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Abstract - Under manufacturing process variation, a 
path through a fault site is called longest for delay test if 
there exists a process condition under which the path has 
the maximum delay among all paths through that fault 
site. There are often multiple longest paths for each fault 
site in the circuit, due to different process conditions. To 
detect the smallest delay fault, it is necessary to test all 
longest paths through the fault site. However, previous 
methods are either ineffcient or their results include too 
many paths that are not longest. 
This paper presents an efficient method to generate 

the longest path set for delay test under process variation. 
To capture both structural and systematic process 
correlation, we use linear delay functions to express path 
delays under process variation. A novel path-pruning 
technique is proposed to discard paths that are not 
longest, resulting in a significantly reduction in the 
number of paths compared with the previous best 
method. The new method can be applied to any process 
variation as long as its impact on delay is h e a r .  

I. Introduction 

Delay test of combinational circuits is to ensure that the 
signal from any primary input to any primary output is 
propagated in less time than the system clock cycle time. 
Under the path delay fault model [l], a circuit is considered 
faulty if the delay of any path exceeds the specification. A 
delay fault caused by a local defect, such as a resistive open 
or short, can only he detected by testing a path through it and 
testing the longest path is most likely to capture a delay 
increase along the path due to the fault. Therefore, testing the 
longest path can detect the smallest local delay fault. 
When process variation is not considered, the problem of 

finding the longest and testable path set that covers all delay 
fault sites bas been extensively studied [2][3][4]. In their 
work, to test a local delay defect, only the path with the 
maximum delay is generated among all paths through it. 
However, under process variation, path delay becomes a 
function of process variables. Among all paths passing 
through a fault site, there are often multiple paths whose 
delay can be the maximum under different process 
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conditions [5]. For each fault site s, we call a path P longest 
if there is a process condition under which path P has the 
maximum delay among all paths through s. On the other 
hand, if a path can never be the longest under any process 
condition, we call the path redundant. 

Since modern delay optimization tools tend to make many 
paths critical or near critical [6], too many paths need to be 
tested if we do not perform path-pruning to exclude 
redundant paths [7]. According to our experiments on the 
ISCAS85 circuits, for a delay fault site, the path generator 
[8] may find more than 500 paths whose delay is within 20% 
of the worst-case path delay. However, most of these paths 
are redundant and only a few paths are longest. For example 
in Fig. 1, we show the delay of four longest paths, P I ,  P2, P3 
and P4, through a fault site s in ISCAS85 circuit c432. There 
are two process variables yI and y2, representing Metal2 
thickness and Metal3 thickness, respectively. In this example, 
four paths form the upper bound of the path delay for all 
paths through the fault site over the range of process 
variation. 
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Fig. 1. Delay of four longest paths under process variation. 

To detect the smallest local delay fault, all longest paths 
through s must be tested. Otherwise, if tests are only 
performed on the longest path under one special process 
condition, such as the worst-case condition, it might not be 
guaranteed that the smallest fault be detected under other 
process conditions, because the longest path under the 
worst-case condition might not have the maximum delay 
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temperature and supply voltage, as long as the approximated 
delays can be expressed as linear functions of the process 
variables. 
Let the buffer-to-buffer delay be the delay from an input 

pin of a cell to an input pin of a downstream cell. In this 
paper, we approximate each buffer-to-buffer delay as a linear 
function of process variation variables: 

(1) 
where x=(xI, xz, . . ., xp) is a vector of process variables, each 
representing the deviation b m  the nominal value, bo is the 
nominal delay, and b l ,  b2, _. ., bp are coefficients. 

The validity of the linear model is suppolted by extensive 
simulation. We performed multiple parasitic extractions and 
SPICE simulations under different process conditions. It is 
found that for any single process variation variable, its effect 
on delay is approximately linear and symmetric w i t h  its 
variation range. In Fig. 2 we show the SPICE simulation 
results on a buffer-to-buffer segment in the circuit for several 
typical process variation variables. Each variable changes 
within its typical manufacturing range (metal width i5%, 
metal thickness S O % ,  ILD thickness MO??, and gate length 
i5%). Furthermore the effect of different process variables is 
independent and additive. Other researchers also noticed the 
linear property and used it in their models [ 13][ 141. 

b(x) = bo+biXi+bzXz+ ... +bflP, 

under other conditions. In Fig.1, although path PI is the 
longest path for test under the worst-case condition oJ1=-0.2 
and y2=0.2), it does not have the maximum delay under all 
process conditions. For example, under condition oJ1=0.2 
and y1=0.2) path P4 is the longest path, and tests need to be 
performed on P4 instead of PI to detect the smallest fault 
under such condition. Therefore, to guarantee the smallest 
delay fault detection, it is necessary to test all longest paths 
under any process condition. 

