
Simulation-Based Design Error Diagnosis and Correction
in Combinational Digital Circuits �

Debashis Nayak D. M. H. Walker
Cadence Design Systems Department of Computer Science

270 Billerica Rd. Texas A&M University
Chelmsford, MA 01824 College Station, TX 77843-3112

Tel: (978) 262-6341 Tel: (409) 862-4387
Fax: (978) 262-6030 Fax: (409) 847-8578

Email: dnayak@cadence.com Email: walker@cs.tamu.edu

Abstract
This paper describes an approach to design error diag-

nosis and correction in combinational digital circuits. Our
approach targets small errors introduced during the design
process or due to specification changes. We incrementally
use simulation to identify suspect nets, and then attempt
correction based on our error model. We use multiple itera-
tions to handle multiple errors. Experimental results on IS-
CAS’85 benchmarks are shown for circuits containing up to
four random errors. Diagnosis and correction can be done
quickly, with the bulk of the time going to diagnosis. Our
tool is accurate in that even with multiple errors present,
the corrected circuit is identical to the original most of the
time.

1 Introduction
Most digital circuits today are designed using automated

synthesis tools. The resulting design may be incorrect due
to software bugs in the synthesis tools. In addition, error-
prone manual changes are often done to improve perfor-
mance, reduce circuit size, or implement small specification
changes. In order to detect erroneous implementations, for-
mal verification tools are used to verify the equivalence be-
tween the specification and implementation, or between the
original implementation and a new optimized one. When
the two design descriptions are not equivalent, the verifi-
cation tools provide a list of counter examples in the form
of input patterns or a Binary Decision Diagram (BDD) [7]
that detect the errors. The designer must then use these
counter examples to locate and manually correct the errors.
The verification-diagnosis-correction cycle is repeated until
a correct implementation is obtained. An automated process
of Design Error Diagnosis and Correction (DEDC) would
greatly reduce this effort.
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In this paper we describe a new simulation-based ap-
proach to the DEDC problem for combinational digital
logic circuits (or networks) where small modifications to a
small number of nets (also called lines or signals) are suf-
ficient to correct the design. The remainder of this paper is
organized as follows: Section 2 reviews related work. Sec-
tion 3 introduces the basic definitions and terminology. Sec-
tion 4 describes the concepts and approach of our diagnostic
and correction system. The results are given in Section 5,
and our conclusions are presented in Section 6.

2 Prior Work
Most combinational error diagnosis and correction

approaches can be classified into two categories: (1)
simulation-based approaches [10, 14, 15, 20, 21, 22, 25,
26, 30], and (2) symbolic approaches [1, 9, 16, 17, 18].
The simulation-based approaches first derive a number of
erroneous vectors. By simulating each erroneous vector,
the potential error region can be trimmed down gradually.
The conditions for eliminating those signals that cannot be
an error source vary from one approach to another. Sym-
bolic approaches do not enumerate the erroneous vectors.
They primarily rely on OBDDs to characterize the neces-
sary and sufficient conditions of a potential error source as
a boolean formula. Based on this formulation, every poten-
tial error source can be precisely identified. More recently,
a method combining the above two approaches has been
proposed [27, 28]. The symbolic approaches are accurate
and extendible to multiple errors. However constructing the
required BDD representations may cause memory explo-
sion when applied to large circuits. On the other hand, the
simulation-based approaches, although scalable with circuit
size, are usually not accurate enough to handle multiple er-
rors.

Most of the methods that consider the DEDC problem
are limited in the sense that they use a restricted error model
or there is no guarantee that they will find a correct solu-



tion even if one exists. Therefore, we need a tool that is
applicable to large circuits and is accurate enough to rectify
multiple design errors. A hybrid technique using both simu-
lation and symbolic algorithm has been suggested [11]. But
it requires the existence of a gate-level model for both the
specification and the implementation with significant struc-
tural similarity. In the next section, we present a simulation-
based procedure for correcting multiple design errors in
large circuits, which does not rely on structural similarity
between the specification and the implementation.

