
Resistive Bridge Fault Modeling, Simulation and Test Generation1

1 This research was supported by the National Science Foundation under grant MIP-9406946. This research was performed while Vijay
Sar-Dessai was a M.S. student at Texas A&M University.

Vijay R. Sar-Dessai
Intel Corporation, FM5-64

1900 Prairie City Road
Folsom CA 95630
Tel: (916) 356-1759

Fax: (916) (916) 377-1300
Email: vijay.sar-dessai@intel.com

D. M. H. Walker
Dept. of Computer Science

Texas A&M University
College Station TX 77843-3112

Tel: (409) 862-4387
Fax: (409) 847-8578

Email: walker@cs.tamu.edu

Abstract
Resistive bridging faults in combinational CMOS

circuits are studied in this work. Circuit-level models are
abstracted to voltage behavior for use in voltage-level fault
simulation and test generation. Fault simulation is done
using different test sets in order to study their effectiveness.
Test generation is done to detect the highest possible
bridging resistance for each fault. Different test sets, power
supply voltages, and fault models are studied on the
ISCAS85 benchmark circuits.

I. Introduction
Shorts between circuit nodes are the predominant type

of manufacturing defect [1]. These shorts can be of two
types: intra-gate shorts between nodes within a logic gate
and inter-gate or external shorts between outputs of
different logic gates [2][3]. Inter-gate shorts, or bridging
faults, account for about 90% of all shorts [3][4]. Thus in
order to accurately estimate the quality of a chip, it is
important to have a fault simulator for realistic bridging
faults. It is also important to generate a test vector set that
can achieve high fault coverage for bridging faults.

The accuracy of a bridging fault simulator and
automatic test pattern generator (ATPG) strongly depends
on the accuracy of the bridging fault model [5]. A bridging
fault model should not only consider the behavior of the
driving gates, but should also include the driven gate
behavior. This is because the logical interpretation of the
voltage at the bridged nodes depends on the logical
threshold of the gate to which the bridged node is
connected. In reality, not only do different gates have
different thresholds, but each input of a gate has a different
threshold [6][7].

It is well known that the stuck-at fault model is
inadequate for modeling bridging faults [8][9]. Many
models have been developed for bridging faults [6][10][11]
[12][13][14][15][16]. Most of these fault models assume a
zero ohm bridge resistance, but several models assume a
resistive bridge [3][17][18][19][20]. As shown in [1], many
bridges can have significant resistance. Figure 1 shows the
bridging resistance distribution fit to the data in [1]. Rb is
the bridging resistance and P(Rb) is the bridging resistance
distribution function.

Since a test for a zero-ohm bridge does not guarantee
detection of a resistive bridge, ideally the fault model
should be a resistive bridging fault model, instead of a zero-
ohm bridging fault model. As noted in [21], since the
resistive bridging fault model is only an approximation of
defect behavior, we may need to use several different fault
models to achieve high defect coverage. In this work we
consider logic testing for resistive bridging faults, as
compared to prior work on zero-ohm bridges [22].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

Rb (ohm)

P
(R

b)

Figure 1. Bridging resistance distribution function.

It is well known that as the power supply voltage VDD is
decreased, higher bridging resistances are detected, or faults
which escape detection at a higher value of VDD are
detected when VDD is dropped [23][24][25][26][27]. Hence
it is useful to do logic testing at several VDD values.

In the sections that follow we first discuss our resistive
bridging fault model, then our fault simulation and ATPG
algorithms, applications to ISCAS85 benchmarks, and
conclusions.

II. Fault Model
To accurately model the behavior of bridging faults, we

must determine the voltage at the bridged nodes for each
vector that excites the bridging fault. Then, based on the
logic threshold of the driven gates, we can determine
whether the bridge is detectable at the driven gate output.
We can also determine the maximum detectable resistance
at the output of this gate, which gives us the detectable
resistance interval. (A detectable resistance interval is the
range of bridging fault resistance that can be detected).

2

Figure 2 shows a bridging resistance Rb between nodes
X and Y. The fault is excited with logic 1 on node X and
logic 0 on node Y (or vice-versa). The bridging fault is
essentially a resistance between VDD and GND, via pull-up
devices in gate g1 and pull-down devices in gate g2.
Voltages VX and VY, the voltages on X and Y, depend on
the number of pull-up and pull-down devices involved in
the bridge, and hence depend on the vector at A1, B1, A2
and B2 used to excite the fault.

A1

B1

X

Rb

g1

Figure 2. Resistive bridging fault.

Figure 3 shows the typical variation of voltages VX and
VY (for the excitation {X,Y} = {1,0}) as the bridging
resistance increases from 0Ω . The interpretation of the
voltages at nodes X and Y depends on the logic threshold of
gates fed by these nodes. When the bridge has a 0Ω
resistance, the voltages VX and VY are equal to V0. As the
bridge resistance Rb increases, VX increases from V0 to VDD

and VY decreases from V0 to 0. If any gate fed by node X
had a logic threshold between V0 and VDD, the fault will be
detected at the output of that gate, assuming that other
inputs of this gate are at their non-controlling values.
Likewise, if any gate fed by node Y has a logic threshold
between V0 and 0, the fault will be detected at the output of
this gate. In both cases, the detectable resistance depends on
the value of the logic threshold. As shown in Figure 3, the
detectable resistance is Rdp at node P and Rds at node S. (In
the figure, Vthp, Vthq, Vthr and Vths are the logic thresholds of
the driven gates at P, Q, R and S respectively). The
detectable resistance interval is [0 Rdp] at node P and [0 Rds]
at node S. The fault is undetectable at nodes Q and R.

b

X

Y

0

thR

thQ

thS

dP
R

V

V

V

VthP

V

V
V

RdS R

V

[0 Rds]

[0 Rdp]

Detectable resistance interval at S

Detectable resistance interval at P

Figure 3. Variation of bridged node voltage with bridge resistance.

