. A list of these files is shown below:
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MATLAB GB_spec function corresponding GraphBLAS Section
function or method

GB_spec_accum.m Z = C�T 2.3
GB_spec_mask.m C〈M〉 = Z 2.3
GB_spec_accum_mask.m C〈M〉 = C�T 2.3
GB_spec_Vector_extractElement.m GrB_Vector_extractElement 4.7.9
GB_spec_build.m GrB_Matrix_build 4.8.8
GB_spec_Matrix_extractElement.m GrB_Matrix_extractElement 4.8.10
GB_spec_extractTuples.m GrB_Matrix_extractTuples 4.8.11
GB_spec_mxm.m GrB_mxm 5.2
GB_spec_vxm.m GrB_vxm 5.3
GB_spec_mxv.m GrB_mxv 5.4
GB_spec_eWiseMult_Vector.m GrB_eWiseMult_Vector 5.5
GB_spec_eWiseMult_Matrix.m GrB_eWiseMult_Matrix 5.5
GB_spec_eWiseAdd_Vector.m GrB_eWiseAdd_Vector 5.6
GB_spec_eWiseAdd_Matrix.m GrB_eWiseAdd_Matrix 5.6
GB_spec_Vector_extract.m GrB_Vector_extract 5.7.1
GB_spec_Matrix_extract.m GrB_Matrix_extract 5.7.2
GB_spec_Col_extract.m GrB_Col_extract 5.7.3
GB_spec_subassign.m GxB_subassign 5.8
GB_spec_assign.m GrB_assign 5.9
GB_spec_apply.m GrB_apply 5.11
GB_spec_select.m GxB_select 5.12
GB_spec_reduce_to_vector.m GrB_reduce (to vector) 5.13.1
GB_spec_reduce_to_scalar.m GrB_reduce (to scalar) 5.13.3
GB_spec_transpose.m GrB_transpose 5.14

Additional files are included for creating test problems and providing
inputs to the above files, or supporting functions:

MATLAB GB_spec function purpose
GB_spec_compare.m Compares output of C and MATLAB functions
GB_spec_random.m Generates a random matrix
GB_spec_op.m MATLAB mimic of built-in operators
GB_spec_operator.m Like GrB_*Op_new

GB_spec_opsall.m List operators, types, and semirings
GB_spec_semiring.m Like GrB_Semiring_new

GB_spec_descriptor.m mimics a GraphBLAS descriptor
GB_spec_identity.m returns the identity of a monoid
GB_spec_matrix.m conforms a MATLAB sparse matrix to GraphBLAS
GB_define.m creates draft of GraphBLAS.h
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An intensive test suite has been written that generates test graphs in
MATLAB, then computes the result in both the C version of the Suite-
Sparse:GraphBLAS and in the MATLAB GB_spec_* functions. Each C func-
tion in GraphBLAS has a direct mexFunction interface that allow the test
suite in MATLAB to call both functions.

This approach has its limitations:

• matrix classes: MATLAB only supports sparse double, sparse double
complex, and sparse logical matrices. MATLAB can represent all eleven
GraphBLAS types as dense matrices, so in all these specification M-files,
the matrices are either in dense format in the corresponding MATLAB
class, or they are held as sparse double or sparse logical, and the actual
GraphBLAS type is held with it as a string member of a MATLAB
struct. To ensure the correct typecasting is computed, most of the
MATLAB scripts work on dense matrices, not sparse ones. As a result,
the MATLAB GB_spec_* function are not meant for production use,
but just for testing and illustration.

• integer operations: MATLAB and GraphBLAS handle integer op-
erations differently. In MATLAB, an integer result outside the range
of the integer is set to maximum or minimum integer. For example,
int8(127)+1 is 127. This is useful for many computations such as
image processing, but GraphBLAS follows the C rules instead, where
integer values wrap, modulo style. For example, in GraphBLAS and
in C, incrementing (int8_t) 127 by one results in -128. Of course,
an alternative would be for a MATLAB interface to create its own
integer operators, each of which would follow the MATLAB integer
rules of arithmetic. However, this would obscure the purpose of these
GB_spec_* and GB_mex_* test functions, which is to test the C API of
GraphBLAS. When the GB_spec_* functions need to perform integer
computations and typecasting, they call GraphBLAS to do the work,
instead doing the work in MATLAB. This ensures that the GB_spec_*

functions obtain the same results as their GraphBLAS counterparts.

• elegance: to simplify testing, each MATLAB mexFunction interface a
GraphBLAS function is a direct translation of the C API. For example,
GB_mex_mxm is a direct interface to the GraphBLAS GrB_mxm, even
down the order of parameters. This approach abandons some of the
potential features of MATLAB for creating elegant M-file interfaces in a
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highly usable form, such as the ability to provide fewer parameters when
optional parameters are not in use. These mexFunctions, as written,
are not meant to be usable in a user application. They are not highly
documented. They are meant to be fast, and direct, to accomplish the
goal of testing SuiteSparse:GraphBLAS in MATLAB and comparing
their results with the corresponding GB_spec_* function. They are not
recommended for use in general applications in MATLAB.

• generality: the MATLAB mexFunction interface needs to test the C
API directly, so it must access content of SuiteSparse:GraphBLAS ob-
jects that are normally opaque to an end user application. As a result,
these mexFunctions do not serve as a general interface to any conform-
ing GraphBLAS implementation, but only to SuiteSparse:GraphBLAS.

In the MATLAB mimic functions, GB_spec_*, a GraphBLAS matrix A is
represented as a MATLAB struct with the following components:

• A.matrix: the values of the matrix. If A.matrix is a sparse double ma-
trix, it holds a typecasted copy of the values of a GraphBLAS matrix,
unless the GraphBLAS matrix is also double (GrB_FP64).

• A.pattern: a logical matrix holding the pattern; A.pattern(i,j)=true
if (i,j) is in the pattern of A, and false otherwise.

• A.class: the MATLAB class of the matrix corresponding to one of the
eleven built-in types. Normally this is simply class(A.matrix).

• A.values: most of the GraphBLAS test mexFunctions return their
result as a MATLAB sparse matrix, in the double class. This works
well for all types except for the 64-bit integer types, since a double has
about 54 bits of mantissa which is less than the 64 bits available in a
long integer. To ensure no bits are lots, these values are also returned as
a vector. This enables GB_spec_compare to ensure the test results are
identical down to the very last bit, and not just to within roundoff error.
Nearly all tests, even in double precision, check for perfect equality, not
just for results accurate to within round-off error.
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5.2 GrB mxm: matrix-matrix multiply

GrB_Info GrB_mxm // C<Mask> = accum (C, A*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_mxm multiplies two sparse matrices A and B using the semiring. The
input matrices A and B may be transposed according to the descriptor, desc
(which may be NULL) and then typecasted to match the multiply operator of
the semiring. Next, T=A*B is computed on the semiring, precisely defined
in the GB_spec_mxm.m script. The actual algorithm exploits sparsity and
does not take O(n3) time, but what computes is the following:

[m s] = size (A.matrix) ;

[s n] = size (B.matrix) ;

T.matrix = zeros (m, n, multiply.ztype) ;

T.pattern = zeros (m, n, ’logical’) ;

T.matrix (:,:) = identity ; % the identity of the semiring’s monoid

T.class = multiply.ztype ; % the ztype of the semiring’s multiply op

A = cast (A.matrix, multiply.xtype) ; % the xtype of the semiring’s multiply op

B = cast (B.matrix, multiply.ytype) ; % the ytype of the semiring’s multiply op

for j = 1:n

for i = 1:m

for k = 1:s

% T (i,j) += A (i,k) * B (k,j), using the semiring

if (A.pattern (i,k) && B.pattern (k,j))

z = multiply (A (i,k), B (k,j)) ;

T.matrix (i,j) = add (T.matrix (i,j), z) ;

T.pattern (i,j) = true ;

end

end

end

end

Finally, T is typecasted into the type of C, and the results are written back
into C via the accum and Mask, C〈M〉 = C�T. The latter step is reflected
in the MATLAB function GB_spec_accum_mask.m, discussed in Section 2.3.
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5.3 GrB vxm: vector-matrix multiply

GrB_Info GrB_vxm // w’<Mask> = accum (w, u’*A)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for u’*A

const GrB_Vector u, // first input: vector u

const GrB_Matrix A, // second input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_vxm multiplies a row vector u’ times a matrix A. The matrix A may
be first transposed according to desc (as the second input, GrB_INP1); the
column vector u is never transposed via the descriptor. The inputs u and
A are typecasted to match the xtype and ytype inputs, respectively, of the
multiply operator of the semiring. Next, an intermediate column vector
t=A’*u is computed on the semiring using the same method as GrB_mxm.
Finally, the column vector t is typecasted from the ztype of the multiply
operator of the semiring into the type of w, and the results are written back
into w using the optional accumulator accum and mask.

The last step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: Because of the way SuiteSparse:Graph-
BLAS stores its matrices and vectors, GrB_vxm with its default descriptor
can be slower than GrB_mxv with its default descriptor, when the vector u

is very sparse. If the user application needs to use GrB_vxm repeatedly with
very sparse vectors u, it can be faster to work on the transpose of A instead.

If the matrix is symmetric, then u’*A is the same as A’*u, except that in
this case the operands to the semiring’s multiplier operator are reversed. This
has no effect if the multiplier operator is commutative, but an adjustment
would need to be made if it were not (such as replacing FIRST with SECOND,
and GE with LE, for example).

Using the non-default GrB_TRAN descriptor for A makes the GrB_vxm op-
eration equivalent to GrB_mxv with its default descriptor (with the operands
reversed in the multiplier, as well). The reverse is true as well; GrB_mxv with
GrB_TRAN is the same as GrB_vxm with a default descriptor.

The breadth-first search in Section 6.1 uses GrB_mxv instead of GrB_vxm,
since the graph is symmetric and the multiplier (AND) is commutative.

74



5.4 GrB mxv: matrix-vector multiply

GrB_Info GrB_mxv // w<Mask> = accum (w, A*u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Vector u, // second input: vector u

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_mxv multiplies a matrix A times a column vector u. The matrix A may
be first transposed according to desc (as the first input); the column vector
u is never transposed via the descriptor. The inputs A and u are typecasted
to match the xtype and ytype inputs, respectively, of the multiply operator
of the semiring. Next, an intermediate column vector t=A*u is computed on
the semiring using the same method as GrB_mxm. Finally, the column vector
t is typecasted from the ztype of the multiply operator of the semiring into
the type of w, and the results are written back into w using the optional
accumulator accum and mask.

The last step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: Refer to the discussion of GrB_vxm. In
SuiteSparse:GraphBLAS, GrB_mxv is very efficient when u is sparse or dense,
when the default descriptor is used. When u is very sparse and the default
descriptor is used, GrB_mxv is also very efficient.

When u is very sparse and GrB_INP0 is set to its non-default GrB_TRAN,
then this method is not efficient. If an application needs to perform A’*u

repeatedly where u is very sparse, then it can be faster to explicitly transpose
A first, and then to use this function with its default descriptor on the trans-
pose. That is, compute C=A’ via GrB_transpose, and then use this method
to repeatedly compute C*u, without selecting GrB_TRAN.
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5.5 GrB eWiseMult: element-wise operations, set inter-
section

Element-wise “multiplication” is shorthand for applying a binary operator
element-wise on two matrices or vectors A and B, for all entries that appear in
the set intersection of the patterns of A and B. This is like A.*B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just multiplication.

The pattern of the result of the element-wise “multiplication” is exactly
this set intersection. Entries in A but not B, or visa versa, do not appear in
the result.

Let⊗ denote the binary operator to be used. The computation T = A⊗B
is given below. Entries not in the intersection of A and B do not appear in
the pattern of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊗ bij

Depending on what kind of operator is used and what the implicit value
is assumed to be, this can give the Hadamard product. This is the case for
A.*B in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the eWiseMult operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of A and B, and discards any entry outside this intersection.
Its usefulness in a user’s application does not depend upon it computing
a Hadamard product in all cases. The operator need not be associative,
commutative, nor have any particular property except for type compatibility
with A and B, and the output matrix C.

The generic name for this operation is GrB_eWiseMult, which can be used
for both matrices and vectors.
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5.5.1 GrB eWiseMult Vector: element-wise vector multiply

GrB_Info GrB_eWiseMult // w<Mask> = accum (w, u.*v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> multiply, // defines ’.*’ for t=u.*v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_eWiseMult_Vector computes the element-wise “multiplication” of
two vectors u and v, element-wise using any binary operator (not just times).
The vectors are not transposed via the descriptor. The vectors u and v are
first typecasted into the first and second inputs of the multiply operator.
Next, a column vector t is computed, denoted t = u⊗ v. The pattern of t
is the set intersection of u and v. The result t has the type of the output
ztype of the multiply operator.

The operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The next and final step is w〈m〉 = w � t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices. Note for all
GraphBLAS operations, including this one, the accumulator w � t is always
applied in a set union manner, even though t = u⊗ v for this operation is
applied in a set intersection manner.
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5.5.2 GrB eWiseMult Matrix: element-wise matrix multiply

GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> multiply, // defines ’.*’ for T=A.*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_eWiseMult_Matrix computes the element-wise “multiplication” of
two matrices A and B, element-wise using any binary operator (not just times).
The input matrices may be transposed first, according to the descriptor desc.
They are then typecasted into the first and second inputs of the multiply

operator. Next, a matrix T is computed, denoted T = A⊗B. The pattern
of T is the set intersection of A and B. The result T has the type of the output
ztype of the multiply operator.