3 Terms and Definitions
3.1 Gate-Level Model

Let N(G;W) denote a gate-level implementation of a
combinational network with primitive gatesG=G1; : : : ;Gg

and lines W = W1; : : : ;Ww interconnecting these gates.
PO1; : : : ;POn � W are then primary output lines and
PIi ; : : : ;PIm �W are them primary input lines ofN. A set
of Boolean variablesx= (xPI1; : : : ;xPIm) is assigned to the
input linesPIi; : : : ;PIm. Based on the structure ofN and the
primitive functions ofG, each lineWi 2W computes some
boolean functionfWi (x).

A given functional specification of networkN assigns to
each outputPOi an a priori correct functionFPOi (x). Let
us assume some verification technique is used to compare
the specification with the implementation for a set of input
patternsV =V1; : : : ;Vp;1� p� 2m. The networkN is said
to be correct w.r.t.V if and only if: fPOi (Vj) =FPOi (Vj);1�
i � n;8Vj 2V, otherwiseN is incorrect.
Definition 1: (Erroneous Vector)Given a networkN which
implements a set of functionsfPOi (x); : : : ; fPOn(x) and their
functional specificationFPOi (x); : : : ;FPOn(x), an input pat-
ternVj 2 V is called anerroneous vectorif 9 somePOi 2
PO, such thatfPOi (Vj) 6= FPOi (Vj);1� i � n.
Definition 2: (Erroneous Output)The set of Erroneous Out-
puts for an input vectorVj 2V, denoted asError PO(Vj) is
defined as:Error PO(Vj) =
f(POi)j fPOi (Vj) 6= FPOi (Vj);8POi 2 POg. Any primary
output not belonging to theError PO set, is included in
theCorrect POset.
Definition 3: Difference Setfor POi, denoted asDIFFi is the
set of input vectors for whichPOi is an Erroneous Output.
DIFFi = f(Vj)j fPOi (Vj) 6= FPOi (Vj);8Vj 2Vg.
Definition 4: (Counter Example)The set ofcounter exam-
ples(CEX) for the set of input patterns V is defined as:
CEX= f(POi;Vj)j fPOi (Vj) 6= FPOi (Vj);Vj 2V;1� i � ng.
Example 2.1Figure 1 gives an example of an erroneous net-
work. Let us assume the design was wrongly implemented
by adding an inverter at netg. Out of eight possible input
vectors. only two (101 and 111) are erroneous. The outputs
y andz are erroneous for both theerroneous vectors. The
corresponding set ofcounter examplescontains (y, 101), (y,
111), (z, 101) and (z, 111). Hence thedifference setfor both
outputs isf101;111g.

Definition 5: (Sensitization Set)For a line f and POi ,
the sensitization set, denoted asSENi( f ), is the set of in-
put vectors than can sensitize a discrepancy fromf to
POi. The Boolean DifferencedPOi=d f is the characteristic
function of the sensitization setSENi( f ). SENi( f ) repre-
sents those input vectors for which signalf determines the
value atPOi . For the network in example 2.1,SEN1(h) =
f010;101;100;110;011;111g andSEN2(m) = f001;101g.

