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Abstract

Estimating the reject ratio for integrated circuits is an
important problem to a test engineer. Using information
about the decrease in reject ratio with increasing test
length, the test engineer can estimate the test length neces-
sary to achieve a desired product quality goal. In this
paper, we suggest a method for estimation of reject ratio
for random testing of combinatorial circuits that takes into
account differing individual fault probabilities. We also
suggest some ways of estimating the fault probabilities. We
then demonstrate our method on an example and compare
our results to previous work.

1: Notation and Terminology

2: Introduction

The quality of a test is determined by the reject ratio - the
fraction of chips that are tested as fault free, but are in fact
faulty. Reject ratio is normally estimated from the fault
coverage. In previous work [29, 33, 21, 1] reject ratios
have been estimated from the circuit schematic representa-
tion, without any consideration of the actual circuit layout
or the manufacturing process. Some consideration to the
circuit layout in estimating reject ratio was given in [23].
Different implementations of the same design, or fabrica-
tion of the same design on different manufacturing lines,

results in different probabilities associated with the fauits'
that occur in a chip. Intuitively, it would seem that of two
test sequences that have the same coverage, one that cov-
ers more of the most probable faults has a better reject
ratio. As quality levels of a few parts per million come to
be demanded of test engineers, it is our contention that
much more information about the circuit, specifically, dif-

Total number of stuck-at fault N I more | M . .
. . fering individual fault probabilities, will have to be used in
Probability of a random vector detecting . estimating the reject ratios. We quantify this claim by
stuck-at fault ; D(i) developing a model for estimation of reject ratios for com-
Yield = Probability that no fault occurs on b§n_gton'al cirquits, taking into account varying fault proba-
the chip Y bilities. In doing so we extend work done in [1]. A metric
similar to the one we propose in this paper, has been pro-
Test Length TL posed as an improved testability measure for circuits [6].
Probability that d defects occur on the chip  pr(q) We begin th b 6
- . . . e begin this paper by identifying the statistics governing
:robabmty Ofddef‘:ft size (diameter) being h(s)ds the fault and defect density distributions. We then suggest
etween s and s+as § ways by which the individual fault probabilities (F(i)) and
Critical area for a defect size s for defect Cry(s) detectabilitics (D(i)) can be efficiently evaluated. We
type £ develop a model for the reject ratio using the distributions
- and compare the estimated reject ratio on an example cir-
g.r::: ability that d defects cause no stuck-at NF(d) cuit with those predicted by other models. Finally we con-
clude with ideas for future work.
Probability that d defects cause f stuck-at
faults DF(f, d) 3: Reject Ratio for Random Testing
Given that a single defect causes one stuck- , . . L .
at fault, the probability that the fault is i F(i) The reject ratio for a given design is defined as the fraction
P?;)ability that a?’hip with j SlUC].(-th faults 1. We use the following convention: Any unwanted particle or liquid
will escape detection after execution of ¢ . droplet that falls on the wafer during manufacturing is called a contami-
tests CE(J ) nation. If the contamination causes any deformation in the form of extra
The fraction of the bad chips tested as good or missing material in some IC layer, a spot defect is said to have
after execution of f tests FRy (1) occurred. Defects are modeled as circles of extra or missing material.
bg( Faules are functional circuit misbehaviors.
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of chips that pass all tests, but are actually faulty. Let Y
represent the actual yield - the fraction of chips that have
no faults in them. The yield is a function of the circuit and
layout design and the nature and statistics of yield detrac-
tors in the manufacturing process. Let Fry,(TL) be the
fraction of total chips that are faulty but escape detection
after a test sequence of length TL. The reject ratio is given
by

_ Fry,(TL)

- Y+Fr,, (TL) M

We thus need to compute Y and Frbg(TL) to estimate the
reject ratio.

3.1: Fault and Defect Distribution

The primary cause of functional faults in a chip are random
local deformations in the form of defects. Defects are typi-
cally modeled as circles of extra or missing materials in
one or more layers of the IC [16].

