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Abstract. Approaches to evolving the architectures of artificial neural networks 
have involved incrementally adding topological features (complexification), 
removing features (simplification), or both.  We will present a comparative 
study of these dynamics, focusing on the domains of XOR and Tic-Tac-Toe, 
using NEAT (NeuroEvolution of Augmenting Topologies) as the starting point.  
Experimental comparisons are done using complexification, simplification, and 
a blend of both.  Analysis of the effects of each approach on the variation, 
complexity, and fitness of the evolving populations demonstrates that 
algorithms employing both complexification and simplification dynamics 
search more efficiently and produce more compact solutions. 

1   Introduction 

The past decade has seen an increase in the number of algorithms for producing 
topological and weight evolved artificial neural networks (TWEANNs).  This subset 
of evolutionary artificial neural networks seeks to find optimal architectures along 
with optimal weight configurations using an evolutionary algorithm. 

As summarized in Yao’s overview of TWEANNs, algorithms for finding optimal 
architectures fall into two broad categories, constructive and destructive [1].  For the 
purposes of this paper, we refer to these dynamics as complexification and 
simplification, defined in the following ways: 

A complexification algorithm is one that begins with a minimal architecture and 
includes mutation operators that incrementally add topological features, such as 
hidden nodes and connections. 

A simplification algorithm generally begins with an overabundance of topological 
features and incrementally removes features. 

These dynamics are not unique to artificial evolution. Biological populations 
experience both dynamics, depending on their genetic composition and consequent 
evolutionary pressures. Examples of complexification are ubiquitous throughout 
nature, from wings to eyes to intricate behavioral modifications such as mating rituals.   

But simplification as an evolutionary dynamic is widespread as well.  Parasites that 
become more and more dependent upon their hosts through coevolution often lose 
features such as eyes and limbs, or experience dramatic simplification in their 
circulatory or digestive systems. Cave-dwelling organisms often exhibit the 
evolutionary loss of pigmentation or eyes [2].  In the relative absence of predators due 
to geographic isolation, many species of birds revert to flightless forms [3].  As 
Darwin himself noted in Origin of Species, there is a cost associated with the 
production and upkeep of such morphological features, and individuals expending 
fewer resources on the production and upkeep of unnecessary features are often more 
fit than their rivals. 

In the context of evolutionary algorithms there are inherent problems with each of 
these approaches taken alone.  As Angeline is quoted in Yao’s overview:  “Such 
structural hill climbing methods are susceptible to becoming trapped at structural local 



optima.” In addition, they “only investigate restricted topological subsets rather than 
the complete class of network architectures”. 

There are ways to mitigate these problems. One complexifying TWEANN 
approach in particular, NEAT (NeuroEvolution of Augmenting Topologies), retains 
variation (and hence simpler structures) in the population through the use of speciation 
[5].  This approach allows for simpler individuals in the population to act as starting 
points for reinvestigation of the solution space through complexification. 

However, though niching techniques such as speciation avoid the susceptibility of 
being trapped at local optima, they do not address Angeline’s second objection, that 
the full range of architectures is not being investigated. 

A problem arises, in spite of these dynamics, in the choice of starting topology.  
NEAT defines a minimal architecture as “a uniform population of networks with zero 
hidden nodes (i.e., all inputs connect directly to outputs).”  This concept of starting 
minimally, though, makes assumptions about ideal topologies for solutions to given 
domains.  In purely complexifying algorithms there is no way to remove unnecessary 
features. If those features exist in the starting topology they represent an impediment 
to finding the optimal architecture. 

With simplifying algorithms, even if great care is taken to insure variation and 
efficiency in search, to find an optimal architecture for a given problem the initial 
topologies must be a superset of that optimal architecture.  In the vast majority of 
cases, the optimal architecture for a given problem’s solution is not known (hence the 
use of TWEANNs in the first place). Also, as Stanley, et al noted in [11], a purely 
simplifying algorithm must begin the search in a higher dimensionality than the 
solution, resulting in an inherently inefficient search. 

To confront these concerns, some algorithms (GNARL [7], EPNet [8]) have 
employed both simplification and complexification, enabling a broader search 
throughout the range of possible architectures. 
 