The multiply operator is typically a GrB_BinaryOp, but the method is
type-generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, multiply.ztype) ;

T.class = multiply.ztype ;

p = A.pattern & B.pattern ;

A = cast (A.matrix (p), multiply.xtype) ;

B = cast (B.matrix (p), multiply.ytype) ;

T.matrix (p) = multiply (A, B) ;

T.pattern = p ;

The final step is C〈M〉 = C�T, as described in Section 2.3. Note for all
GraphBLAS operations, including this one, the accumulator C�T is always
applied in a set union manner, even though T = A⊗B for this operation is
applied in a set intersection manner.
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5.6 GrB eWiseAdd: element-wise operations, set union

Element-wise “addition” is shorthand for applying a binary operator element-
wise on two matrices or vectors A and B, for all entries that appear in the
set intersection of the patterns of A and B. This is like A+B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just addition. The pattern of the result of the element-wise
“addition” is the set union of the pattern of A and B. Entries in neither in A

nor in B do not appear in the result.
Let⊕ denote the binary operator to be used. The computation T = A⊕B

is exactly the same as the computation with accumulator operator as de-
scribed in Section 2.3. It acts like a sparse matrix addition, except that any
operator can be used. The pattern of A⊕B is the set union of the patterns
of A and B, and the operator is applied only on the set intersection of A and
B. Entries not in either the pattern of A or B do not appear in the pattern
of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊕ bij

for all entries (i, j) in A \B
tij = aij

for all entries (i, j) in B \A
tij = bij

The only difference between element-wise “multiplication” (T = A⊗B)
and “addition” (T = A⊕B) is the pattern of the result, and what happens
to entries outside the intersection. With ⊗ the pattern of T is the inter-
section; with ⊕ it is the set union. Entries outside the set intersection are
dropped for ⊗, and kept for ⊕; in both cases the operator is only applied to
those (and only those) entries in the intersection. Any binary operator can
be used interchangeably for either operation.

Element-wise operations do not operate on the implicit values, even im-
plicitly, since the operations make no assumption about the semiring. As a
result, the results can be different from MATLAB, which can always assume
the implicit value is zero. For example, C=A-B is the conventional matrix
subtraction in MATLAB. Computing A-B in GraphBLAS with eWiseAdd

will apply the MINUS operator to the intersection, entries in A but not B will
be unchanged and appear in C, and entries in neither A nor B do not appear
in C. For these cases, the results matches the MATLAB C=A-B. Entries in B

but not A do appear in C but they are not negated; they cannot be subtracted
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from an implicit value in A. This is by design. If conventional matrix sub-
traction of two sparse matrices is required, and the implicit value is known
to be zero, use GrB_apply to negate the values in B, and then use eWiseAdd

with the PLUS operator, to compute A+(-B).
The generic name for this operation is GrB_eWiseAdd, which can be used

for both matrices and vectors.
There is another minor difference in two variants of the element-wise func-

tions. If given a semiring, the eWiseAdd functions use the binary operator of
the semiring’s monoid, while the eWiseMult functions use the multiplicative
operator of the semiring.

5.6.1 GrB eWiseAdd Vector: element-wise vector addition

GrB_Info GrB_eWiseAdd // w<Mask> = accum (w, u+v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> add, // defines ’+’ for t=u+v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_eWiseAdd_Vector computes the element-wise “addition” of two vec-
tors u and v, element-wise using any binary operator (not just plus). The
vectors are not transposed via the descriptor. Entries in the intersection of u
and v are first typecasted into the first and second inputs of the add operator.
Next, a column vector t is computed, denoted t = u⊕ v. The pattern of t
is the set union of u and v. The result t has the type of the output ztype of
the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The final step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.
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5.6.2 GrB eWiseAdd Matrix: element-wise matrix addition

GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> add, // defines ’+’ for T=A+B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_eWiseAdd_Matrix computes the element-wise “addition” of two ma-
trices A and B, element-wise using any binary operator (not just plus). The
input matrices may be transposed first, according to the descriptor desc.
Entries in the intersection then typecasted into the first and second inputs of
the add operator. Next, a matrix T is computed, denoted T = A⊕B. The
pattern of T is the set union of A and B. The result T has the type of the
output ztype of the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, add.ztype) ;

p = A.pattern & B.pattern ;

A = GB_mex_cast (A.matrix (p), add.xtype) ;

B = GB_mex_cast (B.matrix (p), add.ytype) ;

T.matrix (p) = add (A, B) ;

p = A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;

p = ~A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;

T.pattern = A.pattern | B.pattern ;

T.class = add.ztype ;

Except for when typecasting is performed, this is identical to how the
accum operator is applied in Figure 1.

The final step is C〈M〉 = C�T, as described in Section 2.3.
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5.7 GrB extract: submatrix extraction

The GrB_extract function is a generic name for three specific functions:
GrB_Vector_extract, GrB_Col_extract, and GrB_Matrix_extract. The
generic name appears in the function signature, but the specific function
name is used when describing what each variation does.

5.7.1 GrB Vector extract: extract subvector from vector

GrB_Info GrB_extract // w<mask> = accum (w, u(I))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_extract extracts a subvector from another vector, identical
to t = u (I) in MATLAB where I is an integer vector of row indices. Refer
to GrB_Matrix_extract for further details; vector extraction is the same as
matrix extraction with n-by-1 matrices. To extract all rows of a vector, as in
t = u (:) in MATLAB, use I = GrB_ALL. The final step is w〈m〉 = w � t,
as described in Section 2.3, except that all the terms are column vectors
instead of matrices.
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5.7.2 GrB Matrix extract: extract submatrix from matrix

GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_extract extracts a submatrix from another matrix, identi-
cal to T = A(I,J) in MATLAB where I and J are integer vectors of row and
column indices, respectively, except that indices are zero-based in Graph-
BLAS and one-based in MATLAB. The input matrix A may be transposed
first, via the descriptor. The type of T and A are the same.

Entries outside A(I,J) are not accessed and do not take part in the
computation. More precisely, assuming the matrix A is not transposed, the
matrix T is defined as follows:

T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj

T.pattern = false (ni, nj) ;

for i = 1:ni

for j = 1:nj

if (A (I(i),J(j)).pattern)

T (i,j).matrix = A (I(i),J(j)).matrix ;

T (i,j).pattern = true ;

end

end

end

If duplicate indices are present in I or J, the above method defines the
result in T. Duplicates result in the same values of A being copied into different
places in T.

To extract all rows of a matrix, as in T = A (:,J) in MATLAB, use
I = GrB_ALL as the input argument. For all columns of a matrix, use
J = GrB_ALL. The final step is C〈M〉 = C�T, as described in Section 2.3.
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5.7.3 GrB Col extract: extract column vector from matrix

GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Col_extract extracts a subvector from a matrix, identical to t = A (I,j)

in MATLAB where I is an integer vector of row indices and where j is a
single column index. The input matrix A may be transposed first, via the
descriptor, which results in the extraction of a single row j from the matrix
A, the result of which is a column vector w. The type of t and A are the
same. To extract all rows of a matrix, as in t = A (:,j) in MATLAB, use
I = GrB_ALL as the input argument. The final step is w〈m〉 = w � t, as de-
scribed in Section 2.3, except that all the terms are column vectors instead
of matrices.

Performance considerations: Because of the way SuiteSparse:Graph-
BLAS stores its matrices, row extraction is more costly than column ex-
traction. That is, using the GrB_TRAN option for the A matrix is slower than
the default, which is to extract a column. If this function is to be used many
times on the same matrix A to extract rows with the GrB_TRAN option en-
abled, it can be faster to explicitly transpose the matrix A once, and then to
extract columns instead.
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5.8 GxB subassign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in
their generic form with the single name GxB_subassign. This is reflected
in the prototypes. However, to avoid confusion between the different kinds
of assignment, the name of the specific function is used when describing
each variation. If the discussion applies to all variations, the simple name
GxB_subassign is used.

GxB_subassign is very similar to GrB_assign, described in Section 5.9.
The two operations are compared and contrasted in Section 5.10.

SPEC: All variants of GxB_subassign are extensions to the spec.

5.8.1 GxB Vector subassign: assign to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign operates on a subvector w(I) of w, modifying
it with the vector u. The method is identical to GxB_Matrix_subassign

described in Section 5.8.2, where all matrices have a single column each.
The mask has the same size as w(I) and u. The only other difference is that
the input u in this method is not transposed via the GrB_INP0 descriptor.
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5.8.2 GxB Matrix subassign: assign to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A

) ;

GxB_Matrix_subassign operates only on a submatrix S of C, modifying
it with the matrix A. For this operation, the result is not the entire matrix C,
but a submatrix S=C(I,J) of C. The steps taken are as follows, except that
A may be optionally transposed via the GrB_INP0 descriptor option.

Step GraphBLAS description
notation

1 S = C(I,J) extract the C(I,J) submatrix
2 S〈M〉 = S�A apply the accumulator/mask to the submatrix S
3 C(I,J) = S put the submatrix S back into C(I,J)

The accumulator/mask step in Step 2 is the same as for all other Graph-
BLAS operations, described in Section 2.3, except that for GxB_subassign,
it is applied to just the submatrix S = C(I,J), and thus the Mask has the
same size as A, S, and C(I,J).

The GxB_subassign operation is the reverse of matrix extraction:

• For submatrix extraction, GrB_Matrix_extract, the submatrix A(I,J)

appears on the right-hand side of the assignment, C=A(I,J), and entries
outside of the submatrix are not accessed and do not take part in the
computation.

• For submatrix assignment, GxB_Matrix_subassign, the submatrix C(I,J)

appears on the left-hand-side of the assignment, C(I,J)=A, and entries
outside of the submatrix are not accessed and do not take part in the
computation.
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In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the Mask matrix is present it is the same size as
the submatrix:

• For submatrix extraction, C〈M〉 = C�A(I,J) is computed, where
the submatrix is on the right. The mask M has the same size as the
submatrix A(I,J).

• For submatrix assignment, C(I,J)〈M〉 = C(I,J)�A is computed, where
the submatrix is on the left. The mask M has the same size as the sub-
matrix C(I,J).

In Step 1, the submatrix S is first computed by the GrB_Matrix_extract

operation, S=C(I,J).
Step 2 accumulates the results S〈M〉 = S�T, exactly as described in

Section 2.3, but operating on the submatrix S, not C, using the optional
Mask and accum operator. The matrix T is simply T = A, or T = A′ if A
is transposed via the desc descriptor, GrB_INP0. The GrB_REPLACE option
in the descriptor clears S after computing Z = T or Z = C�T, not all of
C since this operation can only modify the specified submatrix of C.

Finally, Step 3 writes the result (which is the modified submatrix S and
not all of C) back into the C matrix that contains it, via the assignment
C(I,J)=S, using the reverse operation from the method described for matrix
extraction:

for i = 1:ni

for j = 1:nj

if (S (i,j).pattern)

C (I(i),J(j)).matrix = S (i,j).matrix ;

C (I(i),J(j)).pattern = true ;

end

end

end

Results are not defined for any GxB_subassign operation if duplicate
indices appear in I or J.
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5.8.3 GxB Col subassign: assign to a sub-column of a matrix

GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(I,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(I,j) and mask

) ;

GxB_Col_subassign modifies a single sub-column of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector J[0]=j is a single
column index (and thus nj=1), and where all matrices in GxB_Matrix_subassign

(except C) consist of a single column. The mask vector has the same size as
u and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored;
the input vector u is not transposed. Refer to GxB_Matrix_subassign for
further details.

5.8.4 GxB Row subassign: assign to a sub-row of a matrix

GrB_Info GxB_subassign // C(i,J)<mask’> = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,J) and mask

) ;

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector I[0]=i is a single
row index (and thus ni=1), and where all matrices in GxB_Matrix_subassign

(except C) consist of a single row. The mask vector has the same size as u

and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored; the
input vector u is not transposed. Refer to GxB_Matrix_subassign for further
details.
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Sub-row assignment in SuiteSparse:GraphBLAS is not as fast as sub-
column assignment. If many of the rows of C are to be modified by repeated
use of GxB_Row_subassign, it can be faster to transpose C first and to use
GxB_Matrix_subassign or GxB_Col_subassign instead.

5.8.5 GxB Vector subassign <type>: assign a scalar to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign_<type> assigns a single scalar to an entire sub-
vector of the vector w. The operation is exactly like setting a single entry in an
n-by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. For further details of this function, see GxB_Matrix_subassign_<type>
in Section 5.8.6.

Unlike GrB_Vector_assign_<type> (see Section 5.9.5), results are not
defined if I contains duplicate indices.
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5.8.6 GxB Matrix subassign <type>: assign a scalar to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J) and Mask

) ;

GxB_Matrix_subassign_<type> assigns a single scalar to an entire sub-
matrix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix A

is assigned to C(I,J) using the same method as in GxB_Matrix_subassign.
Refer to that function in Section 5.8.2 for further details.

For the accumulation step, the scalar x is typecasted directly into the
type of C when the accum operator is not applied to it, or into the ytype

of the accum operator, if accum is not NULL, for entries that are already
present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 4.8.9). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

Unlike GrB_Matrix_assign_<type> (see Section 5.9.5), results are not
defined if I or J contain duplicate indices.
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5.9 GrB assign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in their
generic form with the single name GrB_assign. These methods are very simi-
lar to their GxB_subassign counterparts in Section 5.8. They differ primarily
in the size of the Mask, and how the GrB_REPLACE option works. Refer to
Section 5.10 for a complete comparison of GxB_subassign and GrB_assign.

5.9.1 GrB Vector assign: assign to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign operates on a subvector w(I) of w, modifying it with
the vector u. The mask vector has the same size as w. The method is identical
to GrB_Matrix_assign described in Section 5.9.2, where all matrices have
a single column each. The only other difference is that the input u in this
method is not transposed via the GrB_INP0 descriptor.