Whether a defect occurring on a chip causes a fault
depends on the defect’s size and its position on the chip.
Since we model defects as circles, they are completely
characterized by two distributions, one goveming their
spatial distribution and the other governing their size dis-
tribution. Any of the reported defect size distributions [25,
9, 26] can be used in our model.

Following Wallmark [31], we assume Pr(d), the probabil-
ity that d defects occur on the chip to be given by
ad. e

d!

A in the above equation is the average number of defects
that occur on a chip (the product of the chip area and the
average defect density). Even though we use equation (2)
to develop our model, any other expression for Pr(d) can
be incorporated in our model. Different types of defects
occur on the chip with different frequencies (A). We will
assume that each of these defect types occur independently
and follow the distribution in equation (2), but with mean
A for defect type k. So the probability that d defects of
defect type k, will occur on the chip is given by

Pr(d) = 2

d _7‘1:
Ai-e

d!

The susceptibility of a design to a defect of a particular
defect type and size is characterized by the critical area
[17, 8, 18, 9]. The critical area for a defect type k& and
defect size 5, Cr; (s) is defined as that area of the chip

where if a defect of type & and diameter s has its center. a
fault results. Efficient codes for evaluating the critical area

Pri(d) = )
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have been reported in [8, 12, 5, 18]. The probability that
one defect of type £ will not cause any fault is given by

1 o
NF (1) = 1= [ (s)Cri(s) ds @
‘o
where h, (s) is the size distribution for defect type £ and
A_ is the chip area in the above equation.

It can be shown that the yield of a design [16] can be rep-
resented as

Y=Y (Pr(d)-NF(d)) = ¢+ ~NP

d=0

®)

In equation (5), NF is the probability that a single defect
causes no fault. If NF, (1) is the probability that a single
defect of type k causes no fault, assuming that there are a

total of M distinct defect types, which occur independently,
M

> A NF (D),
k=1

—

NF can be represented as NF = T
M

where A is givenby Y A,.
k=1

The mapping from defects to faults is very complicated.
General attempts to evaluate this mapping accurately
employ Monte Carlo methods [30]. These are too time
consuming to be used to estimate reject ratios efficiently.
Faster and simpler methods have been proposed at the cost
of generality in [17] and efficient codes for these have
more recently been reported in [19]. We will use the model
proposed by Seth et al [21] to map defects to stuck-at
faults. According to this model, the probability of f faults
being caused by d defects is:

)/
(L;) ed

Parameter ¢ can be evaluated from layout and process
information by recognizing that

DF (f,d) =

©

DF(0,1) = ¢ “=NF (1) =NF 0

It will be noted that an expression for the yield similar to
equation (5), can also be derived from equation (6), by rec-
ognizing that yield is also given by

3

Y. Pr(d) - DF (0, d)
d=0



3.2: Fault Probability Distribution

The faults that can occur on a chip are not equally likely.
Global nets are more likely to be involved in a fault than
local nets. One can define critical area for individual faults.
Given a specified fault, that chip area where if a defect
center occurs, the specified fault results, is the critical area
for the given fault [S]. One can thus calculate the probabil-
ity of individual faults. A problem to be overcome here is
one of fault mapping. The simulators that give fault proba-
bilities have a different notion of a fault than that used by
test engineers. For example, the VLASIC catastrophic
yield simulator [30], considers a fault to be a unique topo-
logical change to the circuit graph. These faults have to be
mapped to the traditional stuck-at fault models in order to
use existing fault simulators. There have been attempts at
doing this using simulation and heuristics [7, 15, 28].

3.3: Fault Detectability

In order to be able to estimate the test quality, one needs to
know the coverage (or expected value of coverage in the
case of random testing) as a function of test length,
Attempts at expressing this relationship between test
length and fault coverage, range from use of semi-analytic
functions [10, 33] to estimates based on simulation [2].