The focus of this paper is to generate the set of longest 
paths for each fault site in the circuit. In order to maximize 
the fault coverage, we want to fmd as many longest paths as 
possible. At the same time, to minimize the number of paths 
for test, we want to eliminate all redundant paths. Clearly, 
eliminating redundant paths does not decrease the fault 
coverage. 

Tani ef al., hied to solve this problem using the min-max 
comparison [9]. However, the min-max method is overly 
pessimistic, even considering the path structural correlation 
(shared parts between paths). Some researchers considered 
the problem for global delay faults. Luong and Walker [7] 
considered the effect of process variation on the gate delay 
and the spatial correlation between path delays. They 
selected paths by estimating path delays based on a complex 
second-order delay model. The method is too time 
consuming as shown in their paper, and still, some redundant 
paths exist in the path set due to inaccurate constraints. Liou 
e f  al. [IO] used Monte Carlo simulation to select a set of 
critical paths that maximizes the probability of covering all 
critical paths unda all process conditions. However, Monte 
Carlo simulation is very slow for large circuits. 

In this paper, we present a new method to fmd the set of 
longest paths in a combinational circuit nuder process 
variation for delay test. The new method works as follows. 
We fmt model the delay of every buffer-to-buffer path 
segment as a linear function of systematic process variation 
variables. Then for each fault site s, a path generator [8] is 
used to obtain a set of critical paths P(s) through s. For each 
path P, in P(s), a linear delay function for P, is derived. Then 
we construct longest path constraints, and use path-pruning 
algorithms to remove redundant paths from P(s). The 
pruning algorithms do not prune longest paths yet prune all 
redundant paths. Therefore, the remaining paths form the set 
of longest paths for s. We repeat the process for each fault 
site to obtain the set of longest paths for all fault sites in the 
circuit. Experiments on the ISCAS85 circuits show the new 
method is efficient and significantly reduces the number of 
paths for test, compared to previous methods. 

This paper is organized as follows. The delay model is 
presented in Section 2. The path pruning algorithms are 
described in Section 3. The longest path set generation is 
given in Section 4. Experimental results are shown in 
Section 5, and the conclusion is drawn in Section 6. 

11. Delay Modeling 

There are many forms of process variation, see for 
example Stine et al. [ l l ]  and Nassif [12]. In this paper, we 
only consider inter-die systematic process variation, such as 
variations on gate length, metal width, metal thickness, and 
inter-layer-dielechic (ED) thickness. Our method can be 
extended to include other process variations such as 
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Fig. 2. Delay deviations due to process variation are linear 
and symmetric in SPICE simulation. The x-axis indicates the 
range of process variation variables and the y-axis indicates 
the percentage deviation from the nominal delay. 

We generate the coefficients in (1) using a delay 
sensitivity generation method [15]. The less efficient 
response surface method (RSM) [la] could also be used to 
sample the output response to determine the coefficients. The 
nominal delay bo is computed by commercial delay 
evaluation tools, such as PatbMillm. 

111. Path Pruning 

Based on the linear delay model, the delay of a path can 
be derived as a linear function by accumulating all 
buffer-to-buffer delays along the path: 

(2) 
where 4 is the nominal path delay, d l ,  dz, ..., dp are 
coefficients for process variation variables. 

Let P = { P I ,  Pz, ..., P.} be a set of testable paths tbmugh 
a fault site in the circuit, and let the delay of each path P, be 
D,(x)=d,o+ d,lxl+ ... +d,& for i= l ,  ..., n. The range of all 

D(x) = 4 + ~ I X I +  dixz + ..' + dGP, 
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process variation variables is defmed as G c !Ep, where 
G={(x1, ..., xp) 1 b5xjShj, j=1, ..., p } ,  and I ,  and hj are the 
lower bound and upper bound of xj respectively. For each 
path P, in P, if there exists X‘EG such that: 

then ffom the defmition, Pq is a longest path. Formally, we 
have: 
Theorem 1. For each path Pq in P, define an nxp matrix Eq, 
where each entry e,=dq-dV, f o r p l ,  .. ., p ,  and an n x l  vector 
C with each entry cj=dj,,-dfl Then path P, is a longest path 
if and only if there exists a solution in G satisfying the 
following inequalities: 