5.9.2 GrB Matrix assign: assign to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;
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GrB_Matrix_assign operates on a submatrix S of C, modifying it with
the matrix A. It may also modify all of C, depending on the input descriptor
desc and the Mask.

Step GraphBLAS description
notation

1 S = C(I,J) extract C(I,J) submatrix
2 S = S�A apply the accumulator (but not the mask) to S
3 Z = C make a copy of C
4 Z(I,J) = S put the submatrix into Z(I,J)
5 C〈M〉 = Z apply the mask/replace phase to all of C

In contrast to GxB_subassign, the Mask has the same as C.
Step 1 extracts the submatrix and then Step 2 applies the accumulator

(or S = A if accum is NULL). The Mask is not yet applied.
Step 3 makes a copy of the C matrix, and then Step 4 writes the submatrix

S into Z. This is the same as Step 3 of GxB_subassign, except that it
operates on a temporary matrix Z.

Finally, Step 5 writes Z back into C via the Mask, using the Mask/Replace
Phase described in Section 2.3. If GrB_REPLACE is enabled, then all of C is
cleared prior to writing Z via the mask. As a result, the GrB_REPLACE option
can delete entries outside the C(I,J) submatrix.

5.9.3 GrB Col assign: assign to a sub-column of a matrix

GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(:,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(:,j) and mask

) ;

GrB_Col_assign modifies a single sub-column of a matrix C. It is the same
as GrB_Matrix_assign where the index vector J[0]=j is a single column
index, and where all matrices in GrB_Matrix_assign (except C) consist of a
single column.
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Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single column of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

5.9.4 GrB Row assign: assign to a sub-row of a matrix

GrB_Info GrB_assign // C<mask’>(i,J) = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,:), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,:) and mask

) ;

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the same
as GxB_Matrix_subassign where the index vector I[0]=i is a single row
index, and where all matrices in GxB_Matrix_subassign (except C) consist
of a single row.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single row of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GxB_Matrix_subassign for further details.

Sub-row assignment in SuiteSparse:GraphBLAS is not as fast as sub-
column assignment. If many of the rows of C are to be modified by re-
peated use of GxB_Row_subassign, it can be faster to transpose C first
and to use GxB_Matrix_subassign or GxB_Col_subassign instead. See
GxB_Matrix_subassign for further details.
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5.9.5 GrB Vector assign <type>: assign a scalar to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign_<type> assigns a single scalar to an entire subvector
of the vector w. The operation is exactly like setting a single entry in an n-
by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. The mask vector has the same size as w. For further details of this
function, see GrB_Matrix_assign_<type> in the next section.

In contrast to GxB_Vector_subassign_<type>, results are well-defined if
I contains duplicate indices. Duplicate indices are simply ignored.

5.9.6 GrB Matrix assign <type>: assign a scalar to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C and Mask

) ;

GrB_Matrix_assign_<type> assigns a single scalar to an entire subma-
trix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix
A is assigned to C(I,J) using the same method as in GrB_Matrix_assign.
Refer to that function in Section 5.9.2 for further details.

The Mask has the same size as C.
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For the accumulation step, the scalar x is typecasted directly into the
type of C when the accum operator is not applied to it, or into the ytype

of the accum operator, if accum is not NULL, for entries that are already
present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 4.8.9). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

In contrast to GxB_Matrix_subassign_<type>, results are well-defined if
I or J contain duplicate indices. Duplicate indices are simply ignored.
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5.10 Comparing GrB assign and GxB subassign

SPEC: GxB_subassign is an extension to the spec.

The GxB_subassign and GrB_assign operations are very similar, but
they differ in three ways:

1. The mask in GxB_subassign has the same dimensions as w(I) for vec-
tors and C(I,J) for matrices. In GrB_assign, the mask is the same
size as w or C, respectively (except for the row/col variants). The two
masks are related. If M is the mask for GrB_assign, then M(I,J) is the
mask for GxB_subassign. If there is no mask, or if I and J are both
GrB_ALL, then the two masks are the same.

For GrB_Row_assign and GrB_Col_assign, the mask vector is the same
size as a row or column of C, respectively. For the corresponding
GxB_Row_subassign and GxB_Col_subassign operations, the mask is
the same size as the sub-row C(i,J) or subcolumn C(I,j), respectively.

2. They differ in how C is affected in areas outside the C(I,J) submatrix.
In GxB_subassign, the C(I,J) submatrix is the only part of C that can
be modified, and no part of C outside the submatrix is ever modified. In
GrB_assign, it is possible to delete entries in C outside the submatrix,
but only in one specific manner. Suppose the mask M is present (or,
suppose it is not present but GrB_SCMP is true). After (optionally)
complementing the mask, the value of M(i,j) can be 0 for some entry
outside the C(I,J) submatrix. If the GrB_REPLACE descriptor is also
true, then GrB_assign deletes this entry.

3. They differ in how duplicate indices are treated in I and J. For both
assign and subassign, results are not defined for GrB_Matrix_*assign,
GrB_Vector_*assign, GrB_Row_*assign, and GrB_Col_*assign when
duplicate indices appear in I or J. The scalar expansion operations,
GrB_*_assign_<type>, are well-defined if duplicate indices appear (the
results are the same as if duplicates are removed first from I and J).
However, the scalar expansion operations GxB_*_subassign_<type>

are not well-defined if duplicate indices appear in I or J.
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GxB_subassign and GrB_assign are identical if GrB_REPLACE is set to
its default value of false, and if the masks happen to be the same. The two
masks can be the same in two cases: either the Mask input is NULL (and it is
not complemented via GrB_SCMP), or I and J are both GrB_ALL. In this case,
the two algorithms are identical and have the same performance.

GxB_subassign is much faster than GrB_assign, when the latter must
examine the entire matrix C to delete entries (when GrB_REPLACE is true),
and if it must deal with a much larger Mask matrix. However, both methods
have specific uses.

Consider using C(I,J)+=F for many submatrices F (for example, when
assembling a finite-element matrix). If the Mask is meant as a specification
for which entries of C should appear in the final result, then use GrB_assign.

If instead the Mask is meant to control which entries of the submatrix
C(I,J) are modified by the finite-element F, then use GxB_subassign. This
is particularly useful is the Mask is a template that follows along with the
finite-element F, independent of where it is applied to C. Using GrB_assign

would be very difficult in this case since a new Mask, the same size as C,
would need to be constructed for each finite-element F.

In GraphBLAS notation, the two methods can be described as follows:

matrix and vector subassign C(I,J)〈M〉 = C(I,J)�A
matrix and vector assign C〈M〉(I,J) = C(I,J)�A

This notation does not include the details of the GrB_SCMP and GrB_REPLACE

descriptors, but it does illustrate the difference in the Mask. In the sub-
assign, Mask is the same size as C(I,J) and A. If I[0]=i and J[0]=j, Then
Mask(0,0) controls how C(i,j) is modified by the subassign, from the value
A(0,0). In the assign, Mask is the same size as C, and Mask(i,j) controls
how C(i,j) is modified.

The GxB_subassign and GrB_assign functions have the same signatures;
they differ only in how they consider the Mask and the GrB_REPLACE descrip-
tor, and in how duplicate indices are treated for scalar expansion.

Details of each step of the two operations are listed below:

Step GrB_Matrix_assign GxB_Matrix_subassign

1 S = C(I,J) S = C(I,J)
2 S = S�A S〈M〉 = S�A
3 Z = C C(I,J) = S
4 Z(I,J) = S
5 C〈M〉 = Z
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The Accumulator Phase (S � A in Step 2), described in Section 2.3, is
the same in both operations. The result is simply A if accum is NULL. It only
applies to the submatrix S, not the whole matrix.

The Mask/Replace Phase, described in Section 2.3 is different:

• For GrB_Matrix_assign (Step 5), the mask is applied to all of C. The
mask has the same size as C. Just prior to making the assignment via
the mask, the GrB_REPLACE option can be used to clear all of C first.
This is the only way in which entries in C that are outside the C(I,J)
submatrix can be modified by this operation.

• For GxB_Matrix_subassign (Step 2), the mask is applied to just S.
The mask has the same size as C(I,J), S, and A. Just prior to making
the assignment via the mask, the GrB_REPLACE option can be used
to clear S first. No entries in C that are outside the C(I,J) can be
modified by this operation. Thus, GrB_REPLACE has no effect on entries
in C outside the C(I,J) submatrix.

The differences between GrB_Matrix_assign and GxB_Matrix_subassign

can be seen in Tables 1 and 2. The first table considers the case when the
entry cij is in the C(I,J) submatrix, and it describes what is computed for
both GrB_Matrix_assign and GxB_Matrix_subassign. They perform the
exact same computation; the only difference is how the value of the mask is
specified.

The first column of the table is yes if GrB_REPLACE is enabled, and a dash
otherwise. The second column is yes if an accumulator operator is given,
and a dash otherwise. The third column is cij if the entry is present in C,
and a dash otherwise. The fourth column is ai′j′ if the corresponding entry
is present in A, where i = I(i′) and j = J(i′).

The mask column is 1 if the mask allows C to be modified, and 0 oth-
erwise. This is mij for GrB_assign, and mi′j′ for GxB_subassign, to reflect
the difference in the mask, but this difference is not reflected in the table.
The value 1 or 0 is the value of the entry in the mask after it is optionally
complemented via the GrB_SCMP option.

Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case cij is not modified if present, or not inserted
into C if not present.
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repl accum C A mask action taken by GrB_assign and GxB_subassign

- - cij ai′j′ 1 cij = ai′j′ , update
- - - ai′j′ 1 cij = ai′j′ , insert
- - cij - 1 delete cij because ai′j′ not present
- - - - 1

- - cij ai′j′ 0
- - - ai′j′ 0
- - cij - 0
- - - - 0

yes - cij ai′j′ 1 cij = ai′j′ , update
yes - - ai′j′ 1 cij = ai′j′ , insert
yes - cij - 1 delete cij because ai′j′ not present
yes - - - 1

yes - cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes - - ai′j′ 0
yes - cij - 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij ai′j′ 1 cij = cij � ai′j′ , apply accumulator
- yes - ai′j′ 1 cij = ai′j′ , insert
- yes cij - 1
- yes - - 1

- yes cij ai′j′ 0
- yes - ai′j′ 0
- yes cij - 0
- yes - - 0

yes yes cij ai′j′ 1 cij = cij � ai′j′ , apply accumulator
yes yes - ai′j′ 1 cij = ai′j′ , insert
yes yes cij - 1
yes yes - - 1

yes yes cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes yes - ai′j′ 0
yes yes cij - 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 1: Results of assign and subassign for entries in the C(I,J) submatrix

99



repl accum C C = Z mask action taken by GrB_assign

- - cij cij 1
- - - - 1

- - cij cij 0
- - - - 0

yes - cij cij 1
yes - - - 1

yes - cij cij 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij cij 1
- yes - - 1

- yes cij cij 0
- yes - - 0

yes yes cij cij 1
yes yes - - 1

yes yes cij cij 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 2: Results of assign for entries outside the C(I,J) submatrix. Sub-
assign has no effect on these entries.

Table 2 illustrates how GrB_assign and GxB_subassign differ for entries
outside the submatrix. GxB_subassign never modifies any entry outside the
C(I,J) submatrix, but GrB_assign can modify them in two cases listed in
Table 2. When the GrB_REPLACE option is selected, and when the Mask(i,j)
for an entry cij is false (or if the Mask(i,j) is true and GrB_SCMP is enabled
via the descriptor), then the entry is deleted by GrB_assign.

The fourth column of Table 2 differs from Table 1, since entries in A never
affect these entries. Instead, for all index pairs outside the I × J submatrix,
C and Z are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either cij is present, or not. This in contrast
to Table 1, where each section must consider four different cases.

The GrB_Row_assign and GrB_Col_assign operations are slightly differ-
ent. They only affect a single row or column of C. For GrB_Row_assign,
Table 2 only applies to entries in the single row C(i,J) that are outside the
list of indices, J. For GrB_Col_assign, Table 2 only applies to entries in the
single column C(I,j) that are outside the list of indices, I.
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5.10.1 Example

The difference between GxB_subassign and GrB_assign is illustrated in
the following example. Consider the 2-by-2 matrix C where all entries are
present.

C =

[
11 12
21 22

]
Suppose GrB_REPLACE is true, and GrB_SCMP is false. Let the Mask be:

M =

[
1 1
0 1

]
.

Let A = 100, and let the index sets be I = 0 and J = 1. Consider the
computation C〈M〉(0, 1) = C(0, 1) + A, using the GrB_assign operation.
The result is:

C =

[
11 112
− 22

]
.

The (0, 1) entry is updated and the (1, 0) entry is deleted because its Mask

is zero. The other two entries are not modified since Z = C outside the
submatrix, and those two values are written back into C because their Mask
values are 1. The (1, 0) entry is deleted because the entry Z(1, 0) = 21 is
prevented from being written back into C since Mask(1,0)=0.

Now consider the analogous GxB_subassign operation. The Mask has the
same size as A, namely:

M =
[

1
]
.

After computing C(0, 1)〈M〉 = C(0, 1) + A, the result is

C =

[
11 112
21 22

]
.

Only the C(I,J) submatrix, the single entry C(0, 1), is modified by
GxB_subassign. The entry C(1, 0) = 21 is unaffected by GxB_subassign,
but it is deleted by GrB_assign.
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5.10.2 Performance of GxB subassign, GrB assign and GrB * setElement

When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications
to a matrix by GxB_subassign, GrB_assign, and GrB_*_setElement can
postponed, and computed all at once later on. This has a huge impact on
performance.