2   NEAT 

For the basis of our experiments, we used NEAT (NeuroEvolution of Augmenting 
Topologies).  NEAT has proven to be a powerful and effective system in a wide array 
of experimental domains [5, 6, 11].  The NEAT framework, specifically an open-
source Java-based implementation of NEAT written by the authors called ANJI 
[http://anji.sourceforge.net/], was used for all experiments. 
   A detailed explanation of NEAT can be found in [5], but a summary of the primary 
features, and important particulars where our implementation differs, are included in 
this section.      

NEAT is a system for evolving both the connection weights and topology of ANNs 
simultaneously.  It does so by means of crossover and three types of mutation: 

 
1) Modify connection weight mutation 
2) Add connection mutation 
3) Add neuron mutation 
 
The first type of mutation uniformly perturbs the weight of an existing connection.  

The second type adds connections between unconnected neurons (or self-connections 
to neurons in the case of recurrent networks).  The third replaces an existing 
connection with a neuron and a single incoming and outgoing connection. 

To implement simplification, a fourth mutation was added to the NEAT 
framework:  

 
4) Delete connection mutation 
 
The delete connection mutation rate determines the percentage of existing 

connections to be removed.  Connection genes are sorted, and then deleted, in 



ascending order.  Neurons and associated substructures stranded due to this mutation 
are removed from the topology.  This methodology was chosen under the assumption 
that connections with weights closer to zero are less influential, and thus better 
candidates for deletion.   

Although GNARL and EPNet employ both complexifying and simplifying 
mutations, they avoid the use of crossover because of the problem of competing 
conventions. NEAT is able to mitigate the competing conventions problem through 
the use of historical markings.  Historical markings are unique identifiers for each 
topological structure, assigned upon creation or mutation, easily and quickly allowing 
the comparison of two individuals’ genetic history, facilitating an efficient method for 
crossover.   

NEAT also uses speciation, a niching mechanism which reproductively isolates 
sections of the population based on a measure of their topological differences.  
Because species share fitness, speciation acts to protect innovation, but also serves an 
important role in maintaining variation in the evolving population.  

When a new neuron is added through mutation, the connection it replaces is not 
removed, but disabled.  The disabled connection has a given probability of being re-
enabled in later generations. However, ANJI simply removes the connection 
permanently. NEAT proposes normalizing each term of the speciation compatibility 
calculation by dividing each term by the number of genes in the larger of the genomes 
being compared, although in practice this normalization is not used in NEAT research 
to date.  ANJI does employ this normalization.  NEAT also clamps the number of 
species allowed to coexist in a given population (e.g. 8-10), while in ANJI the number 
of species is not clamped. A simple form of elitism was used in all experiments.  The 
fittest individual from each species was copied unchanged into the next generation.  In 
NEAT, the constraint on elites is that its species must contain at least 5 individuals in 
the next generation to be copied unchanged. NEAT can be used to evolve recurrent 
networks, but all experiments for this paper used only feed-forward networks. 

3   Experimental Setup 

3.1   XOR 

XOR is a simple verification domain able to demonstrate the basic functionality of a 
neuroevolutionary approach.  The minimal number of hidden nodes required to solve 
XOR is one.  Since NEAT begins with a bias node in the input layer, fully-connected 
to the output node, the initial topology, as seen in Figure 1a, has 7 genes, two input 
nodes, a bias node, an output node, and three forward connections. 

                   
           (a)                                                  (b)                                     (c)                                

 
Fig. 1. (a) Initial topology for standard NEAT. (b) Minimal solution for XOR 

(Note that the bias node is not necessary for a solution.) (c) Initial topology for 
simplifying XOR 

 



 
Starting with this topology, the minimal number of genes required to solve XOR is 

10 (the bias is not required to solve XOR).  The optimal topology is shown in Figure 
1b. 

Three sets of 100 runs each were performed.  The first used only complexifying 
mutations, the second only simplifying mutations, and the third set used both.  
Specific parameter settings are listed in Section 3.3. 

The initial topologies for both the complexifying and blended runs followed the 
original NEAT methodology.  The input and output layers were fully connected with 
forward connections, and there were no hidden nodes.  Initial connections weights 
were randomly, uniformly distributed between –1.0 and 1.0.  The initial topologies for 
simplifying runs contained an additional 5 hidden nodes, with all layers fully 
connected via forward connections (Figure 1c).  