D&? >Di(x’h Dz(x?, ..., O h ‘ ) ,  (3) 

E+ 2 C. (4) 
Therefore, verifying whether a path is a longest path or 

not is equivalent to checking whether the set of inequalities 
(4) can be satisfied or not. This is hown as the feasibility 
problem of linear programming (LP). When the dimension is 
fixed, which in our case means p is fixed, LP can be solved 
in time O(n) [17]. However, the constant factor within the 
time complexity is exponential withp, resulting in high costs 
for large p. To further reduce the running time, we now 
present two heuristics that will be executed before using LP. 
Heuristic 1 prunes redundant paths. Heuristic 2 identifies 
longest paths. For those undetermined paths that are neither 
pruned nor identified, LP will be used. Usually after 
performing Heuristic 1 and Heuristic 2, only a small fraction 
of paths are undetermined. Therefore the time cost of LP is 
greatly reduced. 

Consider an inequality 2, ,~~ 2 c; defined in (4). For any 
process variable xk, we can rewrite the inequality as 

ei@k 2 cz -&&,q. ( 5 )  

nliw {xk I e;@k 2 c, - max(&g,+j))3 (6 )  

nl, {xk I ei@k 2 ci - minf&#y,*,)b (7) 

Theorem 2. Path Pq is redundant if there exists a process 
variable such that the loose range of this variable is empty. 
Proof. We prove it by contradiction. Assume path Pq is a 
longest path under such condition. According to Theorem 1, 
there exists x’=[ xi’, ..., xp’] that satisfies E+’> C. Thus, for 
a variable xk‘ in x’, ej@k’ > c,-&g&‘ 2 c,-max(&e&‘). 
Therefore the loose range of xk’ is not empty. Similarly, the 
loose range of every variable in x ‘  is not empty. This 
contradicts the assumption that there exists at least one 
variable whose loose range is empty. U 
Theorem 3. Path P, is a longest path if there exists a process 
variable such that the tight range of this variable is not 
empty. 
Proof. We prove it by contradiction. Assume path Pq is 
redundant under such condition, then for any solution x in G 
E 6  L C cannot be satisfied. Thus, for a variable xk, there 
exists at least one row in, such that e,gk < c , , - & ~ , , ~ j  < 
c,,-min(&,,e,,*,). Thus the tight range of xk is empty. 
Similarly, the tight range of every process variable is empty. 
This contradicts the condition that there exists at least one 
variable whose tight range is not empty. 0 

Pseudo codes of Heuristic 1 in Fig. 3 and Heuristic 2 in 
Fig. 4 are drawn based on Theorem 2 and Theorem 3 
respectively. The time complexity of each heuristic is O(np2). 

Now define the loose range of xk as: 

and the fight range of xk as: 

Therefore, we have: 
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Heuristic 1: Prune redundant paths 
Input: Matrix Eq, vector C, integer q 
Output: Pq is “redundant” or “undetermined” 
1 Fork=l:p 

3 For i=l:n (i#q) 
4 
5 
6 Else x,=b 
7 
8 
9 
IO 
11 Return “nndetermined” 

2 S& Sh=hk 

For j =  1 : p  (itk) 
If eB> 0, then x,=hj 

If eik = 0 and c,-&gj,zj> 0, then return “redundant” 
If eik > 0, then s ~ ~ ~ ~ a x ( s , ,  (cr-&gflj)/ejk) 
If e,k < 0, then sh=min(sh, (c,-&e,,x,)/e;J 
If sI > sh, then return “redundant” 

Fig. 3. Pseudo codes of Heuristic 1. 

Heuristic 2: Identify longest paths 
Input: Matrix Eq, vector C, integer q 
Output: Pq is “longest” or ‘bndetermined” 
1 Fork=l:p 
2 sr=lk; sh=hk 
3 For i=l:n (iq) 
4 Forj=l:p(i#k) 
5 If ej>O, then x,=b 
6 Else x,=hj 
7 
8 
9 
10 
11 Return “nndetermined” 

If eik= 0, then continur 
If eik > 0, then s,==(s, ,  (c,-&gfij)/ejk) 
If eik < 0, then sh=min(sh, (c,-&z,,rj)/ejk) 
If sI 9 sh, then return “longest” 

Fig. 4. Pseudo codes of Heuristic 2. 