A. Description of Fault Model
In this work, bridging faults have been modeled by

HSPICE [28] circuit simulation of almost all possible
bridging fault configurations for all gates included in the
gate-level description of the ISCAS85 benchmark circuits
[29]. Each circuit is built using basic gates, and no complex
gates are used. Each gate is implemented using
complementary CMOS logic. We use the SPICE level 3
parameters for the HP CMOS14TB 0.5 µm process,
running at a nominal VDD of 3.3V. For the devices in this
process, Vtn, the threshold of the n-device is 0.6684V and
Vtp, the threshold of the p-device is -0.9352V. By
simulating the different types of bridging faults that can
occur in various combinations of these gates, we obtain a
set of look-up tables that describe the logic-level behavior
of the fault site during fault simulation and test generation.

1. Case 1: Bridge between two primary inputs
We define primary inputs (PIs) as sources of infinite

current, so bridging faults between them are not logic
testable. Hence this type of bridging fault is not modeled.

2. Case 2: Bridge between a PI and gate output
Figure 4 shows a bridging fault between a PI A and the

output of a NAND2 gate, X. Node X feeds into two gates
having different threshold voltages. The bridge resistance
detectable at nodes P and Q depends on the test vector at A,
B, C as well as on the logic threshold values of the two
gates driven by node X.

A

B

C X

P

Q

Rb

Figure 4. Bridging fault between PI and gate output.

For example, HSPICE simulation shows that if the
applied vector is {A,B,C} = {0,0,1}, then we can detect a
bridging resistance up to 1600Ω at node P and up to 1400Ω
at node Q, assuming that other inputs of the AND2 and
OR2 gates are held at their non-controlling values. The fault
does not propagate along A. (In the simulation, the bridged
node in the driven gate is the input node closest to the
output of the driven gate).

3. Case 3: Bridge between two gate outputs (bridged
nodes feeding into different gates)

Figure 5 illustrates a case in which the outputs of a
NAND2 and a NOR2 gate are bridged, and the bridged
nodes X and Y feed into different gates. The bridge
resistance detectable at the outputs depends on the vector at
A1, B1, A2, B2 and the logic thresholds of the driven gates.

For vector {A1,B1,A2,B2} = {1,0,1,1}, the bridging
fault will propagate along node X, and the resistance
detectable is up to 1000Ω at P and up to 1400Ω at Q. Due
to the vector used and the thresholds of the NOT and the
AND2 gates, the fault does not propagate along node Y,
and is undetectable at nodes R and S.

3

A1

B1

A2

B2

X

Y

P

Q

R

S

Rb

Figure 5. Bridging fault between nodes feeding different gates.

4. Case 4: Bridge between outputs of two gates (bridged
nodes feeding into same gate)

Figure 6 illustrates the case in which the outputs of a
NAND2 and NAND2 gate are bridged, and the bridged
nodes feed into the same AND3 gate. (For the driven gate,
the bridged inputs are the inputs that are closest to the gate
output). The bridge resistance detectable at node P depends
only on the vector at A1, B1, A2, B2 (assuming that the
third input of the AND3 gate is at its non-controlling
value). With a vector of {A1,B1,A2,B2} = {1,0,1,1},
HSPICE simulation of this circuit shows that a bridge
resistance of up to 800Ω is detectable at node P.

5. Case 5: Bridge involving primary outputs
A primary output is assumed to be feeding a gate having

a threshold of VDD/2. Thus any bridge involving primary
outputs can be classified as a case 2 or bridging fault.

The fault simulator and ATPG developed in this work is
based on this accurate fault model. By doing HSPICE
simulations of all possible gate combinations in all the
above cases, we can accurately model the behavior of
bridging faults, and insert the detectable resistance interval
obtained from the simulations at the fault site.

A1

B1

A2

B2

P

X

Y

Rb

Figure 6. Bridging fault between nodes feeding the same gate.

B. Fault Coverage Metric
Metal bridging resistance mainly falls in the range from

0Ω to 1000Ω [1]. A geometric distribution was found to be
a good fit to the data [17]. The cumulative distribution
function (CDF) of the bridging resistance is:

 bR
b pRrP)1(1)(−−=≤ (1)

where Rb is the bridging resistance and p = 0.00258 for the
data in [1]. The normalized fault coverage c(i) for the
bridging fault configuration i can be computed using:

)(

__

max)1(1

))(()((
)(

iR

lowerbupperb

bp

iRPiRP
ic

−−
−

= (2)

where)(_ iR upperb
 and)(_ iR lowerb

 are the upper and

lower bounds respectively of the detectable resistance
interval. R ib max () is the maximum detectable resistance at

the fault site under any sensitization or propagation. The
fault coverage of a test vector v is given by:

 C
N

c iv v
i

N

=
=
∑1

1

() (3)

where)(icv is the normalized fault coverage for the

bridging fault i using that test vector v and N is the total
number of logic-testable faults in the circuit (assuming
equally-likely faults), which we refer to as logic-testable
bridging faults. The cumulative fault coverage of a test
vector set is given by:

C
N

c ic h
i

N

=
=
∑1

1

() (4)

where ch(i) is the highest achieved normalized fault
coverage for the bridging fault i. Since ch(i) is normalized,
Cc is the coverage of all bridging faults potentially
detectable by low-speed voltage test.