Since the activation function was sigmoid, all outputs fell between 0.0 and 1.0.  
Each input pattern had an associated target range, 0.0-0.2 for false and 0.8-1.0 for 
true.  An output in the target range had an error of 0.0.  Otherwise, its error was the 
distance to the inner edge of the range (0.2 for false and 0.8 for true).  The total error 
of the network was the sum of errors for the 4 XOR input-target pairs.  To calculate 
fitness, this error was subtracted from the maximum possible total error, and the result 
was then squared.  The success of a network could have been determined by a 
different analysis of the outputs (i.e., each output is correct if it is on the same side of 
the midpoint as the target), but to be consistent with more complex domains it was 
decided to have the error function and success criteria be the same. A network was 
considered to have solved XOR when it had reached 90% of maximum fitness.     

3.2   Tic-TacToe 

The experimental domain of Tic-Tac-Toe was chosen for the second set of 
experiments due to the relative ease of identifying a range of behavioral objectives.  
Tic-Tac-Toe, also known as “Naughts and Crosses,” is a simple, well-known two-
player game in which players take turns placing tokens on a 3-by-3 grid.  The first 
player to place three tokens in a row wins. 

For even such a simple game, there exist identifiable strategies, such as forking, or 
playing in such a way to set up two possible paths to a win: 
 
 

 
Fig. 2. The sequence of moves on the left results in a fork, or two possible winning 

states, for white, ensuring a win 
 

EANNs have been applied to the domain of Tic-Tac-Toe, with modest results [8].  
A generalized, robust player should be capable of avoiding loss to an optimal player, 
while exploiting the weakness of a suboptimal player.  Coevolutionary approaches 
have demonstrated the ability to evolve fairly robust strategies [10, 11].  However, for 
the purposes of this study, we have chosen to explicitly represent strategic objectives 
in the form of hand-coded strategies and evolve the TWEANNs directly against them.  
In more complex domains this approach is likely not feasible, but our goal here is to 
demonstrate the efficacy of simplification and complexification dynamics, and 
evolving and evaluating against explicitly-represented strategies serves that purpose 
well. 

Table 1 describes the behavior of the hand-coded strategies used for evolution and 
evaluation. 



 
 
 

Table 1. Description of the behavior of hand-coded Tic-Tac-Toe strategies 

 
Name Behavior 
BEST 1) If the board is empty, move randomly 

2) If winning move is available, make it 
3) If opponent has winning move, block it 
4) Try to fork opponent 
5) Try to block forking by opponent 
6) Play in center if open 
7) Play randomly in open corner 
8) Play randomly 

FORKABLE Same as BEST, excluding rule 5 
CENTER Plays in center if open, otherwise plays randomly 
RANDOM Plays randomly 
BAD Plays randomly in first open side space.  If no 

sides are open, plays randomly in first open 
corner.  If no corners are open, plays in center. 

 
This approach is similar to that taken by Angeline, et al [10], who coevolved 

modular LISP programs and tested them against three hand-coded strategies, 
analogous to our BEST, FORKABLE, and RANDOM.  To these we have added 
CENTER (one of the first lessons a human child learns is the strategic importance of 
the center) and BAD (this purposefully poor player enables its opponents very quickly 
to learn to complete a sequence of winning moves).    

For comparison purposes, Table 2 shows head-to-head results for the hand-coded 
players, with each player taking turns going first. 

 
Table 2. Results for head-to-head match-ups between hand-coded strategies 

 

  Vs. 
Best 

Vs. 
Forkable 

Vs. 
Center 

Vs. 
Random 

Vs. 
Bad Avg 

Best W 0.0% 25.4% 79.9% 88.7% 100% 58.8% 
 L 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
 T 100% 74.6% 20.1% 11.3% 0.0% 41.2% 
        

Forkable W 0.0% 26.3% 81.5% 90.0% 100% 59.6% 
 L 25.4% 26.3% 0.0% 0.5% 0.0% 10.4% 
 T 74.6% 47.4% 18.5% 9.5% 0.0% 30.0% 
        

Center W 0.0% 0.0% 44.0% 53.8% 86.1% 36.8% 
 L 79.9% 81.5% 44.0% 33.4% 9.1% 49.6% 
 T 20.1% 18.5% 12.0% 12.8% 4.8% 13.6% 
        

Random W 0.0% 0.5% 33.4% 44.0% 74.0% 30.4% 
 L 88.7% 90.0% 53.8% 44.0% 18.7% 59.0% 
 T 11.3% 9.5% 12.8% 12.0% 7.3% 10.6% 
        