A sequence of assignments is fast if their completion can be postponed
for as long as possible, or if they do not modify the pattern at all. Modifying
the pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.

Consider a sequence of t submatrix assignments C(I,J)=C(I,J)+A to an
n-by-n matrix C where each submatrix A has size a-by-a with s entries, and
where C starts with k entries.

If blocking mode is enabled, or if the sequence requires the matrix to
be completed after each assignment, each of the t assignments takes O(a +
s log n) time to process the A matrix and then O(n + k + s log s) time to
complete C. The latter step uses GrB_*_build to build an update matrix
and then merge it with C. This step does not occur if the sequence of
assignments does not add new entries to the pattern of C, however. As-
suming in the worst case that the pattern does change, the total time is
O(t [a + s log n + n + k + s log s]).

If the sequence can be computed with all updates postponed until the end
of the sequence, then the total time is no worse than O(a+s log n) to process
each A matrix, for t assignments, and then a single build at the end, taking
O(n+k+st log st) time. The total time is O(t [a + s log n]+(n+k+st log st)).
If no new entries appear in C the time drops to O(t [a + s log n]), and in this
case, the time for both methods is the same; both are equally efficient.

A few simplifying assumptions are useful to compare these times. Nearly
all graphs of n nodes that arise in practice have O(n) edges, and most graphs
have a constant bound on the degree of each node. The asymptotic bounds
assume a worst-case scenario where C has a least some dense columns (thus
the log n terms). If these are not present, if both t and k are O(n), and if a
and s are constants, then the total time with blocking mode becomes O(n2),
assuming the pattern of C changes at each assignment. This very high for a
sparse graph problem. In contrast, the non-blocking time becomes O(n log n)
under these same assumptions, which is asymptotically much faster.

The difference in practice can be very dramatic, since n can be many
millions for sparse graphs that can be handled on a commodity laptop.
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The following guidelines should be considered when using GxB_subassign,
GrB_assign and GrB_*_setElement.

1. A sequence of assignments that does not modify the pattern at all
is fast, taking as little as Ω(1) time per entry modified. The worst
case time complexity is O(log n) per entry, assuming they all modify
a dense column of C with n entries, which can occur in practice. It
is more common, however, that most columns of C have a constant
number of entries, independent of n. No work is ever left pending when
the pattern of C does not change.

2. A sequence of assignments that modifies the entries that already exist
in the pattern of a matrix, or adds new entries to the pattern (using
the same accum operator), but does not delete any entries, is fast. The
matrix is not completed until the end of the sequence.

3. Similarly, a sequence that modifies existing entries, or deletes them, but
does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast.
The matrix is not completed until the end of the sequence.

4. A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assign-
ment. The time complexity can become quadratic in the worst case.

5. However, any single assignment takes no more than O(a+ s log n+n+
k+s log s) time, even including the time for a matrix completion, where
C is n-by-n with k entries and A is a-by-a with s entries. This time is
essentially linear in the size of the matrix C, if A is relatively small and
sparse compared with C. In this case, n+k are the two dominant terms.

6. In general, GxB_subassign is faster than GrB_assign. If GrB_REPLACE
is used with GrB_assign, the entire matrix C must be traversed. This
is much slower than GxB_subassign, which only needs to examine the
C(I,J) submatrix. Furthermore, GrB_assign must deal with a much
larger Mask matrix, whereas GxB_subassign has a smaller mask. Since
its mask is smaller, GxB_subassign takes less time than GrB_assign

to access the mask.
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Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient,
even without considering the advantages of non-blocking mode discussed in
Section 5.10. Consider assigning a large submatrix C(I,J)=A where C is the
Freescale2 matrix from the SuiteSparse Collection [DH11], of size 3 million
by 3 million, with 14.3 million nonzeros. With the vectors I=randperm(n,5500)
and J=randperm(n,7000) and A a random sparse matrix with 38,500 nonze-
ros, C(I,J)=A takes 87 seconds in MATLAB.1 The same computation takes
0.74 seconds in SuiteSparse:GraphBLAS, a speedup of over 100. This is af-
ter finishing all pending computations in GraphBLAS and returning result
to MATLAB as a valid MATLAB sparse matrix. The dominant time com-
plexity for GraphBLAS is O(n + k), where n is the dimension of C and k is
its number of nonzeros. As a comparison, MATLAB takes just 0.42 seconds
to compute C+C’ for this matrix, which also takes time linear in the size of
the matrix data structure, O(n + k).

1All performance measurements in this document were done on a MacBook Pro, 2.8
GHz Intel Core i7, 16 GB Ram, OSX 10.11.6, clang 8.0.0, MATLAB R2017A.
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5.11 GrB apply: apply a unary operator

The GrB_apply function is the generic name for two specific functions:
GrB_Vector_apply and GrB_Matrix_apply. The generic name appears in
the function prototypes, but the specific function name is used when describ-
ing each variation. When discussing features that apply to both versions, the
simple name GrB_apply is used.

5.11.1 GrB Vector apply: apply a unary operator to a vector

GrB_Info GrB_apply // w<mask> = accum (w, op(u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply applies a unary operator to the entries of a vector,
analogous to t = op(u) in MATLAB except the operator op is only applied
to entries in the pattern of u. Implicit values outside the pattern of u are not
affected. The entries in u are typecasted into the xtype of the unary operator.
The vector t has the same type as the ztype of the unary operator. The
final step is w〈m〉 = w � t, as described in Section 2.3, except that all the
terms are column vectors instead of matrices.
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5.11.2 GrB Matrix apply: apply a unary operator to a matrix

GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply applies a unary operator to the entries of a matrix,
analogous to T = op(A) in MATLAB except the operator op is only applied
to entries in the pattern of A. Implicit values outside the pattern of A are not
affected. The input matrix A may be transposed first. The entries in A are
typecasted into the xtype of the unary operator. The matrix T has the same
type as the ztype of the unary operator. The final step is C〈M〉 = C�T,
as described in Section 2.3.

The built-in GrB_IDENTITY_T operators (one for each built-in type T )
are very useful when combined with this function, enabling it to compute
C〈M〉 = C�A. This makes GrB_apply a direct interface to the accumula-
tor/mask function for both matrices and vectors.

In SuiteSparse:GraphBLAS, this method is particularly efficient with
built-in types. If the type of C and A are the same, and if A is not transposed
via the descriptor, then T is a pure shallow copy of A, taking only O(1) time
and memory. The output matrix C is never a shallow copy of T or A.

To compute C〈M〉 = A or C〈M〉 = C�A for user-defined types, the
user application would need to define an identity operator for the type. Since
GraphBLAS cannot detect that it is an identity operator, it must call the
operator to make the full copy T=A and apply the operator to each entry of
the matrix or vector.

The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is GrB_transpose, which does not require an
operator to perform this task. As a result, GrB_transpose can be used as
an efficient and direct interface to the accumulator/mask function for both
built-in and user-defined types. However, it is only available for matrices,
not vectors.
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5.12 GxB select: apply a select operator

The GxB_select function is the generic name for two specific functions:
GxB_Vector_select and GxB_Matrix_select. The generic name appears in
the function prototypes, but the specific function name is used when describ-
ing each variation. When discussing features that apply to both versions, the
simple name GxB_select is used.

SPEC: The GxB_select operation and GxB_SelectOp operator are ex-
tensions to the spec.

5.12.1 GxB Vector select: apply a select operator to a vector

GrB_Info GxB_select // w<mask> = accum (w, op(u,k))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GxB_SelectOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const void *k, // optional input for the select operator

const GrB_Descriptor desc // descriptor for w and mask

) ;

GxB_Vector_select applies a select operator to the entries of a vector,
analogous to t = u.*op(u) in MATLAB except the operator op is only ap-
plied to entries in the pattern of u. Implicit values outside the pattern of u
are not affected. If the operator is not type-generic, the entries in u are type-
casted into the xtype of the select operator. The vector t has the same type
and size as u. The final step is w〈m〉 = w � t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices.

This operation operates on vectors just as if they were m-by-1 matrices,
except that GraphBLAS never transposes a vector via the descriptor. The
op is passed n=1 as the number of columns. Refer to the next section on
GxB_Matrix_select for more details.
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5.12.2 GxB Matrix select: apply a select operator to a matrix

GrB_Info GxB_select // C<Mask> = accum (C, op(A,k)) or op(A’,k)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GxB_SelectOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const void *k, // optional input for the select operator

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GxB_Matrix_select applies a select operator to the entries of a matrix,
analogous to T = A .* op(A) in MATLAB except the operator op is only
applied to entries in the pattern of A. Implicit values outside the pattern of A
are not affected. The input matrix A may be transposed first. If the operator
is not type-generic, the entries in A are typecasted into the xtype of the select
operator. The final step is C〈M〉 = C�T, as described in Section 2.3.

The matrix T has the same size and type as A (or the transpose of A if the
input is transposed via the descriptor). The entries of T are a subset of those
of A. Each entry A(i,j) of A is passed to the op, as z = f(i, j,m, n, aij, k),
where A is m-by-n. If A is transposed first then the operator is applied to
entries in the transposed matrix, A’. If z is returned as true, then the entry
is copied into T, unchanged. If it returns false, the entry does not appear in
T.

For user-defined select operators, the argument k is passed to the operator
unchanged. For built-in operators, k is a pointer to an int64_t scalar that
refers to the kth diagonal of the matrix. The value k=0 specifies the main
diagonal of the matrix, k=1 is the +1 diagonal (the entries just above the
main diagonal), k=-1 is the -1 diagonal, and so on. Note that k must be
passed as a pointer to int64_t, not merely as an integer. The parameter k

is not used by GxB_NONZERO and may be passed as GrB_NULL.
The action of GxB_select with the built-in select operators is described

in the table below. The MATLAB analogs are precise for tril and triu,
but shorthand for the other operations. The MATLAB diag function re-
turns a column with the diagonal, if A is a matrix, whereas the matrix T in
GxB_select always has same size as A (or its transpose if the GrB_INP0 is
set to GrB_TRAN). In the MATLAB analog column, diag is as if it operates
like GxB_select, where T is a matrix.
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GraphBLAS MATLAB
name analog

GxB_TRIL T=tril(A,k) Entries in T are the entries on and below the
kth diagonal of A.

GxB_TRIU T=triu(A,k) Entries in T are the entries on and above the
kth diagonal of A.

GxB_DIAG T=diag(A,k) Entries in T are the entries on the kth diagonal
of A.

GxB_OFFDIAG T=A-diag(A,k) Entries in T are all entries not on the kth di-
agonal of A.

GxB_NONZERO T=A(A~=0) Entries in T are all entries in A that have
nonzero value.
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5.13 GrB reduce: reduce to a vector or scalar

The generic function name GrB_reduce may be used for all specific functions
discussed in this section. When the details of a specific function are discussed,
the specific name is used for clarity.

5.13.1 GrB Matrix reduce <op>: reduce a matrix to a vector

GrB_Info GrB_reduce // w<mask> = accum (w,reduce(A))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> reduce, // reduce operator for t=reduce(A)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Matrix_reduce_<op> is a generic name for two specific methods.
Both methods reduce a matrix to a column vector using an operator, roughly
analogous to t = sum (A’) in MATLAB, in the default case, where t is a
column vector. By default, the method reduces across the rows to obtain a
column vector; use GrB_TRAN to reduce down the columns.

GrB_Matrix_reduce_BinaryOp relies on a binary operator for the reduc-
tion: the fourth argument reduce, a GrB_BinaryOp. All three domains of
the operator must be the same. GrB_Matrix_reduce_Monoid performs the
same reduction using a GrB_Monoid as its fourth argument. In both cases
the reduction operator must be commutative and associative. Otherwise the
results are undefined.

The input matrix A may be transposed first. Its entries are then typecast
into the type of the reduce operator or monoid. The reduction is applied
to all entries in A (i,:) to produce the scalar t (i). This is done without
the use of the identity value of the monoid. If the ith row A (i,:) has no
entries, then (i) is not an entry in t and its value is implicit. If A (i,:) has
a single entry, then that is the result t (i) and reduce is not applied at all
for the ith row. Otherwise, multiple entries in row A (i,:) are reduced via
the reduce operator or monoid to obtain a single scalar, the result t (i).

The final step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.
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5.13.2 GrB Vector reduce <type>: reduce a vector to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Vector u, // vector to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Vector_reduce_<type> reduces a vector to a scalar, analogous to
t = sum (u) in MATLAB, except that in GraphBLAS any commutative and
associative monoid can be used in the reduction.

The reduction operator is a commutative and associative monoid with
an identity value. Results are undefined if the monoid does not have these
properties. This function differs from GrB_Matrix_reduce_BinaryOp (which
reduces a matrix to a vector) in that it requires a valid monoid additive
identity value. If the vector u has no entries, that identity value is copied
into the scalar t. Otherwise, all of the entries in the vector are reduced to a
single scalar using the reduce operator.

The scalar type is any of the built-in types, or a user-defined type. In
the function signature it is a C type: bool, int8_t, ... float, double, or
void * for a user-defined type. The user-defined type must be identical to
the type of the vector u. This cannot be checked by GraphBLAS and thus
results are undefined if the types are not the same.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API Specification. This function has no mask
so its accumulator/mask step differs from the other GraphBLAS operations.
It does not use the methods described in Section 2.3, but uses the following
method instead.

If accum is NULL, then the scalar t is typecast into the type of c, and c = t

is the final result. Otherwise, the scalar t is typecast into the ytype of the
accum operator, and the value of c (on input) is typecast into the xtype of
the accum operator. Next, the scalar z = accum (c,t) is computed, of the
ztype of the accum operator. Finally, z is typecast into the final result, c.