IV Longest Path Generation 

Given a set of testable paths, we generate the set of 
longest paths by pruning redundant paths fiom it. Testable 
paths are generated by the algorithm in [8] and are ranked in 
the order of non-increasing nominal delays. The path with 
the largest nominal delay has index 0, and the path with the 
second largest nominal delay has index 1, etc. For each fault 
site, we fmt request a batch of K longest paths, indexed from 
0 to K-I. Then the path-pruning algorithms are applied to 
prune all redundant paths. Finally, the probability that a path 
in the next batch could be longest is estimated. If the 
probability is less than a specified criteria value, for example 
0.1%, the procedure stops. Otherwise, we request the next 
batch of paths from the path generator, indexed from K to 
2K-1. The above procedure is repeated until the stop 
criterion is satisfied. The flowchart of longest path 
generation is shown in Fig. 5. 

To estimate the probability that longest paths could exist 
in the next batch of paths, we consider the distribution of the 
already generated longest paths versus path indexes for all 
fault sites. LetAz) be the percentage of fault sites where the 
path with index z is a longest path. Because of the 
non-increasing order of the nominal path delay and path 
delay correlations, paths with greater indexes are less likely 
to be longest paths. Thus, Az) decreases with the increasing 



of index z, and can be modeled by a rational function: 

where parameters a and b can be computed by performing 
curve tilting on the distribution of already generated longest 
paths. Althoughflz) changes when a new batch is considered, 
experiments show that flz) varies little when a proper K is 
used. To minimize the cost of path pruning, K cannot be too 
large. On the other hand, K cannot be too small; otherwise, 
the rational function is inaccurate. In our experiments we use 
K=50 and the number of longest paths that escape our stop 
criteria is very small. 

For each fault site gct 
K paths h m  path gearrator 

% 

path index 

Fig. 5. Flowchart of longest path generation. 

Case studies show that the rational function model 
matches well with the distribution of longest paths in real 
circuits. Fig. 6 gives the actual longest path distribution 
versus path indexes and flz) in an ISCAS85 circuit, where 
the x-axis indicates the path index and the y-axis indicates 
values offlz). In this case, a = 0.158 and b = 0.670. fl0) is 
100% because the path with index 0 has the maximum delay 
under the nominal process variation. 

% 60% 2 
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20% 
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path index 

Fig. 6. flz) and actual distribution of longest paths versus 
path indexes. 

Because a longest path through a fault site is very likely to 
be a longest path through another fault site in the circuit, a 
path collapsing procedure is performed to discard the shared 
paths among all fault sites in the circuit, after the longest 
path set of each fault site is generated. The procedure can be 
implemented in linear time in terms of the number of paths. 
The collapsed path set is the longest path set that covers all 
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delay fault sites in the circuit and must be tested. 

V. Experiment Results 

We apply our method ISCAS85 circuits using a 2.4GHz 
Pentium 4 with 512MB memory. Cadence Silicon 
Ensemblem is used for circuit layout generation and 
parasitic extraction under TSMC 18Onm 1.8V 5-metal layer 
technology. Systematic process variation variables 
considered in our paper are variations of the transistor gate 
length, the metal layer width, the metal layer thichess and 
the inter-layerdielectrics (ED) thichess. There are totally 
16 variables for the 5-metal layer technology. We apply the 
following manufacturing ranges of these variables: gate 
length *5%, metal width e%, metal thickness eo%, and 
ILD thickness f40%. Under such variation ranges, the 
worst-case variation of a path delay is *lo% in our 
experimental circuits. 

We first compare the performance of our new method with 
the min-max method, which is the best previous method for 
the problem [9]. Considering path structural correlation, the 
min-max method first identities shared gates between 
different paths and eliminates the delay of shared gates from 
path delays. Then min-max comparison is performed on 
remaining delays. In our new method, path structural 
correlation is implicitly considered during the formation of 
delay inequalities. In addition, process correlations are 
handled by using the same set of process variables in delay 
functions. Therefore, the new method is able to identify and 
prune more redundant paths than the min-max method. 

In the experiment, we consider a delay fault at the output 
of each cell in the circuit. A path generator [8] is used to 
provide critical and testable paths in the batch of 50. The 
number of longest paths generated by the two methods is 
shown in Table I. 

TABLE I 
Performance comparison between the min-mar method and the new 

method 

I I I Min-maxmethod I Newmethod I 

In the table, column “# of longest paths” is the sum of the 
number of longest paths for all fault sites in each circuit, 
column “# of paths for test” is the number of longest paths 
after collapsing. We also show the running time of both 
methods in column “Time (s)”, where the running time of the 
path generator for each method is not included. We do not 
list the result of the min-max method for circuit c6288 
because its time cost is too high. As shown in the table, the 
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number of longest paths selected by the new method is 
1%-15% of the results by the min-max method. The ratio is 
the same for the number of paths a h  collapsing. In addition, 
the new method is 20-3000 times faster than the min-max 
method. 