Bad W 0.0% 0.0% 9.1% 18.7% 39.0% 13.4% 
 L 100% 100% 86.1% 74.0% 39.0% 79.8% 
 T 0.0% 0.0% 4.8% 7.3% 22.0% 6.8% 

 
Representation for the TWEANNs was as follows: Nine input nodes each received 

input corresponding to the nine spaces on the board.  An empty space was input as 0, 
friendly tokens as 1, and enemy tokens as –1.  A tenth input node was clamped with an 
input of 1, for use as a bias.  Output from the nine output nodes corresponded to 
potential moves.  For each move the network was fully activated with the board state 



as input.  The output node with the highest value corresponding to a legal move was 
taken as the move of the network player.  Illegal moves suggested by the network were 
ignored.  To attempt to evolve robust players, opponents always played an even 
number of games, with each player taking turns moving first.  Players were awarded 5 
points for a win, 2 for a tie, and 0 for a loss. 

3.3   Experimental Parameters 

Table 3 lists parameters for each of the three XOR experiments.  The first section 
lists parameters common to all runs.  The only parameters differing between runs were 
mutation rates and initial topologies.  Complexifying and Blended runs began with the 
standard NEAT starting topology, an input layer and output layer fully connected with 
feed-forward connections and no hidden nodes (for a total of 7 genes).  The 
Simplifying run began with an input layer, a hidden layer with five nodes, and an 
output layer, all fully connected to one another with feed-forward connections (for a 
total of 32 genes).   

Table 3. Parameter settings for XOR experiments 

 
Type of Run Parameters Value 
All Population size 

Number of generations 
Weight mutation rate 
Survival rate 
Excess gene compatibility coefficient 
Disjoint gene compatibility coefficient 
Common weight compatibility coefficient 
Speciation threshold 

150 
150 
0.75 
0.2 
1.0 
1.0 
0.4 
0.2 

Complexifying Add connection mutation rate 
Add neuron mutation rate 
Delete connection mutation rate 

0.03 
0.01 
0.0 

Simplifying Add connection mutation rate 
Add neuron mutation rate 
Delete connection mutation rate 

0.0 
0.0 
0.04 

Blended Add connection mutation rate 
Add neuron mutation rate 
Delete connection mutation rate 

0.03 
0.01 
0.02 

 
 
   The activation function for all nodes in the XOR experiments was a modified 
sigmoid, while the activation function for all nodes in the Tic-Tac-Toe experiments 
was a standard hyperbolic tangent. 
   Table 4 lists parameters for each of the three Tic-Tac-Toe experiments.  As above, 
the first section lists parameters common to all runs.  The only parameters differing 
between runs were mutation rates and initial topologies.  Complexifying and Blended 
runs began with the standard NEAT starting topology, an input layer (9 input nodes 
plus bias node) and output layer (9 nodes) fully connected with feed-forward 
connections and no hidden nodes (for a total of 109 genes).  The Simplifying run 
began with an input layer, a hidden layer with 15 nodes, and an output layer, all fully 
connected to one another with feed-forward connections (for a total of 409 genes). 
This topology is a superset of the best performing ANNs from the Complexifying and 
Blended experiments, which were carried out first.  It also provides more raw 
structure to search than the experiments in [9], which used a single hidden layer in 
which the number of nodes mutated between 1 and 10.  
   Parameters were chosen after a modest amount of ad hoc exploration.  
Complexifying mutation rates were relatively small for the larger genotypes in Tic-
Tac-Toe due to their exponential effect.  Simplifying mutation rates were found to 



perform best at rates slightly higher than complexifying ones, while mutation 
parameters for blended runs functioned best when complexifying and simplifying rates 
were reasonably balanced, producing a more even search through both more and less 
complex architectures.   

Table 4. Parameter settings for TTT experiments 

 
Type of Run Parameters Value 
All Population size 

Number of generations 
Weight mutation rate 
Survival rate 
Excess gene compatibility coefficient 
Disjoint gene compatibility coefficient 
Common weight compatibility coefficient 
Speciation threshold 

200 
200 
0.75 
0.2 
1.0 
1.0 
0.4 
0.9 

Complexifying Add connection mutation rate 
Add neuron mutation rate 
Delete connection mutation rate 

0.01 
0.005 
0.0 

Simplifying Add connection mutation rate 
Add neuron mutation rate 
Delete connection mutation rate 

0.0 
0.0 
0.03 

Blended Add connection mutation rate 
Add neuron mutation rate 
Delete connection mutation rate 

0.01 
0.005 
0.02 

 

4   Results 

4.1   XOR 

Table 5 indicates results for the three sets of XOR experiments. 