C. Construction Of Look-Up Tables
In order to obtain information about the behavior of the

circuit at the fault site for fault simulation, a number of
look-up tables must be built. First the logic threshold of
each gate type in the ISCAS85 circuits is determined (we
assume that for a given gate, all inputs have the same logic
threshold, which is the threshold value of the input node
closest to the output node). Look-up tables are constructed
for case 2, case 3 and case 4 bridging faults. Case 5 faults
are included under cases 2 and 3. The table entries
containing the sensitizing vector, the propagation path, the
logic threshold of the propagating gate, and the maximum
detectable resistance.

For case 2 we built one table for each of the 22 gate
types in the ISCAS85 benchmarks. For case 3, there are
253 combinations of bridged gates in the ISCAS85 circuits,
many of which occur rarely. We generate 171 tables for all
combinations of gates having a fan-in of 5 or less.

For case 4 faults we must simulate a bridge between two
gates, both feeding a third gate. For the driven gate, the
bridged nodes are its inputs that are closest to its output.
The bridging resistance at which the output voltage changes
from its faulty value to its fault-free value is determined to
be the maximum detectable bridging resistance. (We use
VDD/2 to separate faulty and fault-free values). Since there
are too many combinations of 3 gates, we generate tables
only for those 20 combinations that occur in the ISCAS85
circuits. As in case 3, we do not model gates with a fan-in
of more than 5. Another type of bridging fault falling under
case 4 is one with two inputs of the driven gate being fed
from the bridged nodes.. This type of bridge is rare in the
ISCAS85 circuits, and is not modeled.

Some case 4 bridging faults exhibit anomalous behavior
in terms of the maximum detectable resistance. An example
is the circuit in Figure 7(a), which has the behavior depicted
in Figure 7(b) when simulated at low voltage (2V) with a
vector {A1,B1,A2,B2} = {0,0,0,1}.

Instead of the detectable resistance being in the interval
of 0Ω to the maximum detectable resistance Rbmax, it lies in
the interval [Rbmin, Rbmax]. During table construction, the

4

entry in the table corresponding to the maximum detectable
resistance is replaced with a resistance interval. (In all other
cases, it is implicitly assumed that the lower limit of
detectable resistance is 0Ω).

The tables occupy about 3MB of space, and table
construction time is considerable.

D. Fault Behavior At Decreased VDD

Experience has shown that logic testing at decreased
power supply voltage VDD improves real fault coverage [23-
27]. To do fault simulation and ATPG at different VDD

values using our modeling approach, separate look-up
tables have been built for each VDD value.

Most of this prior work suggests that reduced VDD will
always improve fault coverage, except in rare cases. Our
simulation results show that there exist some instances of
bridging faults in common circuit configurations in which
the fault is detectable at a higher VDD value but undetectable
at decreased VDD values. All these instances are case 4 type
bridging. Figure 8 shows such a case, involving a NAND2
gate having bridged inputs.

A1

B1

A2

B2

Rb Z

V

VDD

Rb

VZ

Rbmin Rbmax

(a)

(b)

Figure 7. XOR gate with inputs bridged.

A1

B1

A2

B2

Rb Z

Figure 8. NAND2 gate with inputs bridged.

Table 1 shows the result of HSPICE simulation of this
circuit for different test vectors that excite the fault, along
with the maximum detectable resistance Rbmax at node Z for
two different values of VDD. We have chosen 1.2V for low-
voltage simulation because it is 2↔Vtn, (where Vtn is the
device threshold of the NMOS device), in the VLV range
[30]. (An X in the table means that the fault is
undetectable). For this circuit, simulation was done for
bridging resistance from 0 to 6000Ω.

Table 1. Maximum detectable resistance vs. VDD for Figure 8.

Test vector
A1B1A2B2

Rbmax at
VDD=3.3V

Rbmax at
VDD=1.2V

0 0 1 1 2000Ω > 6000Ω
1 1 0 0 1800Ω > 6000Ω
1 0 1 1 1200Ω X
0 1 1 1 1200Ω X
1 1 0 1 1000Ω X
1 1 1 0 1000Ω X

The results indicate that at decreased VDD, the bridging
fault is undetectable for some vectors, even though it is
detectable at higher VDD. But at low VDD some vectors can
detect a higher bridging resistance. The measured data in
[31] illustrate this behavior.

This anomalous behavior at different values of VDD can
have varying impacts on overall fault coverage. If the
circuit under test has several case 4 faults, and these faults
exhibit the behavior described, then the overall fault
coverage may drop at decreased VDD. If these cases are
relatively rare, then the fault coverage will improve with
decreased VDD.

III. Fault Simulation
Using the fault model described in the previous section,

a fault simulator has been built. The fault simulator is a
Single Pattern Single Fault Propagation (SPSFP) fault
simulator. Implementing the bridging fault simulator
involves generating the fault list and implementing the fault
simulation algorithm.

We randomly choose a fraction of the all-pairs external
bridges for fault simulation and ATPG. The number chosen
is high enough to provide adequate fault dropping and fault
coverage resolution. From the reduced fault list, bridging
faults between primary inputs are eliminated, because logic
test cannot detect them. Feedback faults are also discarded
from the fault list. Unmodeled bridging faults are dropped.

The steps during fault simulation are as follows:
• For each fault in the set of logic-testable faults, we

determine the maximum detectable resistance from the
look-up table associated with that bridge. This maximum
detectable bridging resistance depends only on the gates
whose output nodes are bridged and the gates fed by the
bridged nodes. Since this resistance is the resistance
detectable at the fault site under the best possible
excitation and propagation conditions, it is an upper
bound on the coverage we can achieve for this fault.

• For each vector in the test set, fault-free logic simulation
is performed. A list of excited faults is formed from the
logic-testable fault list.