In our model, similar to previous researchers, we charac-
terize each fault i with a detection probability D(i). The
detection probability is the fraction of total test vectors
which detect fault ;. One could use any of the methods like
PREDICT [22], SCOAP [11], STAFAN [13] and COP (3]
to evaluate the detectability of a fault.

3.4: Estimation of Reject Ratio

In this section we attempt to estimate the reject ratio as a
function of test length. We do this by first evaluating the
probability that a single fault occurring on the chip will
escape detection after application of ¢ random test vectors -
CE(1, ). Assuming that faults occur independently of each
other, the probability that a chip with f faults escapes
detection after ¢ test vectors, CE(f, t), under fairly general
assumptions, can be shown to be given by

CE(f,1) = (CE(1,0) @)

The fraction of total chips that have at least one fault on
them, but escape detection after ¢ tests, Fryg(1), is given by

oo

F’bg (1) = Z

d=0

N

[Pr(d) . 2 DF (f, d) -CE(f,t)}
f=1

&)

Let F (i) be the probability that fault i occurs, given that

a single fault occurs on the chip. Let D(i) be the detection

321

probability for fault i. The probability that fault i will
escape detection after ¢ random test vectors, E(i, ), is given
by

EG, 0 = (1-D )" (10)

Thus if a single fault occurs on the chip, the probability
that ¢ random test vectors will not detect it is given by

N
CE(L,0) = Y (F(i)-E(,1) (11)

i=1

From equations (9), (8) and (6) we get

o N
— d-CE(1,1))f
Fry, (1) = Y Prid)-e d, 3 _(.L—ﬂ(___ﬂ
d= !

0 =1
(12

Assuming N is large enough, a realistic assumption for
typical circuits, the second summation can be replaced
fromf=1toNtof=11t . The second summation in
equation (12) is then the Taylor series of an exponential.
Equation (12) can thus be simplified to

0

Frog () = Y Pr(d)-e
d=0

med [, (cd-CE(LD) _y) (13

From equations (2) and (13), we get

oo d. —~A

Frpg() = ¥ —
d=0

—cd(1-CE(1,1)) e

- (e

)

(14)
Substituting the value of e from equation (7), the above
equation can be simplified to

-\ A-NF

- ( e )

This expression for the fraction of chips that have at least
one fault in them but escape detection, reduces to the
expression obtained by several previous researchers [21, 1]
if one assumes that all faults are equally likely.

e)\" (NF) (1-CE(1,1) :

Frbg ) =e (15)

Let us assume that the test length is TL. The chips that are
fabricated fall into one of the following categories:

1. Chips that do not have any defect on them. The frac-
tion of total chips that fall into this category, from

equation (2), is given by Pr (0) = e

2. Chips that have some defects on them, but none of



these defects cause any fault. The fraction of the chips
Mo rNF g

that fall into this is e~

3. Chips that have some defects on them, with at least
one fault. The fraction of chips that have a fault but
escape detection is given by equation (15).

For a given test length TL, substituting in equation (1), the
values of F Tbg (TL) from equation (15) and yield from

equation (5), we get the expression for reject ratio as:

NF M

€
(I—L.E(I,TL))) (
e(NF)

R(ALNF,TL) = 1- (
The reject ratio can thus be computed purely from circuit
schematic and layout information and defect statistics. It
should also be noted that the various distributions assumed
are not critical to the development of the model.

Since the yield is a more directly observed parameter, we
can replace A in equation (16) by using equation (5) to give

logY
NF (1-NF)

4
(I—CE(I,TL))) a7

R(Y,NF,TL) = 1—(
e(NF)

4: Example

In order to demonstrate the differences in our model for
reject ratio and the traditional models we consider as an
example a CMOS 15-to4 priority encoder circuit. The
encoder was implemented in a 1um double-metal, single-
poly, P-well CMOS process. Figure 1 shows the layout of
the example circuit. The dimensions of the layout are 723p
by 303u. This circuit has a total of 15 input nodes, 4 output
nodes and 53 internal nodes for a total of 72 nodes.
Assuming a s-a-0 and s-a-1 fault at every node and a Vdd
to Ground short fault, gives us a total of 145 faults.