To compare the efficiency between the two methods, in 
Fig. 7 and Fig. 8, we show path distribution in circuit c5315 
using the min-max method and the new method respectively. 
The x-axis indicates path indexes provided by the path 
generator, and the y-axis indicates the percentage of fault 
sites where the path with its x-axis index is a longest path. 
Clearly, the percentage for the path with index 0 is 100%. As 
shown in Fig. 7, using the min-max method, the distribution 
tends to 0 after more than 300 paths are provided for each 
fault site, while the distribution tends to 0 after only 10 paths 
in Fig. 8. The significant difference indicates that 
considering both process correlation and path structural 
correlation can detect much more redundant paths than the 
method considering path structural correlation only. 

80% 
0 

2 60% e 8 40% 

20% 
a 

no/'" 
0 100 200 300 400 500 

Path index 
Fig. 7. Longest path distribution versus path indexes in 
c5315 using the min-max method. 

0 2 4 6 8 1 0 1 2 1 4  
Path index 

Fig. 8. Longest path distribution versus path indexes in 
c53 15 using the new method. 

To compare delay test cost between the two methods, we 
compare the average longest path set size after path 
collapsing, and show results in Table 11. For each ISCAS85 
circuit, the average size for all fault sites are presented. 
Obviously, the average size using the min-max method is 
much greater than the new method, which means using the 
min-max method will result in much more cost in delay test. 
For the new method, the average size is around 1.0. That 
means on average only one path is needed to detect the 
smallest fault for each fault site. Such cost can be 
comparable to the cost of traditional delay test, where 
process variation is not considered. 

As an example, the distribution of the longest path set size 
before path collapsing for all fault sites in circuit c5315 is 
shown in Fig. 9. The distribution indicates that for all paths 
passing through a fault site, most of them are redundant and 
only a few paths are longest and necessary to be tested. 

~ 
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TABLE ll 
Average size of longest path sets for delay test obtained by the 

min-max method and the new method 

6-10 .IO 

~ 42% 

Fig. 9. Longest path set size distribution in c5315. 

Finally we compare the performance of our path pruning 
heuristics and the linear programming (LP) approach in 
Table 111. It is shown that Heuristic 1 and Heuristic 2 a n  
reduce the path set by 95%, and the LP algorithm can reduce 
the path set by 5% further h m  the result of Heuristic 1 and 
Heuristic 2. After performing Heuristic 1 and Heuristic 2, 
some paths are redundant and pruned, some are longest and 
kept, and some are undetermined. In Table 111 we list 
numbers of these paths and their percentages in the paths 
provided by the path generator. Undetermined paths must be 
resolved by LP. Since only a small tiaction (less than 2%) of 
paths are undetermined, the execution time of the expensive 
LP is greatly reduced. Nevertheless, the running time of LP 
can be considerable if more than 1% of paths are 
undetermined after performing Heuristic 1 and Heuristic 2. 

VI. Conclusions 

In this paper we present a novel and efficient method to 
find the set of longest paths for delay fault test under process 
variation. For the fmt time, we consider both path shuctnral 
correlation and process correlation, and process variation in 
both devices and interconnect. Previous researchers 
considered the process variation only in devices [7] or 
ignored the process correlation [9]. Two heuristics are 
proposed to prune redundant paths. Experimental results 
show the heuristics are very efficient and effective. Our 
method can significantly reduce the number of paths and test 
pattems for delay fault test, compared with previous best 
method. Experiments on ISCAS85 circuits show that the 
new method reduces the number of paths for test to 1%-15% 
of the results using the min-max method [9], without 
decreasing the fault coverage in delay test. In addition, the 
new method rnns 20-3000 times faster than the min-max 
method, mainly because the min-max method examines far 
more paths. 
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process variation,” VTS 2000, pp. 49-54. 
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[I71 N. Megiddo, “Linear programming in linear time when the 
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Heuristic 1 and Heuristic 2 

We currently only consider systematic process variation 
and assume there is no intra-die process variation in the 
paper. However, our method can be extended to consider 
intradie variations if the delay effect of intra-die process 
variation is modeled as a linear function, for example, the 
principal component analysis based method proposed by 
Chang et al. [IS], and the multi-level partition algorithm 
proposed by Aganval et al. [19]. It will be interesting to see 
the result of path reduction when intra-die variations are 
considered. 

Linear programming 
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