A line f is called asensitizable netiff SENi( f ) is not an
empty set8i. The netssensitizablefor some of the counter
examples constitute thesuspect list. In example 2.1, only
netsg, h andi are sensitizable by all the four counter exam-
ples and so form the best suspects.
Definition 6: Current value CV(G;Vj) is thecurrent value
at the output of a gateG, when the patternVj is applied to
the implementation.
Definition 7: Required Value at a gate output.LetVj 2V be
an erroneous vector andPOi 2 PO be an erroneous output,
when the patternVj is applied to the primary inputs (POi 2
Error PO(Vj)). Therequired valueat the output of a gate
G, RV(G;POi ;Vj) is the value required atG to makePOi 2
Correct PO(Vj). In example 2.1, for erroneous vector 101,
CV(i;101) = 0. The vector will not remain erroneous if the
value of linei is complemented. Hence, the required value
of line i for vector 101 is 1.
Definition 8: Observed Signature Bit-list(OSB) at a gate
output is a list ofcurrent valuesat the gate output for the
given set simulated vectors. It is just a binary code of length
j, wherej is the number vectors simulated.
Definition 9: Required Signature Bit-list(RSB) at a gate out-
put is a list ofrequired valuesat the gate output for the given
set simulated vectors. The RSB of any internal line, gives
the set of values necessary to rectify the network for the
given set of input vectors.

3.1.1 Correctability

Definition 10: (Correctable Vector)An erroneous vector
Vj 2V is correctableby signal f if there exists a new func-
tion for signal f such thatVj is not an erroneous vector for
the resulting new circuit.
Proposition 1: Let Vj 2V be an erroneous vector andf be
a line in the circuit. ThenVj is correctable byf if and only
if the following two conditions are satisfied:

� Vj can sensitize a discrepancy fromf to every er-
roneous primary output inN, i.e., for everyPOi in
Error PO(Vj), Vj 2 SENi( f ).

� Vj cannot sensitize a discrepancy fromf to any
correct primary output, i.e., for everyPOi in
Correct PO(V) j), Vj =2 SENi( f ).

(Proof): Let F be a boolean function that disagrees with the
original function of f only on input vectorv. Then after re-
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Figure 1: Example of erroneous network (inverter incorrectly added at net g).

placing signalf with the new function F, a discrepancy is
injected atf . If the above two conditions are satisfied, then
the response of every erroneous output toggles and thus be-
comes correct (becausev cansensitize a discrepancy from
f to every one of them). At the same time, every originally
correct output remains correct (because vectorv cannot sen-
sitize a discrepancy fromf to any of them). On the other
hand, it can be shown that if the above two conditions are
not satisfied, then at least one erroneous primary output will
remain erroneous, or one originally correct output will be-
come erroneous. (Q.E.D)
Definition 11: (Single Signal Correctable)If the circuit N
can be completely corrected by re-synthesizing a signalf ,
thenN is single-signal correctable, and the signalf is called
a single-fix signal.

3.2 Single Error
Given a networkN if there exists an internal linef s.t.

SENi( f ), coversDIFFi , thenN can be fixed by changing
the function off . On the other hand, if the sensitization set
of f does not coverDIFFi , then f is not a single-fix signal.

The new function forf (required valueat f ) in order
to fix N should satisfy two conditions: (1) it shoulddis-
agreewith the original function off for input vectors in the
difference set,DIFFi , and (2) it shouldagreewith the old
function of f for input vectors in the sensitization set but
not in the difference set,(SENi �DIFFi). Let the on-set
(off-set) of the original function off be f ON( f OFF). Then,
we can represent the on-set and off-set of the incompletely
specified new function forf as follows:

f new�ON = ( f OFF \DIFFi)[ ( f ON\ (SENi �DIFFi))

f new�OFF = ( f ON\DIFFi)[ ( f OFF \ (SENi �DIFFi))

For circuits with multiple outputs, each primary output
would impose a constraint on the on-set and off-set. These
constraints should be combined together to derive the final
on-set and off-set of the new function.
Proposition 2: (Necessary and sufficient conditions for sin-
gle fix signal) [9, 17, 18] Leti be the index of the primary
outputs, andf be an internal signal of the implementation.
The set of input vectorsf new�ON and f new�OFF are defined
as follows.

f new�ON =
[

i

( f OFF \DIFFi)[ ( f ON\ (SENi �DIFFi))

f new�OFF =
[

i

( f ON\DIFFi)[ ( f OFF \ (SENi �DIFFi))