• For each excited fault, the look-up table is used to
determine the bridging resistance detectable at the fault
site. This resistance is then inserted at the outputs of the
driven gates, provided other nodes feeding this gate are
fault-free. Figure 9 shows three situations in which a
detectable resistance cannot be placed at the fault site,
even though all conditions in the corresponding entry in
the look-up table are met. (The bridged node is
represented by a thick line). In Figure 9(a), the fault-free

5

node A has a controlling value, so the fault is
undetectable at the gate output. In Figure 9(b), the bridged
node fans out and both branches feed into the same gate.
This situation is relatively rare in our implementation of
the benchmarks and is not modeled, so we do not place
the resistance at the output of the gate. In Figure 9(c), the
gate input not involved in the bridging fault is fed from
one of the bridged nodes, and hence is faulty too. No
resistance interval is placed at the output of this gate.

• We follow the approach used in [3] to simulate the faulty
circuit. In this convention, the resistance interval, which
specifies the range of resistances that can be detected by
that test vector, is placed at the output of the gate fed by
the bridged node. For example, for the case of a primary
input bridged to any other node illustrated in Figure 10,
the interval [0,1600] is inserted at node P and the interval
[0,1400] is inserted at node Q. The faulty value at each
faulty node is also inserted. Thus, in the figure, 0/1 at
node P indicates that within the specified resistance
interval, the logic value is 0 (faulty value) and outside this
interval the logic value is 1 (fault-free value).

(a) (b) (c)

A=0

fed from bridged node

Figure 9. Cases in which resistance interval is not placed at fault
site.

A=0

B=0

C=1

1

0

[0 1600]

0/1
P

Q
[0 1400]

0/1

Figure 10. Inserting resistance interval at fault site.

• Fault simulation continues with propagation of the
resistance interval from the fault site towards the primary
outputs. Only those gates having input nodes with
resistance intervals on them are evaluated to determine
the resistance interval at the output of the gate. During
this forward simulation, the resistance interval can get
reduced if two or more nodes carrying resistance intervals
feed into the same gate. The resistance interval at the
output of such gates can be a union or an intersection of
the intervals at the inputs of the gate. There are three ways
by which a gate has a resistance interval at its input that
either disappears or shrinks at the gate output. The first
occurs when the gate side input has a fault-free
controlling value. Figure 11 shows the other two cases. In
Figure 11(a) both the gate inputs have different resistance
intervals [0 R1] and [0 R2] (with R1 < R2) associated
with them, and the output of the gate had a resistance
interval which is smaller than the interval at either input.
In Figure 11(b) the two inputs have resistance intervals
R1 and R2 (with R1 > R2) and the gate output has no
resistance interval, making it fault-free.

[0 R1]

0/1
[0 R2]

1/0

[R1 R2]

1/0

R1 < R2

[0 R1]

0/1
[0 R2]

1/0
0

R1 > R2

(a) (b)

Figure 11. Cases of loss of coverage.

• Once the resistance intervals at the primary outputs are
known, the normalized fault coverage c(i) is computed
using equation (2), taking the union of all resistance
intervals over all primary outputs. If c(i) is above our
coverage threshold (100% here), the fault is dropped.

• The fault coverage Cv of this test vector is then computed
using equation (3).

• The above procedure is repeated for each vector. For each
fault, the best fault coverage obtained so far is noted. This
is then used to compute the cumulative fault coverage Cc

of the entire test vector set using equation (4).
If the bridging resistance distribution is unknown, then

the decision on dropping a fault can be made by examining
the detectable resistance intervals. If higher resistances are
less probable, then a higher detectable resistance implies
better fault coverage.

The fault coverage metric calculated is relative, in the
sense that it is a ratio of achieved coverage to the maximum
possible coverage. The maximum possible coverage is the
coverage at the fault site. This coverage may be impossible
to obtain, because sensitization or propagation constraints.
Hence the coverage for non-dropped faults, and therefore
overall coverage, is a lower bound of the true coverage.

IV. Automatic Test Pattern Generation
The ATPG principles for logic testing of bridging faults

are similar to those of ATPG for single stuck-at faults. The
primary difference is that for stuck-at faults, the first test
vector that can satisfy the sensitization and propagation
conditions is the required test vector. For resistive bridging
faults, the search process is more complicated because it
involves finding the best vector that can satisfy the
sensitization and propagation conditions.

A. ATPG Approach
Our approach for ATPG is to generate a test vector for

each bridging fault that can detect the highest possible
bridging resistance. Consider the bridging fault in Figure
12. If we want to generate a test vector that can detect the
bridging resistance Rb, there are several possible excitations
and propagation paths:
(a) excite X=1, Y=0, propagate on X (through P or Q)
(b) excite X=1, Y=0, propagate on Y (through R or S)
(c) excite X=0, Y=1, propagate on X (through P or Q)
(d) excite X=0, Y=1, propagate on Y (through R or S)

Thus the test generation problem reduces to selecting
logic values to be justified at A1, B1, A2 and B2 (to
sensitize the fault) and selecting a propagation path (X or
Y) to propagate the fault. However, if we want to generate a
test vector that can detect the maximum possible value of
Rb, then we have to make our selections carefully:

6

• excite {X,Y} to {1,0} and propagate along X: Since the
fault is propagating along X, the logic 1 on X should be
the weakest possible, and the logic 0 on Y should be the
strongest possible, so that the 0 on Y overrides the 1 on
X. In Figure 12, this can be achieved by justifying
{A1,B1} = {0,1} or {1,0} and {A2,B2} = {1,1}. These
sensitization values ensure the maximum detectable
resistance at the fault site. To propagate this resistance to
a primary output along X, we should choose that gate
connected to X which has the highest logic threshold.

A1

B1

A2

B2

X

Y

P

Q

R

S

Rb

Figure 12. Test generation for bridging fault between outputs of
two gates.