Forced completion: All computations for the vector u are guaranteed to
be finished when the method returns.
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5.13.3 GrB Matrix reduce <type>: reduce a matrix to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Matrix A, // matrix to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Matrix_reduce_<type> reduces a matrix A to a scalar, roughly anal-
ogous to t = sum (A (:)) in MATLAB. This function is identical to reduc-
ing a vector to a scalar, since the positions of the entries in a matrix or vector
have no effect on the result. Refer to the reduction to scalar described in the
previous Section 5.13.2.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns.
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5.14 GrB transpose: transpose a matrix

GrB_Info GrB_transpose // C<Mask> = accum (C, A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_transpose transposes a matrix A, just like the array transpose T = A.’

in MATLAB. The internal result matrix T = A’ (or merely T = A if A is
transposed via the descriptor) has the same type as A. The final step is
C〈M〉 = C�T, as described in Section 2.3, which typecasts T as needed
and applies the mask and accumulator.

To be consistent with the rest of the GraphBLAS API Specification re-
garding the descriptor, the input matrix A may be transposed first. It may
seem counter-intuitive, but this has the effect of not doing any transpose
at all. As a result, GrB_transpose is useful for more than just transpos-
ing a matrix. It can be used as a direct interface to the accumulator/mask
operation, C〈M〉 = C�A. This step also does any typecasting needed, so
GrB_transpose can be used to typecast a matrix A into another matrix C. To
do this, simply use NULL for the Mask and accum, and provide a non-default
descriptor desc that sets the transpose option:

// C = typecasted copy of A

GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;

GrB_transpose (C, NULL, NULL, A, desc) ;

If the types of C and match, then the above two lines of code are the same
as GrB_Matrix_dup (&C, A), except that for GrB_transpose the matrix C

must already exist and be the right size. If C does not exist, the work of
GrB_Matrix_dup can be replicated with this:

// C = create an exact copy of A, just like GrB_Matrix_dup

GrB_Matrix C ;

GrB_Type type ;

GrB_Index nrows, ncols ;

GrB_Descriptor desc ;

GxB_Matrix_type (&type, A) ;

GrB_Matrix_nrows (&nrows, A) ;

113



GrB_Matrix_ncols (&ncols, A) ;

GrB_Matrix_new (&C, type, nrows, ncols) ;

GrB_Descriptor_new (&desc) ;

GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;

GrB_transpose (C, NULL, NULL, A, desc) ;

Since the input matrix A is transposed by the descriptor, SuiteSparse:Graph-
BLAS does the right thing and does not transpose the matrix at all. Since
T = A is not typecasted, SuiteSparse:GraphBLAS can construct T internally
in O(1) time and using no memory at all. This makes Grb_transpose a fast
and direct interface to the accumulator/mask function in GraphBLAS.

This example is of course overkill, since the work can all be done by a
single call to the GrB_Matrix_dup function. However, the GrB_Matrix_dup

function can only create C as an exact copy of A, whereas variants of the code
above can do many more things with these two matrices. For example, the
type in the example can be replaced with any other type, perhaps selected
from another matrix or from an operator.

Consider the following code excerpt, which uses GrB_transpose to re-
move all diagonal entries from a square matrix. It first creates a diagonal
Mask, which is complemented so that C〈¬M〉 = A does not modify the diag-
onal of C. The REPLACE ensures that C is cleared first, and then C〈¬M〉 = A
modifies all entries in C where the mask M is false. These correspond to all
the off-diagonal entries. The descriptor ensures that A is not transposed at
all. The Mask can have any pattern, of course, and wherever it is set true,
the corresponding entries in A are deleted from the copy C.

// remove all diagonal entries from the matrix A

// Mask = speye (n) ;

GrB_Matrix_new (&Mask, GrB_BOOL, n, n) ;

for (int64_t i = 0 ; i < n ; i++)

{

GrB_Matrix_setElement (Mask, (bool) true, i, i) ;

}

// C<~Mask> = A, clearing C first. No transpose.

GrB_Descriptor_new (&desc) ;

GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;

GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ;

GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ;

GrB_transpose (A, Mask, NULL, A, desc) ;
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6 Examples

Six examples on how to use GraphBLAS are described below: (1) performing
a breadth-first search, (2) finding a maximal independent set, (3) creating
a random matrix, (4) creating a finite-element matrix, (5) reading a matrix
from a file, and (6) complex numbers as a user-defined type. The complete
set of programs appears in the Demo directory in SuiteSparse:GraphBLAS.

6.1 Breadth-first search

The bfs examples in the Demo folder provide several examples of how to
compute a breadth-first search (BFS) in GraphBLAS. The bfs5m function
starts at a given source node s of an undirected graph with n nodes. The
graph is represented as a symmetric n-by-n Boolean matrix, A. The matrix
A can actually have any type; if it is not Boolean (bool in C, or GrB_BOOL

in GraphBLAS), it is typecasted to Boolean by the semiring, where zero is
false and nonzero is true.

The vector v of size n holds the level of each node in the BFS, where
v(i)=0 if the node has not yet been seen. This particular value makes v

useful for another role. It can be used as a Boolean mask, since 0 is false

and nonzero is true. Initially the entire v vector is zero.
The vector q is the set of nodes just discovered at the current level, where

q(i)=true if node i is in the current level. It starts out with just a single
entry set to true, q(s), the starting node.

Each iteration of the BFS consists of three calls to GraphBLAS. The first
one uses q as a mask. It modifies all positions in v where q is true, setting
them all to the current level. No accumulator or descriptor are used. Since
GrB_REPLACE is not used and I=GrB_ALL, GxB_subassign and GrB_assign

are identical; either can be used in this step:

// v<q> = level, using vector assign with q as the mask

GrB_assign (v, q, NULL, level, GrB_ALL, n, NULL) ;

The next call to GraphBLAS is the heart of the algorithm:

// q<!v> = A ||.&& q ; finds all the unvisited

// successors from current q, using !v as the mask

GrB_mxv (q, v, NULL, Boolean, A, q, desc) ;
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The vector q is all the set of nodes at the current level. Suppose q(j)

is true, and it has a neighbor i. Then A(i,j)=1, and the dot product of
A(i,:)*q using the OR-AND semiring will use the AND multiplier on these
two terms, A(i,j) AND q(j), resulting in a value true. The OR monoid will
“sum” up all the results in this single row i. If the result is a column vector
t=A*q, then this t(i) will be true. The vector t will be true for any node
adjacent to any node in the set q.

Some of these neighbors of the nodes in q have already been visited by
the BFS, either in the current level or in a prior level. These results must
be discarded; what is desired is the set of all nodes i for which t(i) is true,
and yet v(i) is still zero.

Enter the mask. The vector v is complemented for use a mask, via the
desc descriptor. This means that wherever the vector is true, that position
in the result is protected and will not be modified by the assignment. Only
where v is false will the result be modified. This is exactly the desired result,
since these represent newly seen nodes for the next level of the BFS. A node k
already visited will have a nonzero v(k), and thus q(k) will not be modified
by the assignment.

The result t is written back into the vector q, through the mask, but to
do this correctly, another descriptor parameter is used: GrB_REPLACE. The
vector q was used to compute t=A*q, and after using it to compute t, the
entire q vector needs to be cleared. Only new nodes are desired, for the next
level. This is exactly what the REPLACE option does.

As a result, the vector q now contains the set of nodes at the new level of
the BFS. It contains all those nodes (and only those nodes) that are neighbors
of the prior set and that have not already been seen in any prior level.

Finally, a single call to GraphBLAS computes the OR for all entries in q,
into a single scalar, successor. This value is true if q contains any value
true, or false otherwise. If it is false, the BFS can terminate.

GrB_reduce (&successor, NULL, Lor, q, NULL) ;

The bfs5m function is a modified version from The GraphBLAS C API
Specification [BMM+17]. The method here uses GrB_mxv instead of GrB_vxm.

Another method for computing the BFS is in the bfs6 function in the
Demo folder. It uses GrB_apply and a unary operator to set the levels of the
newly discovered nodes, instead of GrB_assign.
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GrB_Info bfs5m // BFS of a graph (using vector assign & reduce)

(

GrB_Vector *v_output, // v [i] is the BFS level of node i in the graph

const GrB_Matrix A, // input graph, treated as if boolean in semiring

GrB_Index s // starting node of the BFS

)

{

GrB_Info info ;

GrB_Index n ; // # of nodes in the graph

GrB_Vector q = NULL ; // nodes visited at each level

GrB_Vector v = NULL ; // result vector

GrB_Monoid Lor = NULL ; // Logical-or monoid

GrB_Semiring Boolean = NULL ; // Boolean semiring

GrB_Descriptor desc = NULL ; // Descriptor for mxv

GrB_Matrix_nrows (&n, A) ; // n = # of rows of A

GrB_Vector_new (&v, GrB_INT32, n) ; // Vector<int32_t> v(n) = 0

GrB_Vector_new (&q, GrB_BOOL, n) ; // Vector<bool> q(n) = false

for (int32_t i = 0 ; i < n ; i++) GrB_Vector_setElement (v, 0, i) ;

GrB_Vector_setElement (q, true, s) ; // q[s] = true, false elsewhere

GrB_Monoid_new (&Lor, GrB_LOR, (bool) false) ;

GrB_Semiring_new (&Boolean, Lor, GrB_LAND) ;

GrB_Descriptor_new (&desc) ;

GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ; // invert the mask

GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ; // clear q first

bool successor = true ; // true when some successor found

for (int32_t level = 1 ; successor && level <= n ; level++)

{

// v<q> = level, using vector assign with q as the mask

GrB_assign (v, q, NULL, level, GrB_ALL, n, NULL) ;

// q<!v> = A ||.&& q ; finds all the unvisited successors from current

// q, using !v as the mask

GrB_mxv (q, v, NULL, Boolean, A, q, desc) ;

// successor = ||(q)

GrB_reduce (&successor, NULL, Lor, q, NULL) ;

}

*v_output = v ; // return result

GrB_free (&q) ; // free workspace

GrB_free (&Lor) ; GrB_free (&Boolean) ; GrB_free (&desc) ;

return (GrB_SUCCESS) ;

}
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6.2 Maximal independent set

The maximal independent set problem is to find a set of nodes S such that
no two nodes in S are adjacent to each other (an independent set), and all
nodes not in S are adjacent to at least one node in S (and thus S is maximal
since it cannot be augmented by any node while remaining an independent
set). The mis function in the Demo folder solves this problem using Luby’s
method [Lub86]. The key operations in the method are replicated on the
next page.

The gist of the algorithm is this. In each phase, all candidate nodes are
given a random score. If a node has a score higher than all its neighbors,
then it is added to the independent set. All new nodes added to the set
cause their neighbors to be removed from the set of candidates. The process
must be repeated for multiple phases until no new nodes can be added. This
is because in one phase, a node i might not be added because one of its
neighbors j has a higher score, yet that neighbor j might not be added
because one of its neighbors k is added to the independent set instead. The
node j is no longer a candidate and can never be added to the independent
set, but node i could be added to S in a subsequent phase.

The initialization step, before the while loop, computes the degree of each
node with a PLUS reduction. The set of candidates is Boolean vector, the ith
component is true if node i is a candidate. A node with no neighbors causes
the algorithm to stall, so these nodes are not candidates. Instead, they are
immediately added to the independent set, represented by another Boolean
vector iset. Both steps are done with an assign, using the degree as a
mask, except the assignment to iset uses the complement of the mask, via
the sr_desc descriptor. Finally, the GrB_Vector_nvals statement counts
how many candidates remain.

Each phase of Luby’s algorithm consists of nine calls to GraphBLAS
operations. Not all of them are described here since they are commented in
the code itself. The two matrix-vector multiplications are the important parts
and also take the most time. They also make interesting use of semirings and
masks. The first one computes the largest score of all the neighbors of each
node in the candidate set:

// compute the max probability of all neighbors

GrB_mxv (neighbor_max, candidates, NULL, maxSelect2nd, A, prob, r_desc) ;
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// compute the degree of each node

GrB_reduce (degrees, NULL, NULL, GrB_PLUS_FP64, A, NULL) ;

// singletons are not candidates; they are added to iset first instead

// candidates[degree != 0] = 1

GrB_assign (candidates, degrees, NULL, true, GrB_ALL, n, NULL);

// add all singletons to iset

// iset[degree == 0] = 1

GrB_assign (iset, degrees, NULL, true, GrB_ALL, n, sr_desc) ;

// Iterate while there are candidates to check.

GrB_Index nvals ;

GrB_Vector_nvals (&nvals, candidates) ;

while (nvals > 0)

{

// compute a random probability scaled by inverse of degree

GrB_apply (prob, candidates, NULL, set_random, degrees, r_desc) ;

// compute the max probability of all neighbors

GrB_mxv (neighbor_max, candidates, NULL, maxSelect2nd, A, prob, r_desc) ;

// select node if its probability is > than all its active neighbors

GrB_eWiseAdd (new_members, NULL,NULL, GrB_GT_FP64, prob, neighbor_max,

NULL) ;

// add new members to independent set.