If the intersection off new�ON and f new�OFF is empty,
then f is a single fix signal.
Definition 12:We defineCorrectionas a functional change
or modification on some line in the circuit.
Definition 13:TheRectificationof a logic network is a se-
ries ofchanges (corrections)to make the network function-
ally equivalent to its specification.
Definition 14:TheCorrectabilityof a suspect line is its po-
tential to reduce the number of counter examples.
Definition 15:We define theaccuracyof a rectification al-
gorithm as its ability to rectify a logic network without mak-
ing any radical changes to the network structure. Thus, ac-
curacy is directly related to the the number of corrections
made in the rectification process. Too many corrections
may cause the rectified circuit to look completely different
from the original circuit. Even when a network is recti-
fied in a minimum number of steps, it is not guaranteed that
the rectified network will look similar to the original net-
work. Due to the existence of mutually equivalent correc-
tions, there is no way a tool can determine which correction



is better. We measure the accuracy of a rectification tool
by the number of equivalent lines between the original and
rectified circuits, which is a good estimate of similarity.

3.3 Multiple Errors
For circuits with multiple errors, the algorithm based on

the single signal correctable condition may not be applica-
ble. To overcome this limitation, we first define the term
correctable setand then formulate a partial correction con-
dition in the following.
Definition 16:TheCorrectable Setfor an internal signalf
w.r.t. a primary outputPOi denoted asRi( f ), is the inter-
section of its corresponding sensitization setSENi( f ), and
difference setDIFFi . Intuitively, the correctable setRi( f )
represents themaximal set of difference vectorsw.r.t. POi

that can be corrected by changing the function of signalf .
Definition 17: Partial Correction: A signal f is called a
partial-fix signalif there exists a new function atf s.t.: (1)
no new difference vector is created for any primary output,
and (2) the difference set for at least one primary output is
reduced.

Based on this definition, the rectification process can be
viewed as a sequence of partial corrections. During this pro-
cess, the difference set w.r.t. each primary output is mono-
tonically shrinking until it is empty. Each partial correction
consists of finding a partial fix signal and synthesizing the
new function to replace the old function.
Definition 18: Strong partial correction:A signal f is
called astrong partial-fix signalif there exists a new func-
tion at f such that the following two conditions are satisfied
for each primary output: (1) no new difference vector is cre-
ated, and (2) thecorrectable setfor every primary output is
reduced to the empty set.

input
space

SEN (f)i
DIFFi

Region III : SEN (f) - R (f)i i

Region II : R (f)i

iRegion I : ~(SEN (f))

II: R (f)i III

I

Figure 2: Requirements of a strong partial fix signal.

Figure 2 illustrates the different regions in the input
space: (I)don’t care region,(II) fix region,and (III) don’t
touch region. For every primary output in the implemen-
tation these constraints should be combined together. The
necessary and sufficient condition is given as follows.
Proposition 3: (Necessary and sufficient condition for
strong partial correction)Let i be the index of the primary
outputs, andf be an internal signal in the implementation.
The set of input vectorsf new�ON and f new�OFF are defined
as follows.

f new�ON =
[

i

(( f OFF \Ri)[ ( f ON\ (SENi �Ri)))

f new�OFF =
[

i

(( f ON\Ri)[ ( f OFF \ (SENi �Ri)))

If the intersection off new�ON and f new�OFF is empty,
then f is a strong partial fix signal, and the new function is
an incompletely specified function defined byf new�ON and
f new�OFF.
3.4 Error Model

Many types of design errors have been classified in the
literature. These error types are not necessarily complete,
but they are believed to be common in the design process.
We condense the errors identified by Abadir et al. [1] into
four categories:
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Figure 3: Error model.

� Wrong Gate (WG):mistakenly replacing one gate type
by another gate type with the same number of inputs
(Figure 3, type “a”). Extra and missing inverters are
considered a substitution of an inverter for a buffer and
vice-versa.