• excite {X,Y} to {1,0} and propagate along Y: The logic 1
on X should be the strongest possible, and the logic 0 on
Y should be the weakest possible. This can be achieved
by justifying {A1,B1} = {0,0} and {A2,B2} = {0,1} or
{1,0}. Since the fault is propagating along Y, we should
choose the gate connected to Y which has the lowest logic
threshold.

• excite X,Y to {0,1} and propagate along X: There is only
one choice to excite the fault, which is {A1,B1,A2,B2} =
{1,1,0,0}. However to ensure maximum detectable
resistance, we should choose the gate connected to X
which has the lowest logic threshold.

• excite X,Y to {0,1} and propagate along Y: The
sensitization condition is the same as in (c) above.
However, to propagate the fault, we should choose the
gate connected to Y which has the highest logic threshold.

Each excitation and propagation choice leads to a
different value for maximum detectable bridging resistance.
The look-up tables constructed during pre-processing give
the conditions necessary to detect the maximum detectable
bridging resistance.

If the bridged nodes feed the same gate, as shown in
Figure 13, then there may be several choices for exciting
the fault, but propagation can take place only along the
output node P.

A1

B1

A2

B2

P

X

Y

Rb

Figure 13. Test generation for bridging fault between nodes
feeding same gate.

B. ATPG Algorithm
The goal during logic ATPG is to generate a test vector

that either results in 100% fault coverage for each fault, or
improves on the fault coverage already obtained during
fault simulation prior to ATPG.

For the target fault, we examine the look-up table
associated with that type of bridging fault. Starting with the
first entry in the table, we try to justify the sensitization
values at the inputs of the driving. If justification is not
possible, we proceed to the next entry in the table.

After justifying the sensitization values, we pick the
propagation node indicated in the table entry. If the
specified propagation node does not exist, we proceed to
the next entry in the table.

The shortest path from the propagation node to a
primary output is then selected, and we try to justify the
path. At each stage along this path, we check to see if the
detectable resistance has dropped from its value at the fault
site, and if it has, we either backtrack or abort the present
path. If it is not possible to propagate the fault for the
present entry in the table, we proceed to the next entry.

If the fault coverage for the target fault is within the
drop limit (100% here) we drop the fault. Fault simulation
with fault dropping is then done with this vector. If the fault
coverage for the target fault is less than 100%, the fault
remains in the fault list, because a later test vector may
achieve a higher fault coverage.

C. ATPG Implementation
The ATPG tool has been built on top of the fault

simulator described in the previous section. The PODEM
[32] algorithm is used, with modifications during
justification of excitation values and propagation of the
fault towards a primary output.

1. Fault excitation
The fault excitation stage involves setting the inputs of

gates whose outputs are bridged to the logic values in the
look-up table entry. Before attempting to justify these node
values, the fault coverage at the fault site FC_FS(i) for fault
(i) (calculated from the detectable resistance value in the
same entry of the look-up table) is compared with the best
coverage Best_Cov(i) already achieved by fault simulation.
If FC_FS(i) for this entry is lower than Best_Cov(i), then
the ATPG attempt for this fault is terminated, because
FC_FS(i) is the upper bound on the coverage.

Justifying the nodes is done in a serial manner. The
deepest node (the node that is furthest away from PIs) is
attempted first, followed by the rest. If we fail to justify any
node to its required logic value, then we move on to the
next entry in the look-up table.

The look-up table entries are arranged in decreasing
order of detectable resistance. Therefore, the first successful
sensitization without having reached the backtrack limit on
earlier attempts at sensitization of this fault should give the
maximum detectable resistance at the fault site. This value
may or may not be the same as the maximum detectable
resistance for this fault determined prior to fault simulation.
Figure 14 shows a simple case in which the maximum
detectable resistance determined prior to fault simulation

7

turns out to be higher than the maximum detectable
resistance determined during ATPG.

X

Y

0

1

1

0

Vth=1.57V

A1

B1

A2

B2

Rb

Figure 14. Bridging fault case in which Rbmax is lowered.

Prior to fault simulation, the maximum detectable resistance
was determined to be 1800Ω when propagating along Y
through a gate with a logical threshold of 1.57V. The
corresponding entry in the look-up table gives the
sensitization at {A1,B1,A2,B2} to be {0,0,1,1}. However,
during ATPG, it is discovered that this sensitization cannot
be justified. When we finally get a successful sensitization
the first time without reaching the backtrack limit for any
previous sensitization, the resistance at that entry of the
look-up table is the actual maximum detectable resistance,
and may be lower than 1800Ω. (If the backtrack limit was
reached at any time before the first successful attempt, the
maximum detectable resistance value is not modified). The
fault coverage already obtained during fault simulation with
an earlier vector is modified accordingly, and the fault is
dropped if the new fault coverage value is 100%. This
situation also implies that the overall fault coverage
obtained by fault simulation prior to ATPG is a lower
bound on the actual fault coverage.
2. Fault propagation

During the fault propagation stage, we attempt to
propagate the fault from the node specified in the entry in
the look-up table towards a primary output while
minimizing a reduction in the resistance interval along the
path. Resistance intervals are inserted at the outputs of all
driven gates and propagated along the shortest path.

The logic value and resistance interval at each node
along the path is examined. If the resistance interval at a
node is the same as the resistance interval at the fault site,
we proceed to the next node along the propagation path,
justifying side inputs and backtracking as necessary.

Figure 15 shows a case in which in an attempt to justify
a side input to a non-controlling value, we could only
succeed in getting a faulty value at the node. In the figure,
the chosen propagation node is P2, and the propagation path
is {P2, Z}. First, J is justified to a 0, so that the fault site
resistance interval appears at P2. Then we have to justify H
to 1. To achieve this, we can either select P1 or G to be
justified to 1. If we select P1, then by justifying a 1 on F,
we will get a resistance interval on P1, thus making it a
faulty node instead of a fault-free node. If this resistance
interval is allowed to propagate, it may cause the resistance
interval at Z to be smaller than the one at P2, thus causing
loss of coverage. We can avoid this problem by
backtracking and selecting G instead of P1 to be justified to
1, which can be achieved by setting either D or E to 1.