GrB_eWiseAdd (iset, NULL, NULL, GrB_LOR, iset, new_members, NULL) ;

// remove new members from set of candidates c = c & !new

GrB_apply (candidates, new_members, NULL, GrB_IDENTITY_BOOL,

candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

if (nvals == 0) { break ; } // early exit condition

// Neighbors of new members can also be removed from candidates

GrB_mxv (new_neighbors, candidates, NULL, Boolean, A,

new_members, NULL) ;

GrB_apply (candidates, new_neighbors, NULL, GrB_IDENTITY_BOOL,

candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

}
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A is a Boolean matrix and prob is a sparse real vector (of type FP32),
where prob(j) is nonzero only if node j is a candidate. The maxSelect2nd

semiring uses z=SECOND(x,y) as the multiplier operator. The row A(i,:)

is the adjacency of node i, and the dot product A(i,:)*prob applies the
SECOND operator on all entries that appear in the intersection of A(i,:)

and prob, z=SECOND(A(i,j),prob(j)) which is just prob(j) if A(i,j) is
present. If A(i,j) not an explicit entry in the matrix, then this term is not
computed and does not take part in the reduction by the MAX monoid.

Thus, each term z=SECOND(A(i,j),prob(j)) is the score, prob(j), of all
neighbors j of node i that have a score. Node j does not have a score if it is
not also a candidate and so this is skipped. These terms are then “summed”
up by taking the maximum score, using MAX as the additive monoid.

Finally, the results of this matrix-vector multiply are written to the re-
sult, neighbor_max. The r_desc descriptor has the REPLACE option enabled.
Since neighbor_max does not also take part in the computation A*prob,
it is simply cleared first. Next, is it modified only in those positions i

where candidates(i) is true, using candidates as a mask. This sets the
neighbor_max only for candidate nodes, and leaves the other components of
neighbor_max as zero (implicit values not in the pattern of the vector).

All of the above work is done in a single matrix-vector multiply, with
an elegant use of the maxSelect2nd semiring coupled with a mask. The
matrix-vector multiplication is described above as if it uses dot products of
rows of A with the column vector prob, but SuiteSparse:GraphBLAS does
not compute it that way. Sparse dot products are much slower the optimal
method for multiplying a sparse matrix times a sparse vector. The result is
the same, however.

The second matrix-vector multiplication is more straight-forward. Once
the set of new members in the independent is found, it is used to remove all
neighbors of those new members from the set of candidates.

The resulting method is very efficient. For the Freescale2 matrix, the
algorithm finds an independent set of size 1.6 million in 1.7 seconds (on the
same MacBook Pro referred to in Section 6.1), taking four iterations of the
while loop. For comparison, removing its diagonal entries (required for the
algorithm to work) takes 0.3 seconds in GraphBLAS (see Section 5.14), and
simply transposing the matrix takes 0.24 seconds in both MATLAB and
GraphBLAS.
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6.3 Creating a random matrix

The random_matrix function in the Demo folder generates a random matrix
with a specified dimension and number of entries, either symmetric or un-
symmetric, and with or without self-edges (diagonal entries in the matrix).
It relies on simple_rand* functions in the Demo folder to provide a portable
random number generator that creates the same sequence on any computer
and operating system.

random_matrix can use one of two methods: GrB_Matrix_setElement

and GrB_Matrix_build. The former method is very simple to use:

GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;

for (int64_t k = 0 ; k < ntuples ; k++)

{

GrB_Index i = simple_rand_i ( ) % nrows ;

GrB_Index j = simple_rand_i ( ) % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x ( ) ;

// A (i,j) = x

GrB_Matrix_setElement (A, x, i, j) ;

if (make_symmetric)

{

// A (j,i) = x

GrB_Matrix_setElement (A, x, j, i) ;

}

}

The above code can generate a million-by-million sparse double matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random i, j, and x), including the time to finish all pending
computations. The user application does not need to create a list of all
the tuples, nor does it need to know how many entries will appear in the
matrix. It just starts from an empty matrix and adds them one at a time in
arbitrary order. GraphBLAS handles the rest. This method is not feasible
in MATLAB.

The next method uses GrB_Matrix_build. It is more complex to use
than setElement since it requires the user application to allocate and fill the
tuple lists, and it requires knowledge of how many entries will appear in the
matrix, or at least a good upper bound, before the matrix is constructed. It
is slightly faster, creating the same matrix in 60 seconds, 51 seconds of which
is spent in GrB_Matrix_build.
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GrB_Index *I, *J ;

double *X ;

int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;

I = malloc (s * sizeof (GrB_Index)) ;

J = malloc (s * sizeof (GrB_Index)) ;

X = malloc (s * sizeof (double )) ;

if (I == NULL || J == NULL || X == NULL)

{

// out of memory

if (I != NULL) free (I) :

if (J != NULL) free (J) :

if (X != NULL) free (X) :

return (GrB_OUT_OF_MEMORY) ;

}

int64_t ntuples = 0 ;

for (int64_t k = 0 ; k < nedges ; k++)

{

GrB_Index i = simple_rand_i ( ) % nrows ;

GrB_Index j = simple_rand_i ( ) % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x ( ) ;

// A (i,j) = x

I [ntuples] = i ;

J [ntuples] = j ;

X [ntuples] = x ;

ntuples++ ;

if (make_symmetric)

{

// A (j,i) = x

I [ntuples] = j ;

J [ntuples] = i ;

X [ntuples] = x ;

ntuples++ ;

}

}

GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ;

The equivalent sprandsym function in MATLAB takes 150 seconds, but
sprandsym uses a much higher-quality random number generator to cre-
ate the tuples [I,J,X]. Considering just the time for sparse(I,J,X,n,n)

in sprandsym (equivalent to GrB_Matrix_build), the time is 70 seconds.
That is, each of these three methods, setElement and build in Suite-
Sparse:GraphBLAS, and sparse in MATLAB, are equally fast.
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6.4 Creating a finite-element matrix

Suppose a finite-element matrix is being constructed, with k=40,000 finite-
element matrices, each of size 8-by-8. The following operations (in pseudo-
MATLAB notation) are very efficient in SuiteSparse:GraphBLAS.

A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix

for i = 1:k

construct a 8-by-8 sparse or dense finite-element F

I and J define where the matrix F is to be added:

I = a list of 8 row indices

J = a list of 8 column indices

% using GrB_assign, with the ’plus’ accum operator:

A (I,J) = A (I,J) + F

end

If this were done in MATLAB or in GraphBLAS with blocking mode
enabled, the computations would be extremely slow. This example is taken
from Loren Shure’s blog on MATLAB Central, Loren on the Art of MAT-
LAB [Dav07], which discusses the built-in wathen function. In MATLAB,
a far better approach is to construct a list of tuples [I,J,X] and to use
sparse(I,J,X,n,n). This is identical to creating the same list of tuples in
GraphBLAS and using the GrB_Matrix_build, which is equally fast. The
difference in time between using sparse or GrB_Matrix_build, and using
submatrix assignment with blocking mode (or in MATLAB which does not
have a nonblocking mode) can be extreme. For the example matrix discussed
in [Dav07], using sparse instead of submatrix assignment in MATLAB cut
the run time of wathen from 305 seconds down to 1.6 seconds.

In SuiteSparse:GraphBLAS, the performance of both methods is essen-
tially identical, and roughly as fast as sparse in MATLAB. Inside Suite-
Sparse:GraphBLAS, GrB_assign is doing the same thing. When performing
A(I,J)=A(I,J)+F, if it finds that it cannot quickly insert an update into the
A matrix, it creates a list of pending tuples to be assembled later on. When
the matrix is ready for use in a subsequent GraphBLAS operation (one that
normally cannot use a matrix with pending computations), the tuples are
assembled all at once via GrB_Matrix_build.

GraphBLAS operations on other matrices have no effect. Thus, any
GraphBLAS method or operation can be used to construct the F matrix
in the example above, without affecting when the pending updates to A are
completed.
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The MATLAB wathen.m script is part of Higham’s gallery of matrices
[Hig02]. It creates a finite-element matrix with random coefficients for a 2D
mesh of size nx-by-ny, a matrix formulation by Wathen [Wat87]. The pat-
tern of the matrix is fixed; just the values are randomized. The GraphBLAS
equivalent can use either GrB_Matrix_build, or GrB_assign. Both meth-
ods have good performance. The GrB_Matrix_build version below is about
15% to 20% faster than the MATLAB wathen.m function, regardless of the
problem size. It uses the identical algorithm as wathen.m.

int64_t ntriplets = nx*ny*64 ;

I = malloc (ntriplets * sizeof (int64_t)) ;

J = malloc (ntriplets * sizeof (int64_t)) ;

X = malloc (ntriplets * sizeof (double )) ;

if (I == NULL || J == NULL || X == NULL)

{

FREE_ALL ;

return (GrB_OUT_OF_MEMORY) ;

}

ntriplets = 0 ;

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

I [ntriplets] = nn [krow] ;

J [ntriplets] = nn [kcol] ;

X [ntriplets] = em (krow,kcol) ;

ntriplets++ ;

}

}

}

}
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// A = sparse (I,J,X,n,n) ;

GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ;

The GrB_assign version has the advantage of not requiring the user appli-
cation to construct the tuple list, and is almost as fast as using GrB_Matrix_build.
The code is more elegant than either the MATLAB wathen.m function or its
GraphBLAS equivalent above. Its performance is comparable with the other
two methods, but slightly slower, being about 5% slower than the MATLAB
wathen, and 20% slower than the GraphBLAS method above.

GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

// F (krow,kcol) = em (krow, kcol)

GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;

}

}

// A (nn,nn) += F

GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;

}

}

Since there is no Mask, and since GrB_REPLACE is not used, the call to
GrB_assign in the example above is identical to GxB_subassign. Either one
can be used, and their performance would be identical.

Refer to the wathen.c function in the Demo folder, which uses GraphBLAS
to implement the two methods above, and two additional ones.
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6.5 Reading a matrix from a file

The read_matrix function in the Demo reads in a triplet matrix from a
file, one line per entry, and then uses GrB_Matrix_build to create the ma-
trix. It creates a second copy with GrB_Matrix_setElement, just to test
that method and compare the run times. A comparison of build versus
setElement has already been discussed in Section 6.3.

The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
read_matrix computes A=(A+A’)/2 if A is square (turning all directed edges
into undirected ones. If A is rectangular, it creates a bipartite graph, which is
the same as the augmented matrix, A = [0 A ; A’ 0] in pseudo-MATLAB
notation.

If C is an n-by-n matrix, then C=(C+C’)/2 can be computed as follows in
GraphBLAS, (the scale2 function divides an entry by 2):

GrB_Descriptor_new (&dt2) ;

GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C’

GrB_free (&C) ;

GrB_Matrix_new (&C, GrB_FP64, n, n) ;

GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;

GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2

GrB_free (&A) ;

GrB_free (&scale2_op) ;

This is of course not nearly as elegant as A=(A+A’)/2 in MATLAB, but
with minor changes it can work on any type and use any built-in operators in-
stead of PLUS, or it can use any user-defined operators and types. The above
code in SuiteSparse:GraphBLAS takes 0.60 seconds for the Freescale2 ma-
trix, slightly slower than MATLAB (0.55 seconds).

Constructing the augmented system is more complicated because Graph-
BLAS does not yet have a simple way of specifying a range of row and column
indices, as in A(10:20,30:50) in MATLAB. The application must instead
build a list of indices first, I=[10, 11 ... 20]. GraphBLAS does have a way
of specifying all indices via I=GrB_ALL, which results in A(:), but no easy
way to specify a contiguous subset of indices. Thus, the following index lists
I and J must first be constructed:
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int64_t n = nrows + ncols ;

I = malloc (nrows * sizeof (int64_t)) ;

J = malloc (ncols * sizeof (int64_t)) ;

// I = 0:nrows-1

// J = nrows:n-1

if (I == NULL || J == NULL)

{

if (I != NULL) free (I) ;

if (J != NULL) free (J) ;

return (GrB_OUT_OF_MEMORY) ;

}

for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;

for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ;

Once the index lists are generated, however, the resulting GraphBLAS
operations are fairly straightforward, computing A=[0 C ; C’ 0].

GrB_Descriptor_new (&dt1) ;

GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

// A (nrows:n-1, 0:nrows-1) = C’

GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;

// A (0:nrows-1, nrows:n-1) = C

GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ;

This takes 1.38 seconds for the Freescale2 matrix, almost as fast as
A=[sparse(m,m) C ; C’ sparse(n,n)] in MATLAB (1.25 seconds).

Both calls to GrB_assign use no accumulator, so the second one causes
the partial matrix A=[0 0 ; C’ 0] to be built first, followed by the final
build of A=[0 C ; C’ 0]. A better method, but not an obvious one, is to
use the GrB_FIRST_FP64 accumulator for both assignments. An accumulator
enables SuiteSparse:GraphBLAS to determine that that entries created by
the first assignment cannot be deleted by the second, and thus it need not
force completion of the pending updates prior to the second assignment.

Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an accum operator is used, only the final matrix is built, and the time in
GraphBLAS drops slightly to 1.25 seconds. This is a very small improvement
because in this particular case, SuiteSparse:GraphBLAS is able to detect that
no sorting is required for the first build, and the second one is a simple con-
catenation. In general, however, allowing GraphBLAS to postpone pending
updates can lead to significant reductions in run time.
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6.6 Triangle counting

A triangle in an undirected graph is a clique of size three: three nodes i, j,
and k that are all pairwise connected. There are many ways of counting the
number of triangles in a graph. Let A be a symmetric matrix with values 0
and 1, and no diagonal entries; this matrix is the adjacency matrix of the
graph. Let E be the edge incidence matrix with exactly two 1’s per column.
A column of E with entries in rows i and j represents the edge (i, j) in the
graph, A(i,j)=1 where i<j. Let L and U be the strictly lower and upper
triangular parts of A, respectively.

The methods are listed in the table below. Most of them use a form
of masked matrix-matrix multiplication. The methods are implemented in
MATLAB in the tricount.m file, and in GraphBLAS in the tricount.c

file, both in the GraphBLAS/Demo folder. Refer to the comments in those two
files for details and derivations on how these methods work.