� Extra/Missing Wire (EW/MW):using a gate with more
or fewer inputs than required (Figure 3 types “b” and
“c”).

� Wrong Input (WI): connecting a gate input to a wrong
signal (Figure 3 type “d”). A WI may be viewed as a



combination of EW and MW, but this cannot model a
WI in an inverter.

� Extra/Missing Gate (EG/MG):incorrectly adding or
removing a gate (Figure 3 types “e” and “f”). This cat-
egory is combined with gate substitution in [8], where
unlike here, XOR and XNOR gates are not considered.

Sometimes the termMisplaced Wireis used to denote
EW, MWandWI errors collectively.

4 Simulation-Based Error Correction
Our approach to the DEDC problem uses a test simula-

tion procedure to identify potential modification locations.
Correction is based on the results of test simulation together
with Boolean function manipulation. Unlike some other er-
ror correction methods [1, 27, 28], our approach does not
assume that only one net can be the source of error.

Once a design has been verified to be erroneous, we ap-
ply test vectors to the functional specification, and the gate-
level implementation of the design, that produce erroneous
primary output responses. These vectors provide informa-
tion on the location of possible candidate modifications. A
number of observations listed in this section, allow us to
greatly reduce the set of candidate modification locations
in a fast and efficient manner. The correction phase of our
algorithm returns a set that contains a set of possible modi-
fications, if they exist in our logic design error model, that
rectify the design.

Simulation-based design error correction is not guaran-
teed to be complete unless the vector set is exhaustive. In
addition, since the actual error may not consist of one or
more errors in our error model, the correction may be in-
valid. Therefore, after correction, the circuit must be rever-
ified against the original. We will discuss this further in
Section 5.

4.1 Candidate Selection
The first step of our algorithm involves the identifica-

tion of partial-fix signals for making corrections. We use a
simulation-based diagnosis procedure suitable for generat-
ing a suspect list in the presence of multiple errors. In this
situation, making a correction can introduce new erroneous
vectors while removing others. Therefore, it is essential not
to discard a suspect net even if it is not capable of removing
all erroneous vectors. As defined earlier, theRequired Value
of a suspect net determines the type of correction needed to
remove an erroneous vector. The following definitions will
help us locate the best candidates for error correction.
Definition 19:TheRequired Valueof a linel for Vj andPOi

is related to theCurrent Valueas:

� Required Value= Current Value, if l is sensitizable at
POi andPOi is not anerroneous output.

� Required Value= NOT Current Value, if l is sensitiz-
able atPOi andPOi is anerroneous output.

� Required Value= DONTCARE, if l is not sensitizable
atPOi for Vj .

Definition 20: The correctability measure, CMi j (l), of a
line l for Vj andPOi is defined as:

� CMi j (l) = 0, if Required Value= Current ValueOR
Required Value= DONTCARE.

� CMi j (l) = 1, if Required Value= NOT Current Value.

Definition 21: We define theaccumulated correctability
measure ACM(l) of a line l over all primary outputs, and
all vectors as:

ACM(l) =∑
Vj

∑
POi

CMi j (l)

Intuitively, ACM(l) denotes the potential ofl to change
the incorrect circuit closer to the correct one. A line with
positiveACM is capable of reducing the number of counter
examples. A line withACM equal to the number of counter
examples is capable of completely correcting the circuit.
The sensitizable lines for any vector can be computed us-
ing thecritical path tracingalgorithm [3].

Theoretically, any line sensitizable for any counter ex-
ample is a possible correction candidate. But the cor-
rectability of each line varies with theirACM value. We
sort the candidate lines in decreasingACM order and start
applying correction to the line with maximumACM. In case
of a failure, we move down the list.