Figure 1 : Layout of the example circuit

For the purposes of this experiment, the detectability Dfi)
of each fault was computed by performing a fault simula-
tion [14] on a sample of randomly generated test vectors.
The fault simulator was queried at the end of each fault

simulation run for the stuck-at faults detected by that test.
The fraction of the total number of times a fault was
detected to the total number of test vectors is then a mea-
sure of the detectability of that fault. Figure 2 shows the
detectability of the faults indexed in increasing order of
their detectability. Since the circuit under consideration is
a priority encoder, we have faults with a wide range of
detectability. A stuck-at-0 fault in the most significant
input bit is detected by half the possible test vectors, while
a similar fault in the least significant input bit will be
detected by just one test vector.
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Figure 2 : Detectability of Faults for the Example
Circuit

The VLASIC catastrophic yield simulator [30] was used to
compute the fault probabilities. For simplicity, only extra
metal defects were assumed to affect the circuit. It will be
noted that the reject ratio model we have derived in the
previous section makes no such assumption. We, thus,
have to consider only node shorts. One million extra metal
defects were introduced each in the first and second metal
layers, using the size distribution in equation (18) [9, 27].

h(s) = sa/s° V(s>50) (18)

5o in equation (18) is typically much smaller than the
smallest defect that can cause a fault.

The node shorts needed to be mapped to the stuck-at fault
model. The reason for requiring such a mapping is again a
feature of the tool we used to compute fault detectabilities.
Since the fault simulator used a stuck-at fault model, we
were required to map the bridging faults reported by VL A-
SIC to the 145 stuck-at faults used in the fault simulator. In
performing this mapping we made the following assump-
tions:

1. A short between two or more nodes, not involving
either Vdd or Ground, is equally likely to cause a
stuck-at fault at each of the participating nodes. The



mapping from node pair shorts to stuck-at faults has

been investigated [28] to find what fraction of faults
map to stuck-at faults. Our assumption of a node short
being equally likely to cause a stuck-at fault at either
of the nodes can thus be verified or altered.

A short between two or more nodes, not involving
either Vdd or Ground is equally likely to cause a
stuck-at-0 and a stuck-at-1 fault on the shorted nodes.
Clearly this is not true in all cases. A n-channel FET
source-drain short, for example, is equivalent to the
gate stuck-at-1. However this type of fault does not
occur in the example circuit.

3. Any node besides Vdd or Ground, shorting to Vdd or
Ground causes a stuck-at-1 or a stuck-at-0 fault on
that node respectively.

. A short between Vdd and Ground is a special kind of
fault, with a detectability of one. This assumption
implies that any test will detect a short between Vdd
and Ground.

The assumptions can be modified as necessary to provide a
more realistic mapping. Note that, if fault simulators with
more sophisticated fault models were available, such as
bridging faults, one could dispense with the above assump-
tions.

Based on the assumptions discussed above, fault probabili-
ties for individual stuck-at faults were calculated. The
VLASIC simulation, thus, not only gave an estimate of the
NF, but also helped estimate the individual fault probabili-
ties F(i). Assuming that extra metal defects have the same
size and spatial distributions in both metal layers, the value
of NF was determined to be (.814. Figure 3 shows the
individual fault probabilities. (It is important to note that in
both Figures 2 and 3, the fault detectabilities and probabil-
ities have been sorted in the increasing order, so the fault
indices for the two graphs are not correlated).

Figure 3 shows the reject ratio as a function of test length
for different values of predicted yields using the values of
D(i) and F(i) calculated above. (The values of yields cho-
sen for the graph correspond to defect densities of 2 to 20

defects per cm?) As expected, a larger defect density,

which corresponds to a lower yield, causes a higher reject
ratio for a given test length.

Figure 5 shows the percentage difference between the
reject ratios estimated by different models and our model
as a function of test length, for the example with a 99%
yield.