When a mask is present and not complemented, GrB_INP0 is GrB_TRAN,
and GrB_INP1 is GxB_DEFAULT, the SuiteSparse:GraphBLAS implementa-
tion of GrB_mxm always uses a dot-product formulation. Thus, the C〈L〉 =
U′L method uses dot products. This provides a mechanism for the end-
user to select a masked dot product matrix multiplication method in Suite-
Sparse:GraphBLAS, which is occassionally faster than the outer product
method.

Each method is followed by a reduction to a scalar, via GrB_reduce in
GraphBLAS or by nnz or sum(sum(...)) in MATLAB.

method and in MATLAB in GraphBLAS
citation

minitri [WBS15] nnz(A*E==2)/3 C = AE, then GrB_apply

Burkhardt [Bur16] sum(sum((A^2).*A))/6 C〈A〉 = A2

Cohen [ABG15, Coh09] sum(sum((L*U).*A))/2 C〈A〉 = LU
Sandia [WDB+17] sum(sum((U*U).*U)) C〈U〉 = UU (outer product)
SandiaDot sum(sum((U’*L).*L)) C〈L〉 = U′L (dot product)
SandiaL sum(sum((L*L).*L)) C〈L〉 = LL (outer product)

In general, the Sandia methods are the fastest of the 6 methods when
implemented in GraphBLAS. The method in the KokkosKernels paper uses
(L*L).*L via a masked matrix multiplication, but KokkosKernels stores its
matrices in compressed sparse row form. GraphBLAS and MATLAB both
store their matrices in compressed sparse column form, so the Sandia method
is identical to (U*U).*U in MATLAB and C〈U〉 = UU in GraphBLAS. The
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SandiaDot and SandiaL methods do not appear in [WDB+17], but they are
named this way because they are simple extensions of the Sandia method.

The methods in MATLAB are slow because the matrix product is formed
and then its entries are pruned via the element-wise multiplication (.*). By
contrast, GrB_mxm only computes the entries residing in the mask, saving
time and memory. This optimization is only exploited if the mask present
and not complemented. Since the minitri method does not use a mask,
its implementation in GraphBLAS has the same performance and memory
requirements as the MATLAB version nnz(A*E==2)/3. That is, both are
very slow.

Performance results are shown in the following two tables. The first table
is a list of matrices from the SuiteSparse Matrix Collection [DH11], listing
the matrix name, the number of rows and columns, the number of edges in
the graph, and the number of triangles. The matrices were symmetrized first
with A=A+A’ and the diagonal entries were removed. The first table splits
into two sets. The first set of matrices also appear in the results from the
Kokkos triangles paper [WDB+17].

The next table gives performance results on these matrices, with four
methods. For each method, the run time in seconds and the rate is given,
where the rate is the number of edges in the graph divided by the run time
(listed in millions of edges per second). The first three methods in the table
are for MATLAB and the two GraphBLAS methods, on a MacBook Pro
(Retina, 13inch, Late 2013), 2.8 Ghz Intel Core i7, 16 GB RAM, OSX 10.11.6,
MATLAB 2017a, with the clang 8.0.0 compiler. Only a single core was
used for these results. In addition, the matrix L=tril(A) and/or U=triu(A)
are used as-is without any reordering. The run times include the time to
construct L or U. MATLAB failed on one matrix because U*U is too large.
For the first set of matrices, the outer product formulation (C〈U〉 = UU) is
always faster than the dot product formulation, but this is not the case for
the second set.

The last column (Kokkos) is copied directly from [WDB+17]. The Kokkos
results are from their implementation of sum(sum((L*L).*L)) using a masked
sparse matrix-matrix multiply in KokkosKernels. These results were done on
an Intel Xeon Haswell (E5-2698v3, 2.3GHz), with 512 GB RAM, 32 cores
and 2 hyperthreads per core, using the Intel icc 17.1 compiler. Unlike the
other three methods, L is sorted by decreasing row degree, which improves
the performance. The Kokkos time includes the time taken to do the sort.
The run time listed is the best time obtained from several runs with 1 to 32
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threads.
Comparing GraphBLAS and Kokkos is difficult since these results were

obtained on different machines. Also, the results in [WDB+17] provide just
the best-obtained parallel results, not the results on a single core. In addition,
these results are with a reordered L in Kokkos, but not in GraphBLAS. Wolf
et al. [WDB+17] state that reordering L improves the run time. However,
with these many caveats, the last column lists the speedup of Kokkos over the
GraphBLAS outer-product formulation. Since the Kokkos method is parallel
these preliminary comparisons indicate that the sequential performance of
GraphBLAS is competitive. Using up to 32 threads, Kokkos is about 3 to 18
faster than SuiteSparse:GraphBLAS, which is currently sequential (median
speedup of about 9). Further comparisons are required, however. A parallel
implementation of the matrix-matrix multiply in GrB_mxm is also in progress.

matrix n # edges # triangles
SNAP/cit-HepPh 34,546 420,877 1,276,868
SNAP/cit-HepTh 27,770 352,285 1,478,735
SNAP/email-EuAll 265,214 364,481 267,313
SNAP/soc-Epinions1 75,888 405,740 1,624,481
SNAP/soc-Slashdot0811 77,360 469,180 551,724
SNAP/soc-Slashdot0902 82,168 504,230 602,592
SNAP/amazon0312 400,727 2,349,869 3,686,467
SNAP/amazon0505 410,236 2,439,437 3,951,063
SNAP/amazon0601 403,394 2,443,408 3,986,507
SNAP/cit-Patents 3,774,768 16,518,947 7,515,023
SNAP/soc-LiveJournal1 4,847,571 42,851,237 285,730,264
Gleich/wb-edu 9,845,725 46,236,105 254,718,147
SNAP/p2p-Gnutella09 8,115 26,013 2,354
Mallya/lhr71 70,304 1,492,794 160,592
Freescale/Freescale2 2,999,349 5,744,934 21,027,280
Freescale/circuit5M 5,558,326 26,983,926 31,019,473
DIMACS10/hugebubbles-00020 21,198,119 31,790,179 0
vanHeukelum/cage15 5,154,859 47,022,346 36,106,416
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matrix MATLAB C〈U〉 = L′U C〈U〉 = UU Kokkos
time rate time rate time rate time rate speedup

SNAP/cit-HepPh 0.363 1.16 0.180 2.47 0.049 9.59 0.0044 79.9 8.3
SNAP/cit-HepTh 0.415 0.85 0.171 2.05 0.046 8.31 0.0050 72.5 8.7
SNAP/email-EuAll 1.264 0.29 0.133 2.73 0.035 10.33 0.0058 70.7 6.8
SNAP/soc-Epinions1 0.778 0.52 0.376 1.08 0.067 6.01 0.0039 108.0 18.0
SNAP/soc-Slashdot0811 0.990 0.47 0.318 1.47 0.052 9.04 0.0061 76.8 8.5
SNAP/soc-Slashdot0902 0.985 0.51 0.339 1.49 0.059 8.61 0.0063 80.1 9.3
SNAP/amazon0312 1.285 1.83 0.514 5.32 0.306 8.61 0.0754 30.7 3.6
SNAP/amazon0505 1.018 2.07 0.545 4.48 0.297 8.21 0.0177 133.0 16.2
SNAP/amazon0601 1.018 2.40 0.563 4.34 0.296 8.27 0.0184 132.0 16.0
SNAP/cit-Patents 11.026 1.50 4.416 3.74 2.300 7.18 0.4970 31.5 4.4
SNAP/soc-LiveJournal1 11.026 0.40 39.767 1.08 10.123 4.23 0.7330 58.5 13.8
Gleich/wb-edu 67.636 0.68 8.016 5.77 3.605 12.82 0.2320 199.0 15.5
SNAP/p2p-Gnutella09 0.004 6.50 0.002 10.65 0.001 24.24
Mallya/lhr71 0.252 5.93 0.058 25.90 0.030 50.37
Freescale/Freescale2 0.741 7.75 0.501 11.46 0.276 20.83
Freescale/circuit5M mem 2.819 9.57 194.142 0.14
DIMACS10/hugebubbles-00020 7.406 4.29 3.417 9.30 6.568 4.84
vanHeukelum/cage15 10.187 4.62 4.407 10.67 2.443 19.25

The outer product C〈U〉 = UU in GraphBLAS is very simple:

int64_t ntriangles ;

GrB_Index n, one = 1 ;

GrB_Matrix C, U ;

GrB_Matrix_nrows (&n, A) ;

// U = triu (A, 1)

GrB_Matrix_new (&U, GrB_UINT32, n, n) ;

GxB_select (U, NULL, NULL, GxB_TRIU, A, &one, NULL) ;

// C<U> = U*U

GrB_Matrix_new (&C, GrB_UINT32, n, n) ;

GrB_mxm (C, U, NULL, GxB_PLUS_TIMES_UINT32, U, U, NULL) ;

// ntriangles = sum (C)

GrB_reduce (&ntriangles, NULL, GxB_PLUS_INT64_MONOID, C, NULL) ;

GrB_free (&C) ;

GrB_free (&U) ;
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The dot product method C〈U〉 = L′U in GraphBLAS is similar:

int64_t ntriangles ;

GrB_Index n, one = 1, minusone = -1 ;

GrB_Matrix C, L, U ;

GrB_Matrix_nrows (&n, A) ;

// U = triu (A, 1)

GrB_Matrix_new (&U, GrB_UINT32, n, n) ;

GxB_select (U, NULL, NULL, GxB_TRIU, A, &one, NULL) ;

// L = tril (A,-1)

GrB_Matrix_new (&L, GrB_UINT32, n, n) ;

GxB_select (L, NULL, NULL, GxB_TRIL, A, &minusone, NULL) ;

// C<U> = L’*U

GrB_Matrix_new (&C, GrB_UINT32, n, n) ;

GrB_Descriptor_new (&d) ;

GrB_Descriptor_set (d, GrB_INP0, GrB_TRAN) ;

GrB_mxm (C, U, NULL, GxB_PLUS_TIMES_UINT32, L, U, d) ;

GrB_free (&d) ;

// ntriangles = sum (C)

GrB_reduce (&ntriangles, NULL, GxB_PLUS_INT64_MONOID, C, NULL) ;

GrB_free (&C) ;

GrB_free (&L) ;

GrB_free (&U) ;
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6.7 User-defined types and operators: double complex
and struct-based

The Demo folder contains two working examples of user-defined types, first
discussed in Section 4.1.1: double complex, and a user-defined typedef

called wildtype with a struct containing a string and a 4-by-4 float matrix.
Double Complex: GraphBLAS does not have a native complex type,

but this can be easily added as a user-defined type. The Complex_init

function in the usercomplex.c file in the Demo folder creates the Complex

type based on the ANSI C11 double complex type.

GrB_Type_new (&Complex, double complex) ;

Next, it creates a full suite of operators that correspond to every built-in
GraphBLAS operator, both binary and unary. In addition, it creates the
operators listed in the following table, where D is double and C is Complex.

name types MATLAB description
equivalent

Complex_complex D ×D → C z=complex(x,y) complex from real and imag.
Complex_conj C → C z=conj(x) complex conjugate
Complex_real C → D z=real(x) real part
Complex_imag C → D z=imag(x) imaginary part
Complex_angle C → D z=angle(x) phase angle
Complex_complex_real D → C z=complex(x,0) real to complex real
Complex_complex_imag D → C z=complex(0,x) real to complex imag.

The Complex_init function creates two monoids (Complex_add_monoid
and Complex_times_monoid) and a semiring Complex_plus_times that cor-
responds to the conventional linear algebra for complex matrices. The in-
clude file usercomplex.h in the Demo folder is available so that this user-
defined Complex type can easily be imported into any other user application.
When the user application is done, the Complex_finalize function frees the
Complex type and its operators, monoids, and semiring.

Struct-based: In addition, the wildtype.c program creates a user-
defined typedef of a struct containing a dense 4-by-4 float matrix, and a
64-character string. It constructs an additive monoid that adds two 4-by-4
dense matrices, and a multiplier operator that multiplies two 4-by-4 matrices.
Each of these 4-by-4 matrices is treated by GraphBLAS as a “scalar” value,
and they can be manipulated in the same way any other GraphBLAS type can
be manipulated. The purpose of this type is illustrate the endless possibilities
of user-defined types and their use in GraphBLAS.
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7 Installing SuiteSparse:GraphBLAS

GraphBLAS makes extensive use of features in the ANSI C11 standard, and
thus a C compiler supporting this version of the C standard is required. On
the Mac (OS X), clang 8.0.0 in Xcode version 8.2.1 is sufficient, although
earlier versions of Xcode may work as well. For the GNU gcc compiler,
version 4.9 or later is required. For the Intel icc compiler, version 18.0 or
later is required. Version 2.8.12 or later of cmake is required; version 3.0.0 is
preferred.

To compile SuiteSparse:GraphBLAS and the demo programs, simply type
make in the main GraphBLAS folder, which compiles the library and runs
several demos.

GraphBLAS is not yet parallel, but it is thread-safe if multiple simulta-
neous calls are made to GraphBLAS functions. For this usage, GraphBLAS
must be compiled with OpenMP so that GraphBLAS has access to a criti-
cal section mechanism. OpenMP is optional if the user application does not
make multiple simultaneous calls to GraphBLAS.

If cmake or make fail, it might be that your default compiler does not
support ANSI C11. Try another compiler. For example, try one of these
options. Go into the build directory and type:

CC=gcc cmake ..

CC=gcc-6 cmake ..

CC=xlc cmake ..

CC=icc cmake ..