Since there is more than one way to synthesize a given
function, there may be more than one way to model the error
in an incorrect implementation, i.e. the correction can be
made at different error locations. Our algorithm diagnoses
errors to within a functional equivalent class, and chooses
the suspects closest to the inputs for correction.
4.2 Single Error Correction

Every simple design error in the error model can be cor-
rected by modifying either a gate or a line. We apply the
following five types of corrections for single error rectifi-
cation: (a) change gate type, (b) add extra gate, (c) replace
wrong wire, (d) add extra wire, (e) remove extra wire.

As defined in Section 3, thecorrectability of a line is
its ability to reduce the number of counter examples. Let
there bem counter examples for an implementation which
changes ton after the correction is made on linel . Then,
correctability(l) = m�n, iff m> n, otherwise 0. A single-
fix signal is capable of reducing the number of counter ex-
amples to zero. Hence, a single-fix signal has the maxi-
mum possiblecorrectability, which is same as the number
of counter examples (Proposition 2).



In order for a linel to satisfy Proposition 2, it should be
possible to synthesize the new function atl by applying one
or more of the five simple modifications described above.
Let the old and new function atl be given by fl (x) and
f
0

l (x). The functionfl (x) corresponds to theCurrent Value
and f

0

l (x) should correspond to theRequired Valueat line l .
Our aim is to choose a correction whosef

0

l (x) best matches
the required values of linel for all input vectors. This is
implemented by an efficient cube-matching algorithm that
also handles the don’t care conditions. This is implemented
by matching signature bit-lists as described below.

We examine each suspect line one by one (starting with
the suspect with highest ACM value closest to the inputs),
and check, if it is possible to synthesize the new function at
l by changing the type of gate that feedsl . The gate retains
the same number of inputs. If successful, the algorithm re-
ports the correction and terminates. Otherwise, we look for
a misplaced wire. For Extra Wire (EW) correction, we look
for a fanin of l , which can be removed to makel satisfy
Proposition 2. For Missing Wire (MW) correction, we con-
sider every linel 0 that can become an extra fanin to linel
without creating any asynchronous cycles. In Wrong Wire
(WI) correction, the linel 0 replaces one fanin ofl .

In order to reduce the search space and perform a missing
wire search efficiently, we use theobserved/required signa-
ture bit-list(OSB/RSB) compiled during the vector simula-
tion. In the presence of a large number of suspect lines,
the task of matching the OSBs to RSB for every possible
correction could be time consuming. But fortunately, most
suspects can be eliminated by matching only a few bits.
Because of this, a linear search through the bit-lists takes
less time than constructing a hash table. Substantial perfor-
mance gains can also be achieved by using more sophisti-
cated pattern matching algorithms [4].

If both Wrong Gate and Misplaced Wire correction types
fail to provide a solution, we look for an Extra/Missing Gate
type of Error. Here, we try to synthesize a line from the ex-
isting lines in the network, making use of a new gate to
match the required bit-list ofl . In our current implementa-
tion, the only new gate type we consider is an inverter, so
we look for lines whose current bit-list is the complement
of the required bit-list forl , via bit-list comparison

If the algorithm does not find a solution after trying all of
the above corrections, the networkN is not asingle-fixtype.
In that case, we need to apply a sequence of corrections as
described below.
4.3 Incremental Rectification

As shown in Figure 4, the rectification of circuits with
multiple errors is an iterative process. In every iteration, all
thepartial fix signals are listed as possible correction candi-
dates. Then, we sort the suspects by their correctability (us-
ing ACMvalues) and try correcting the suspect with highest
correctability. We try all possible types ofgateandwire

Implementation

Remove this candidate
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Generate Counter Examples

Specification

Generate suspect_list

Sort candidates in suspect list 
according to their ACM metric

suspect_list
empty ?
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# of
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?Left ?