Now consider Figure 16, which is a slight modification
of Figure 15. We face the same situation as in Figure 15,
the only difference being that when we backtrack and select
G instead of P1 to justify H to 1, we discover that it is not
possible to justify G to 1. We now have to revert back to
justifying P1 to 1, even though this gives us a faulty value
at P1. Therefore in such situations, before backtracking, we
have to save the best solution we have achieved for the
justification problem, even if it may lead to a reduction in
the detectable resistance interval.

B

A

C

D

E

X

Y

P1

P2
Z

H

G

F

J

Figure 15. Backtracking during justification of side inputs.

B

A

C

X

Y

P1

P2
Z

H

G

J

F
D

Figure 16. Saving best choice during justification of side inputs.

During fault propagation, if a node on the propagation
path has a resistance interval less than the interval we are
trying to propagate, we must backtrack. Figure 17 illustrates
this case.

The desired resistance interval [0 2k] appears on node
B, and the propagation path is {B,F,J}. We set A to 1, so
that the interval appears at F. If we set G and H to 1 by
setting C to 1, this propagates [0 1k] on H and J, instead of
the desired interval [0 2k]. To remedy this, we backtrack
and set D to 1 and C to 0.

B

A

C

D

F

G

H

J[0 2k]
1/0

1
[0 2k]
1/0

1
1

E
[0 1k]

0/1

[0 1k]
1/0

[0 1k]

1/0

Figure 17. Suppressing an undesired resistance interval.

If the fault coverage at any node along the propagation
path falls below the coverage already achieved for this
fault, the path is dropped and the next shortest path from the
faulty node to primary outputs is chosen. A limit has been
set on the number of propagation paths that are examined.

8

If this limit is reached or if all propagation paths have been
examined without propagating the fault-site resistance
interval to the primary outputs, then the next entry in the
look-up table is chosen.

For the next entry in the look-up table, the fault-site
fault coverage FC_FS(i) for fault i for that entry is
compared with the highest coverage Best_Cov(i) achieved
for the fault. Since FC_FS(i) is an upper bound on the fault
coverage we can achieve for that entry, if it is lower than
Best_Cov(i), the ATPG process for this fault is stopped.

The fault coverage obtained by ATPG for a fault may
not be the highest fault coverage obtainable for that fault,
because of the limits set on backtracking during fault
sensitization and fault propagation, and also the limit on the
number of propagation paths examined. Therefore, if ATPG
for a fault does not achieve 100% fault coverage, the fault is
not dropped, because a later test vector for some other fault
may achieve a higher fault coverage for this fault.

V. Results

A. Fault Simulation Results
The bridging fault simulator was run on the ISCAS85

benchmark circuits [29]. Table 2 gives some statistics of
these circuits. Listed are the all-pair and randomly-selected
faults, and then the PI, feedback, large fan-in, and
unmodeled faults that are discarded, leaving the voltage-
testable fault list. The last column is the number of stuck-at
test vectors. The test vectors were obtained from the
ATALANTA stuck-at fault ATPG [33].

Table 2. Statistics for ISCAS85 circuits used.

Circuit All-pair
BFs

Reduced
BFs

PI
BFs

Feed-
back
BFs

Large
case
BFs

Other
dropped

BFs

Logic
testable

BFs

Applied
vectors

c432 19,110 269 7 103 2 0 157 50
c499 28,403 191 8 47 0 1 135 53
c880 97,903 1086 27 110 0 1 948 48
c1355 171,991 1066 5 422 0 0 639 85
c1908 416,328 2206 7 521 16 0 1662 118
c2670 1,016,025 4572 110 168 0 0 4294 103
c3540 1,476,621 5315 4 780 100 0 4431 156
c5315 3,086,370 7407 38 237 11 0 7121 120
c6288 2,995,128 4492 1 1275 0 0 3216 34
c7552 6,913,621 12444 40 298 0 0 12106 204

Each circuit was simulated at VDD=3.3V, 2.4V and
1.2V, and for different resistance distributions. The results
of some simulations are shown in Figure 18 and Figure 19.
Figure 18 shows the percentage of faults completely
detected (dropped) with at VDD=3.3V and VDD=1.2V, and
for an average resistance distribution using equation (1)
(realistic bridges) and a zero-ohm resistance distribution
(zero-ohm bridges). Figure 19 shows the fault coverage.
The following observations can be made from Figure 18
and Figure 19:
• At 3.3V, the realistic bridge coverage is high even though

the drop rate is low. This is because most faults that were
not dropped had a large detected resistance, though not
equal to the maximum detectable resistance.

• Zero-ohm bridge coverage and drop rate is higher than for
realistic bridges.

Figure 18. Faults dropped for each circuit.

Figure 19. Fault coverage for each circuit.

• For realistic bridges, more faults are dropped and
coverage is higher at 1.2V than 3.3V.

• For zero-ohm bridges, circuits c2670 and c3540 have
lower fault coverage at 1.2V than at 3.3V. This is because
the fault coverage is high at 3.3V, and at 1.2V those few
faults which escape cause the overall fault coverage to
drop. This anomaly occurs only for these two circuits
because these circuits have a relatively high number of
case 4 bridging faults.

B. ATPG Results
We applied our bridging fault ATPG to the ISCAS85

circuits. Since our current implementation is inefficient, we
experimented on only the small ISCAS85 benchmarks.