Then do make in the build directory. If this still fails, see the CMakeLists.txt
file. You may need to pass compiler-specific options to your compiler. Locate
this section in the CMakeLists.txt file. Use the set command in cmake, as
in the example below, to set the compiler flags you need.

# check which compiler is being used. If you need to make

# compiler-specific modifications, here is the place to do it.

if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")

# cmake 2.8 workaround: gcc needs to be told to do ANSI C11.

# cmake 3.0 doesn’t have this problem.

set (CMAKE_C_FLAGS "-std=c11 -lm -fopenmp")

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")
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...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")

...

endif ( )

Once cmake and make finish, run the demos in the GraphBLAS/Demo folder:

cd ../Demo

./demo

The ./demo command is a script that runs the demos with various in-
put matrices in the Demo/Matrix folder. The output of the demos will be
compared with expected output files in Demo/Output.

To install the library in /usr/local/lib and /usr/local/include, go
to the top-level GraphBLAS folder and type:

sudo make install

Several compile-time options can be selected by editing the Source/GB.h

file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.

To perform the extensive tests in the Test folder, and the statement
coverage tests in Tcov, MATLAB R2017A is required. See the README.txt

files in those two folders for instructions on how to run the tests.
To remove all compiled files, type make distclean in the top-level Graph-

BLAS folder.
NOTE: SuiteSparse:GraphBLAS has not yet been ported to

Windows. However, with cmake the port to Windows should be straight-
forward (this is in progress).

135



8 Acknowledgements

I would like to thank Jeremy Kepner (MIT Lincoln Laboratory Supercomput-
ing Center), and the GraphBLAS API Committee: Aydın Buluç (Lawrence
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[BMM+17] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang.
The GraphBLAS C API specification. Technical report, 2017.
http://graphblas.org/.

[Bur16] P. Burkhardt. Graphing trillions of triangles. Information Visualiza-
tion, 16:157–166, 2016.

[Coh09] J. Cohen. Graph twiddling in a mapreduce world. Computing in
Science and Engineering, 11(4):29–41, July 2009.

[Dav06] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM,
Philadelphia, PA, 2006.

Provides a basic overview of many sparse matrix algo-
rithms and a simple sparse matrix data structure. The
sparse data structure used in the book is much like the
one in both MATLAB and SuiteSparse:GraphBLAS. A se-
ries of 42 lectures are available on YouTube; see the link at
http://faculty.cse.tamu.edu/davis/publications.html. DOI:
https://dx.doi.org/10.1137/1.9780898718881

[Dav07] T. A Davis. Creating sparse finite-element matrices in MAT-
LAB. Loren on the Art of MATLAB, Mar. 2007. Loren
Shure, editor. Published by The MathWorks, Natick, MA.
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-
finite-element-matrices-in-matlab/.

[DH11] T. A. Davis and Y. Hu. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software, 38(1):1:1–
1:25, December 2011. Now called the SuiteSparse Matrix Collection,
at sparse.tamu.edu.

[DRSL16] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of
direct methods for sparse linear systems. Acta Numerica, 25:383–566,
2016.

137



Abstract: Wilkinson defined a sparse matrix as one with
enough zeros that it pays to take advantage of them. This
informal yet practical definition captures the essence of
the goal of direct methods for solving sparse matrix prob-
lems. They exploit the sparsity of a matrix to solve prob-
lems economically: much faster and using far less mem-
ory than if all the entries of a matrix were stored and
took part in explicit computations. These methods form
the backbone of a wide range of problems in computa-
tional science. A glimpse of the breadth of applications re-
lying on sparse solvers can be seen in the origins of matri-
ces in published matrix benchmark collections (Duff and
Reid 1979a, Duff, Grimes and Lewis 1989a, Davis and
Hu 2011). The goal of this survey article is to impart
a working knowledge of the underlying theory and prac-
tice of sparse direct methods for solving linear systems
and least-squares problems, and to provide an overview of
the algorithms, data structures, and software available to
solve these problems, so that the reader can both under-
stand the methods and know how best to use them. DOI:
https://dx.doi.org/10.1017/S0962492916000076

[Hig02] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2nd edition, 2002. http://dx.doi.org/10.1137/1.9780898718027.

[Kep17] J. Kepner. GraphBLAS mathematics. Technical report, 2017.
http://www.mit.edu/∼kepner/GraphBLAS/GraphBLAS-Math-
release.pdf.

[KG11] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear
Algebra. SIAM, Philadelphia, PA, 2011.

From the preface: Graphs are among the most important
abstract data types in computer science, and the algorithms
that operate on them are critical to modern life. Graphs
have been shown to be powerful tools for modeling com-
plex problems because of their simplicity and generality.
Graph algorithms are one of the pillars of mathematics,
informing research in such diverse areas as combinatorial
optimization, complexity theory, and topology. Algorithms
on graphs are applied in many ways in today’s worldfrom
Web rankings to metabolic networks, from finite element

138

http://dx.doi.org/10.1137/1.9780898718027
http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf
http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf


meshes to semantic graphs. The current exponential growth
in graph data has forced a shift to parallel computing for
executing graph algorithms. Implementing parallel graph
algorithms and achieving good parallel performance have
proven difficult. This book addresses these challenges by
exploiting the well-known duality between a canonical rep-
resentation of graphs as abstract collections of vertices and
edges and a sparse adjacency matrix representation. This
linear algebraic approach is widely accessible to scientists
and engineers who may not be formally trained in computer
science. The authors show how to leverage existing paral-
lel matrix computation techniques and the large amount of
software infrastructure that exists for these computations to
implement efficient and scalable parallel graph algorithms.
The benefits of this approach are reduced algorithmic com-
plexity, ease of implementation, and improved performance.
DOI: https://doi.org/10.1137/1.9780898719918

[Lub86] M. Luby. A simple parallel algorithm for the maximal in-
dependent set problem. SIAM J. Comput., 15(4), 1986.
https://doi.org/10.1137/0215074.

[Wat87] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin
mass matrix. IMA J. Numer. Anal., 7:449–457, 1987.
https://doi.org/10.1093/imanum/7.4.449.

[WBS15] M. M. Wolf, J. W. Berry, and D. T. Stark. A task-based lineaer
algebra building blocks approach for scalable graph analytics. In IEEE
HPEC’15, pages 1–6. IEEE, 2015.

[WDB+17] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajaman-
ickam. Fast linear algebra-based triangle counting with KokkosKer-
nels. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7, Sept 2017.

Triangle counting serves as a key building block for a set
of important graph algorithms in network science. In this
paper, we address the IEEE HPEC Static Graph Challenge
problem of triangle counting, focusing on obtaining the best
parallel performance on a single multicore node. Our imple-
mentation uses a linear algebra-based approach to triangle
counting that has grown out of work related to our miniTri

139

https://doi.org/10.1137/0215074
https://doi.org/10.1093/imanum/7.4.449


data analytics miniapplication and our efforts to pose graph
algorithms in the language of linear algebra. We leverage
KokkosKernels to implement this approach efficiently on
multicore architectures. Our performance results are com-
petitive with the fastest known graph traversal-based ap-
proaches and are significantly faster than the Graph Chal-
lenge reference implementations, up to 670,000 times faster
than the C++ reference and 10,000 times faster than the
Python reference on a single Intel Haswell node.

140


	Introduction
	Basic Concepts
	Graphs and sparse matrices
	Overview of GraphBLAS methods and operations
	The accumulator and the mask
	Typecasting
	Notation and list of GraphBLAS operations

	GraphBLAS Context and Sequence
	GrB_init: initialize GraphBLAS
	GrB_wait: wait for pending operations to finish
	GrB_Info: status code returned by GraphBLAS
	GrB_error: get more details on the last error
	GrB_finalize: finish GraphBLAS

	GraphBLAS Objects and their Methods
	The GraphBLAS type: GrB_Type
	GrB_Type_new: create a user-defined type
	GxB_Type_size: return the size of a type
	GrB_Type_free: free a user-defined type

	GraphBLAS unary operators: GrB_UnaryOp, z=f(x)
	GrB_UnaryOp_new: create a user-defined unary operator
	GxB_UnaryOp_ztype: return the type of z
	GxB_UnaryOp_xtype: return the type of x
	GrB_UnaryOp_free: free a user-defined unary operator

	GraphBLAS binary operators: GrB_BinaryOp, z=f(x,y)
	GrB_BinaryOp_new: create a user-defined binary operator
	GxB_BinaryOp_ztype: return the type of z
	GxB_BinaryOp_xtype: return the type of x
	GxB_BinaryOp_ytype: return the type of y
	GrB_BinaryOp_free: free a user-defined binary operator

	GraphBLAS select operators: GxB_SelectOp
	GxB_SelectOp_new: create a user-defined select operator
	GxB_SelectOp_xtype: return the type of x
	GxB_SelectOp_free: free a user-defined select operator

	GraphBLAS monoids: GrB_Monoid
	GrB_Monoid_new: create a monoid
	GxB_Monoid_operator: return the monoid operator
	GxB_Monoid_identity: return the monoid identity
	GrB_Monoid_free: free a monoid

	GraphBLAS semirings: GrB_Semiring
	GrB_Semiring_new: create a semiring
	GxB_Semiring_add: return the additive monoid of a semiring
	GxB_Semiring_multiply: return multiply operator of a semiring
	GrB_Semiring_free: free a semiring

	GraphBLAS vectors: GrB_Vector
	GrB_Vector_new: create a vector
	GrB_Vector_dup: copy a vector
	GrB_Vector_clear: clear a vector of all entries
	GrB_Vector_size: return the size of a vector
	GrB_Vector_nvals: return the number of entries in a vector
	GxB_Vector_type: return the type of a vector
	GrB_Vector_build: build a vector from a set of tuples
	GrB_Vector_setElement: add a single entry to a vector
	GrB_Vector_extractElement: get a single entry from a vector
	GrB_Vector_extractTuples: get all entries from a vector
	GrB_Vector_free: free a vector

	GraphBLAS matrices: GrB_Matrix
	GrB_Matrix_new: create a matrix
	GrB_Matrix_dup: copy a matrix
	GrB_Matrix_clear: clear a matrix of all entries
	GrB_Matrix_nrows: return the number of rows of a matrix
	GrB_Matrix_ncols: return the number of columns of a matrix
	GrB_Matrix_nvals: return the number of entries in a matrix
	GxB_Matrix_type: return the type of a matrix
	GrB_Matrix_build: build a matrix from a set of tuples
	GrB_Matrix_setElement: add a single entry to a matrix
	GrB_Matrix_extractElement: get a single entry from a matrix
	GrB_Matrix_extractTuples:get all entries from a matrix
	GrB_Matrix_free: free a matrix

	GraphBLAS descriptors: GrB_Descriptor
	GrB_Descriptor_new: create a new descriptor
	GrB_Descriptor_set: set a parameter in a descriptor
	GxB_Descriptor_get: get a parameter from a descriptor
	GrB_Descriptor_free: free a descriptor

	GrB_free: free any GraphBLAS object

	GraphBLAS Operations
	The GraphBLAS specification in MATLAB
	GrB_mxm: matrix-matrix multiply
	GrB_vxm: vector-matrix multiply
	GrB_mxv: matrix-vector multiply
	GrB_eWiseMult: element-wise operations, set intersection
	GrB_eWiseMult_Vector: element-wise vector multiply
	GrB_eWiseMult_Matrix: element-wise matrix multiply

	GrB_eWiseAdd: element-wise operations, set union
	GrB_eWiseAdd_Vector: element-wise vector addition
	GrB_eWiseAdd_Matrix: element-wise matrix addition

	GrB_extract: submatrix extraction 
	GrB_Vector_extract: extract subvector from vector
	GrB_Matrix_extract: extract submatrix from matrix
	GrB_Col_extract: extract column vector from matrix

	GxB_subassign: submatrix assignment
	GxB_Vector_subassign: assign to a subvector 
	GxB_Matrix_subassign: assign to a submatrix 
	GxB_Col_subassign: assign to a sub-column of a matrix
	GxB_Row_subassign: assign to a sub-row of a matrix
	GxB_Vector_subassign_<type>: assign a scalar to a subvector
	GxB_Matrix_subassign_<type>: assign a scalar to a submatrix

	GrB_assign: submatrix assignment
	GrB_Vector_assign: assign to a subvector 
	GrB_Matrix_assign: assign to a submatrix 
	GrB_Col_assign: assign to a sub-column of a matrix
	GrB_Row_assign: assign to a sub-row of a matrix
	GrB_Vector_assign_<type>: assign a scalar to a subvector
	GrB_Matrix_assign_<type>: assign a scalar to a submatrix

	Comparing GrB_assign and GxB_subassign
	Example
	Performance of GxB_subassign, GrB_assign and GrB_*_setElement

	GrB_apply: apply a unary operator
	GrB_Vector_apply: apply a unary operator to a vector
	GrB_Matrix_apply: apply a unary operator to a matrix

	GxB_select: apply a select operator
	GxB_Vector_select: apply a select operator to a vector
	GxB_Matrix_select: apply a select operator to a matrix

	GrB_reduce: reduce to a vector or scalar
	GrB_Matrix_reduce_<op>: reduce a matrix to a vector
	GrB_Vector_reduce_<type>: reduce a vector to a scalar
	GrB_Matrix_reduce_<type>: reduce a matrix to a scalar

	GrB_transpose: transpose a matrix

	Examples
	Breadth-first search
	Maximal independent set
	Creating a random matrix
	Creating a finite-element matrix
	Reading a matrix from a file
	Triangle counting
	User-defined types and operators: double complex and struct-based

	Installing SuiteSparse:GraphBLAS
	Acknowledgements
	References