Report All the Corrections Made
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Try correcting the first 

No
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Update the counter example set

Undo Previous
Corrections (if any)

No

Yes

Figure 4: Simulation-based correction procedure.

correction and check if any of those corrections are consis-
tent with the required values at that net. We follow a greedy
approach while selecting the best possible correction. The
correction that will minimize the number of counter exam-
ples is selected and the network is updated. The above pro-
cedure is repeated until the set of counter examples becomes
empty. Since the algorithm operates on a limited number of
input vectors, we cannot assume the network to be corrected
even after all the counter examples are removed. The rea-
son that some other counter examples may exist that were
not considered by the correction procedure. Therefore, we
make use of a formal verifier to check the validity of the
rectification. If the specification and the implementation are
not equivalent after the rectification process, we restart the
diagnosis and the correction procedures, with a larger num-
ber of input vectors.

The greedy approach does not guarantee a solution. For
example, in Figure 5, there are two errors at locationsh
(AND gate replaced by XNOR gate) andp (AND gate re-
placed by XOR gate) and there are five distinguishing vec-
tors between the correct and the incorrect circuits. Because
of the mutual interference between the two errors, we find
linesy andzhave highercorrectabilitythan either linep or
line h. In fact, y andz are the only lines capable of cor-
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Figure 5: Example of wrong correction.

recting four of the five distinguishing vectors. Therefore,
our tool will make a correction aty or z (change OR gate
to XNOR gate, etc.). After this correction is made, it is
impossible to get rid of the remaining counter example by
any other correction. However, this problem can be solved
by backtracking on previously made corrections. Whenever
our tool is unable to make any progress, it backtracks and
replaces the last correction made with the next possible cor-
rection, which didn’t look as attractive before the last cor-
rection was made. In this way, we can ensure that our tool
tries all possible kinds of corrections before giving up. But
this may not be desirable as it may take a long time to rec-
tify large circuits. Note that this problem does not arise if
the errors are not very close together. However the experi-
mental data is too limited to assume that errors are sparse.

4.4 Algorithm Complexity
Since our algorithm is based on simulation, its complex-

ity is directly related to thep input vectors simulated and
the n nets in the circuit. For each vector simulated, the
time is dominated by the critical path tracing done to deter-
mine net observability. We use the back-trace algorithm [2],
with separate simulations for each multiple fanout net. This
takes timeΘ(mn) for mmultiple fanout lines orΘ(n2) in the
worst case. The correction time is small compared to the di-
agnosis time, so the time for one diagnosis and correction
step isΘ(pn2). Typically one diagnosis and correction step
is required for each error, so fors steps, the time will be
Θ(psn2).

5 Experimental Results
To validate our algorithm, a prototype system has been

implemented inPython[23] on an UltraSPARC 2 with 1
GB of memory. Experiments were performed using the IS-
CAS’85 benchmarks [6]. In each experiment, random er-
rors of different types were inserted and the diagnosis and
correction algorithm was applied. For these experiments,
we use random input patterns rather than error-detecting

patterns supplied by a verifier.

Table 1 shows the results of diagnosing and correcting
circuits with a single random gate type error. The results
are the average of five runs. Since the ISCAS’85 circuits
have good testability, only a few random vectors must be
simulated to prune the suspect list. We stop the diagnosis
when there are still many suspects because our correction
procedure is so fast relative to our diagnosis procedure that
it takes less time to consider many suspects than to further
prune the suspect list. The correction time is small since in
most cases the first suspect is used for correction. The total
time is less than the corresponding time for the symbolic
error correction tool ET [11]. Note that our time does not
include the time to reverified the corrected circuit.

Results for diagnosis and correction of multiple random
errors are shown in Table 2. Each entry is the average of two
runs. The entries with no corrections occurred when the tool
was terminated after one hour without a solution. Most of
the time the number of steps required for rectification is the
same as the number of corrections. As in the single gate
errors, almost all the time is spent in critical path tracing
during diagnosis.