Model 1 is our mode - equation (16). Model 2 is the same
model as model 1, except that we assume that all the faults
are equally likely. This model is equivalent to the one
developed in [1]. Model 3 is the one developed by Wad-
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Figure 3 : Probability of Fault Occuring for the
Example Circuit

sack [29]. This model assumes that the reject ratio is given
by

R=(1-cov)y(1-Y) (19)

Model 4 is the one described by Williams and Brown [32].
This model assumes that the reject ratio is given by

R = 1_Y(l—cov) (20)

cov in equations (19) and (20) is the fault coverage.
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Figure 4 : Reject Ratio Estimates for Different Values
of Yield for the Example Circuit
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It can be seen that the reject ratio predicted by our model is
consistently smaller than that predicted by the other mod-
els. This feature of the model can directly be traced to dis-
pensing with the assumption of equal fault probability. It
will also be noted, that as the test length and consequently
the fault coverage increases the discrepancy between the
reject ratio predicted by our model and the traditional mod-



els also increases. It is in this region - one with very high
fault coverage - that a test engineer is typically interested
in an accurate estimate of the reject ratio. It is important to
note that all the parameters for our model are directly
observable and thus the reject ratio can be estimated a-pri-
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Figure 5: Comparing Estimated Reject Ratios of
Different Models

Models 1 and 2 predict different values of reject ratio
because they estimate CE(I, TL) differently. CE(1, TL) is
the probability that a chip with one fault escapes detection
after application of TL random test vectors. Traditional
reject ratio estimation models, specifically model 2, associ-
ate CE(I, TL) with (I - cov). Having weighted each fault
with its probability of occurence F(i}), we have come up
with a more physical description of fault coverage. If the
fault probability F(i) and fault detectability D(i) were com-
pletely uncorrelated, the value of CE(/, TL) predicted by
our model would be the same as predicted by assuming
faults to be equally likely. Intuitively, one would expect
some correlation between F(i) and D(i). Faults more likely
to occur on the chip are also more likely to be more detect-
able (e.g. faults involving global nets).

Figure 6 shows the estimated fault escape CE(/, TL), with
and without the assumption of equal fault probability. As
will be observed from the figure, the difference between
the predicted values of CE(!, TL) increases as the test
length increases.

5: Conclusions and Future Work

In this paper, we have shown that using individual fault
probabilities can result in up to a 100% difference in the
estimated reject ratio. By considering individual fault
probabilities, our model achieves a closer approximation
to the physical reality than conventional models. Since
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Figure 6 : Comparing Estimated Fault Escape -
CE(1,TL) of Different Models

testing constitutes a significant fraction of the total manu-
facturing cost for a design, a better estimate for reject ratio
implies a better estimate of the test length required to
achieve desired quality levels.

In this work we have used knowledge of the process flow,
defect statistics and mask artwork to obtain fault probabili-
ties. It is often the case that an estimate of reject ratio as a
function of test length is required much earlier in the
design process, for example in the design of BIST [33].
One possible solution is to extract the Ak, Cry(s) and

h, (s) characteristics for common process flows, design

styles, module types and typical defect statistics, so that
equation (16) can be applied before layout design has been
completed. As more design and process information
becomes available, a more accurate reject ratio estimate
can be made.

In this paper we have assumed a Poisson distribution for
the defect spatial distribution (equation (2)). We could con-
sider a more realistic distribution, such as the negative
binomial [24]. We also assumed that the mapping from the
number of defects to the number of faults is given by equa-
tion (6). VLASIC and other Monte Carlo layout simulators
have the capability of directly computing this relationship.

In this work we have assumed a random test sequence
applied to combinatorial logic. Two important ways in
which this model can be improved are in considering
deterministic testing and testing of sequential circuits.
Attempts at understanding how deterministic testing and
testing for sequential circuits alter the assumptions made in
this paper have been reported in [20] and in [4] respec-
tively.
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