As we discussed earlier, we may apply a test set prior to
ATPG. We have used three different test vector sets for this
purpose. The four different test sets generated were:
• ATPG only: Target each fault for test generation, and fault

simulation is done with the generated vector.
• Stuck-at fault simulation followed by ATPG (SA-ATPG):

Apply the ATALANTA compacted single stuck-at test set
prior to ATPG.

• N-detect fault simulation followed by ATPG (NDET-
ATPG): Apply an uncompacted 4-detect test for fault
simulation prior to ATPG.

• Random fault simulation followed by ATPG (RND-
ATPG): Apply a random test set equal in length to the 4-
detect test set prior to ATPG.

Table 3 gives statistics for the circuits used for ATPG.

9

Table 3. Statistics for circuits used during ATPG.

Circuit Nodes Logic-
testable
faults

Stuck-at
vectors

4-detect
vectors

Random
vectors

c432 196 1211 50 199 199
c499 243 1640 53 219 219
c880 443 2813 48 180 180

Figure 20 and Figure 21 shows the results of the four
experiments performed on c432 for resistive bridges. Figure
20 shows the faults dropped (faults having 100% detection)
and Figure 21 shows the fault coverage. Similar results
were obtained for c499 and c880. The following
observations can be made:
• NDET-ATPG, SA-ATPG, and RND-ATPG achieved

better results than ATPG only, due to the fact that the
ATPG only hit its abort limits on more faults.

• The rate of fault dropping and improvement in fault
coverage for ATPG only and SA-ATPG is higher than
that for NDET-ATPG and RND-ATPG. This is because
the stuck-at vectors are compacted. In the case of ATPG-
only, the sharp rate of increase is because ATPG
specifically targets each bridging fault in the fault list and
generates the best test for it. The N-detect and random test
sets have many vectors that do not detect bridging faults.

• In NDET-ATPG and RND-ATPG many faults are
dropped in ATPG because it can be proven that they
achieved 100% coverage during fault simulation.

• ATPG in NDET-ATPG and RND-ATPG detects only the
targeted fault. During fault simulation with the generated
vector, no faults are dropped, nor is there a significant
improvement in fault coverage.

C. Resistive vs. Zero-Ohm Bridging Faults
In order to determine the usefulness of a zero-ohm

bridge fault model, we compare the resistive bridge fault
coverage of test sets developed using the zero-ohm bridge
fault model. Figure 22 shows a comparison between the
resistive bridge fault coverage of SA-ATPG on c432 done
using the two models. As can be seen, the coverages are
similar for the stuck-at vectors. But for the ATPG vectors
the zero-ohm model has lower coverage, and also runs out
of faults sooner due to its higher drop rate. Figure 23
shows the results of running ATPG only. The zero-ohm
model has lower coverage for all vectors. A much larger
fault list was used in these experiments to gain adequate
resolution.

These results indicate that for a given test length, test
vectors generated using the zero-ohm bridging fault model
will have significantly lower resistive bridge fault coverage
than vectors generated using the resistive bridge fault
model. Similar results were obtained for the c499 and c880
benchmarks.

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300
Vector #

%
 F

au
lts

 D
ro

pp
ed

ATPG only
SA-ATPG
NDET-ATPG
RND-ATPG

Figure 20. Faults dropped for c432 for resistive bridges.

90

91

92

93

94

95

96

97

98

99

100

0 50 100 150 200 250 300
Vector #

%
 F

au
lt

C
ov

er
ag

e

ATPG only
SA-ATPG
NDET-ATPG
RND-ATPG

Figure 21. Fault coverage for c432 for resistive bridges.

VI. Conclusions
We have developed an accurate resistive bridging fault

model and used it in fault simulation and ATPG on
combinational circuits. Our fault simulation results confirm
that reduced VDD leads to an increase in overall resistive
bridging fault coverage. Certain situations have been
identified where reducing VDD causes a fault to escape
detection, despite being detected at higher VDD.

ATPG results show that test vector generation targeting
resistive bridging faults improves on the coverage obtained
from fault simulation with a stuck-at or random fault test
set. However, the best results are obtained when fault
simulation with a stuck-at test vector set is followed by test
generation for the remaining faults.

Fault simulation and ATPG results show that a test set
generated for zero-ohm bridging faults does not perform as
well for resistive bridging faults of similar size.

10

94

95

96

97

98

99

100

0 50 100 150 200

Vector #

%
 f

a
u

lt
 c

o
v

e
ra

g
e

Resistive SA-ATPG
Zero-ohm SA-ATPG

Figure 22. Resistive bridge fault coverage for SA-ATPG on c432
for resistive and zero-ohm fault models.

94

95

96

97

98

99

100

0 50 100 150 200

Vector #

%
 f

a
u

lt
 c

o
v

e
ra

g
e

Resistive ATPG Only
Zero-ohm ATPG only

Figure 23. Resistive bridge fault coverage for ATPG only on c432
for resistive and zero-ohm fault models.

References

[1] R. Rodriguez-Montanes, E. M. J. G. Bruls, and J. Figueras, “Bridging
Defect Resistance Measurements in a CMOS Process,” Int. Test Conf.,
1992, pp. 892-899.

[2] M. Renovell, P. Huc, and Y. Bertrand, “CMOS Bridging Fault
Modeling,” VLSI Test Symp., 1994, pp. 392-397.

[3] M. Renovell, P. Huc, and Y. Bertrand, “The Concept of Resistance
Interval: A New Parametric Model for Realistic Resistive Bridging
Fault,” VLSI Test Symp., 1995, pp. 184-189.

[4] J. J. T. Sousa, F. M. Goncalves, and J. P. Teixeira, “IC Defects-Based
Testability Analysis,” Int. Test Conf., 1991, pp. 500-509.