One concern is that the simulation-based approach will
result in invalid corrections or corrections that are signif-
icantly different than one might expect. Table 3 compares
the number of non-equivalent lines between the original and
rectified circuits as a measure of rectification accuracy. In
most cases the rectified circuit is identical to the original.
However the existence of equivalent errors can prevent this.
In C1908, about half of the gates are buffers or inverters
which results in many equivalent error locations. In all
cases the rectified circuit is functionally equivalent to the
original. It appears that a reasonable distinguishing vector
set makes the odds of an erroneous correction small.



Table 1: Single Gate Type Error Diagnosis and Correction

Circuit Gates Random Dist. Diagnosis Suspect Rectify Total ET Total
Vectors Vectors Time (s) Nets Time (s) Time (s) Time (s)

C432 160 36 4 3.2 38 0.0 3.2 52
C499 202 38 4 3.2 89 0.2 3.4 9
C880 383 32 14 6.0 6 0.2 6.2 5
C1355 546 24 8 13.2 158 1.0 14.2 13
C1908 880 34 19 35.5 16 0.3 35.8 41
C2670 1193 38 18 54.3 47 2.8 57.1 99
C3540 1669 40 8 54.9 73 7.4 62.3 1844
C5315 1993 25 6 86.8 147 0.1 86.9 58
C6288 2406 10 7 89.6 306 0.3 89.9 132
C7552 3512 10 5 87.8 81 23.8 111.6 419

Table 2: Multiple Error Diagnosis and Correction

Circuit Two Errors Three Errors Four Errors
Steps Vectors Time (s) Steps Vectors Time (s) Steps Vectors Time (s)

C432 2 150 16.1 3 200 35.8 5 210 57.6
C499 2 200 29.9 4 200 56.2 4 240 66.4
C880 2 100 31.6 3 150 71.4 4 180 94.7
C1355 2 50 56.9 3 200 289.5 4 250 497.3
C1908 2 100 217.4 3 260 682.8 4 250 945.5
C2670 2 100 288.1 3 160 648.1 3 150 633.1
C3540 2 100 439.5 2 195 703.9 3 200 1350.9
C5315 2 100 672.8 3 150 1463.8 – – >1hr
C6288 2 50 965.6 3 100 2688.2 – – >1hr
C7552 2 150 2515 3 200 >1hr – – >1hr

Table 3: Rectification Accuracy

Circuit Errors Steps Inequivalent Nets
Before Rect. After Rect.

C432 4 5 56 0
C499 4 4 44 3
C880 4 4 158 2
C1355 3 3 191 0
C1908 3 3 142 19
C2670 3 3 442 0
C3540 2 2 574 0
C5315 3 3 100 0
C6288 2 2 690 0
C7552 2 2 278 0

6 Conclusions and Future Work

An incremental logic rectification algorithm based on
simulation has been presented. We defined a design error
scenario for combinational circuits, where modifications on
some lines of the circuit are sufficient to rectify the cor-
rupted gate-level design. An efficient algorithm that returns
all actual modification locations with their respective cor-
rections was presented. The algorithm is based on vector
simulation and boolean function manipulation. The experi-
mental results show the applicability of the proposed algo-
rithm to both single and multiple design errors.

We can speed up our tool in several ways. Using a new
linear-time critical path tracing algorithm [19] will reduce
the algorithm complexity to be linear in circuit size. We
could eliminate the linear bit-list scans during correction by
using improved pattern matching algorithms, but this is al-
ready a small part of the runtime. Recoding from Python
to C will speed it up by 10 to 100 times [29]. Overall this
should provide at least a 100 times speedup. We can further
speed up correction of multiple errors by including more
complex error models, such as swapping two gate inputs.



These will reduce the number of correction steps and vec-
tors needed. Overall we believe these will allow us to diag-
nose and correct several errors in the largest ISCAS circuits
in a few minutes.

We must explore the behavior of our simulation-based
DEDC approach further. This includes behavior with many
clustered errors, pathological cases, and DEDC using vec-
tors supplied by a verifier.
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