[5] V. Sar-Dessai and D. M. H. Walker, “Accurate Fault Modeling and
Fault Simulation of Resistive Bridges,” Int. Symp. Defect and Fault
Tolerance in VLSI Systems, 1998, pp. 102-107.

[6] Jeff Rearick and Janak H. Patel, “Fast and Accurate Bridging Fault
Simulation,” Int. Test Conf., 1993, pp. 54-62.

[7] J. M. Acken and S. D. Millman, “Fault Model Evolution for
Diagnosis: Accuracy vs. Precision,” IEEE Custom Int. Circ. Conf.,
1992, pp. 13.4.1-13.4.4.

[8] T. M. Storey and W. Maly, “CMOS Bridging Fault Detection,” Int.
Test Conf., 1990, pp. 842-851.

[9] T. M. Storey, W. Maly, J. Andrews, and M. Miske, “Stuck Fault and
Current Testing Comparison Using CMOS Chip Test,” Proc. Int. Test
Conf., 1991, pp. 311-318.

[10] M. Abramovici and P. R. Menon, “A Practical Approach to Fault
Simulation and Test Generation for Bridging Faults,” IEEE Trans.
Computers, vol. 34, no.7 pp. 658-662, July 1985.

[11] G. Freeman, “Development of Logic Level CMOS Bridging Fault
Models,”, Center for Reliable Computing Technical Report 86-10,
Stanford University, 1986.

[12] J. M. Acken, “Deriving Accurate Fault Models,”, CSL-TR-88-365,
Computer Systems Laboratory, Stanford University, Oct. 1988.

[13] Chennian Di and Jochen A. G. Jess, “An Efficient CMOS Bridging
Fault Simulator: With SPICE Accuracy,” IEEE Trans. Computer-
Aided Design, vol. 15, no. 9, pp.1071-1080, Sept. 1996.

[14] S. D. Millman and J. P. Garvey, Sr., “An Accurate Bridging Fault Test
Pattern Generator,” Proc. Int. Test Conf., 1991, pp. 411-418.

[15] J. M. Acken and S. D. Millman, “Accurate Modeling and Simulation
of Bridging Faults,”. Cust. Int. Circ. Conf., 1991, pp. 17.4.4-17.4.4.

[16] F. J. Ferguson and T. Larrabee, “Test Pattern Generation for Realistic
Bridge Faults in CMOS ICs,” Int. Test Conf., 1991, pp. 492-499.

[17] Y. Liao and D. M. H. Walker, “Optimal Voltage Testing for
Physically-Based Faults,” Proc. VLSI Test Symp., 1996, pp. 344-353.

[18] P. C. Maxwell and R. C. Aitken, “Biased Voting: A Method for
Simulating CMOS Bridging Faults in the Presence of Variable Gate
Logic Thresholds,” Proc Int. Test Conf., 1993, pp. 63-72.

[19] M. Dalpasso, M. Favalli, P. Olivio, and B. Ricco, “Parametric
Bridging Fault Characterization for the Fault Simulation of Library-
Based ICs,” Proc. Int. Test Conf., 1992, pp. 486-495.

[20] F. Peters and S. Oostdijk, “Realistic Defect Coverages of Voltage and
Current Tests,” Proc. Int. Workshop on IDDQ Testing, 1996, pp. 4-8.

[21] Li-C. Wang, M. R. Mercer, and T. W. Williams, “Using Target Faults
to Detect Non-Target Defects,” Int. Test Conf., 1996, pp. 629-638.

[22] B. Chess and T. Larrabee, “Logic Testing of Bridging Faults in
CMOS Integrated Circuits,” IEEE Trans. Computers, vol. 47, no. 3,
pp. 338-345, March 1988.

[23] Yuyun Liao and D. M. H. Walker, “Fault Coverage Analysis for
Physically-Based CMOS Bridging Faults at Different Power Supply
Voltages,” Proc. Int. Test Conf., 1996, pp. 767-775.

[24] H. Hao and E. J. McCluskey, “Very-Low-Voltage Testing for Weak
CMOS Logic ICs,” Proc. Int. Test Conf., 1993, pp. 275-284.

[25] J. T.-Y. Chang and E. J. McCluskey, “Quantitative Analysis of Very-
Low Voltage Testing,” Proc. VLSI Test Symp., 1996, pp. 332-337.

[26] M. Renovell, P. Huc, and Y. Bertrand, “Bridging Fault Coverage
Improvement by Power Supply Control,” Proc. VLSI Test Symp.,
1996, pp. 338-343.

[27] J. T. -Y. Chang, C.-W. Tseng, Y.-C. Chu, S. Wattal, M. Purtell, and E.
J. McCluskey, “Experimental Results for IDDQ and VLV Testing,”
Proc. VLSI Test Symp., 1998, pp. 118-123.

[28] HSPICE Manual, Campbell, CA: Meta-Software Inc. 1990.
[29] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinatorial

Benchmark Circuits and a Target Translator in FORTRAN,” Proc. Int.
Symp. On Circuits and Systems, 1985, pp. 663-698.

[30] J. T.-Y. Chang and E. J. McCluskey, “Detecting Delay Flaws by
Very-Low-Voltage Testing,” Proc. Int. Test Conf., 1996, pp. 367-376.

[31] S. C. Ma, P. Franco, and E. J. McCluskey, “An Experimental Chip to
Evaluate Test Techniques Experiment Results,” Proc. Int. Test Conf.,
1995, pp. 663-672.

[32] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits,” IEEE Trans. Computers, vol. C-30,
no. 3, pp. 215-222, March 1981.

[33] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for
Combinational Circuits,” Technical Report No. 12_93, Dept. of
Electrical Eng., Virginia Polytechnic Institute and State University.