Table 5. Averaged results for XOR runs (100 runs each) 

 
Type Avg. # of 

Genes of Best 
Solution 

Avg. # of 
connections 

Avg. # of 
hidden 
nodes 

Avg. # of 
generation to 
find solution 

COMPLEXIFYING 18.84 11.72 3.12 44.08 
SIMPLIFYING 10.47 5.36 1.09 14.45 

BLENDED 11.55 6.10 1.45 49.32 
 
XOR experiments in [5] resulted in an average of 7.48 connections and 2.35 hidden 
nodes, while finding a solution within an average of 32 generations.  Differences 
between the results in [5] and the ones here may be due in part to differences in the 
implementation of the NEAT algorithm, or more likely differences in XOR 
methodology, specifically in calculating error and in determining whether or not a 
given ANN has found a solution. 
   In this domain, simplifying dynamics alone produce the best results, finding more 
compact solutions more quickly than either of the other two methods.  This suggests 
that when the optimal architecture is known and very compact, simplifying dynamics 
alone may be most desirable. 
   However, XOR is an extremely simple, somewhat artificial domain, in that it has no 
local optima.  More general conclusions may be drawn from a more complex domain.   



4.2   Tic-Tac-Toe 

To evaluate the performance of evolved networks for the Tic-Tac-Toe domain, the 
best performers from the final generation of each run played 10,000 games against 
each type of hand-coded player, alternating playing first.  Percentages of 
wins/losses/ties were then averaged for each of the 10 champions from each type of 
run.  Results are listed in Table 6. 

Table 6. Averaged results for Tic-Tac-Toe  runs (10 runs each) 

 
  Vs. Best Vs. Forkable Vs. Center Vs. Random Vs. Bad Avg 

Complexifying W 0.00% 2.27% 79.23% 75.88% 99.53% 51.38% 
 L 24.45% 24.60% 10.10% 16.44% 0.47% 15.21% 
 T 75.55% 73.13% 10.67% 7.68% 0.00% 33.41% 
        

Simplifying W 0.00% 0.56% 76.77% 72.93% 98.75% 49.80% 
 L 25.89% 25.14% 11.59% 16.77% 0.86% 16.05% 
 T 74.11% 74.64% 11.64% 10.30% 0.40% 34.22% 
        

Blended W 0.00% 4.50% 75.59% 74.61% 100% 50.94% 
 L 21.89% 22.02% 10.57% 15.36% 0.00% 13.97% 
 T 77.99% 73.48% 13.84% 10.03% 0.00% 35.07% 

   
   Champions from the simplifying runs on average play weaker games than champions 
from either the complexifying or blended runs.  Their win rate is the lowest and their 
loss rate is the highest.  Between the complexifying and blended runs, the 
complexifying champions have a slightly higher win rate, but their loss rate is higher, 
and their tie rate is lower.  Table 7 shows the complexity of these champions.  

Table 7. Average complexity of champions of TTT runs (10 runs each) 

 
Type Avg. # of  

genes 
Avg. # of 

connections 
Avg. # of hidden 

nodes 
COMPLEXIFYING 216.6 179.3 18.3 

SIMPLIFYING 109.9 80.2 10.7 
BLENDED 96.9 70.3 7.6 

 
   The average complexity of champions from the complexifying runs is over twice 
that of the blended runs.  Also, it is important to note that, as in the XOR domain, 
champions from the blended Tic-Tac-Toe runs on average exhibit topologies less 
complex than the initial topologies (109 genes). 
   Figures 3, 4, and 5 show typical complexity dynamics for Tic-Tac-Toe 
complexifying, simplifying, and blended runs, respectively.  The x-axis indicates the 
generation, the y-axis the number of genes.  Each vertical line connects the maximum 
and minimum complexity for that generation.  Each black circle indicates the average 
complexity of the population for that generation, and the triangles represent the 
complexity of the fittest individual for each generation. 
   In the complexifying run, though the complexity of the champion for a given 
generation varies, there is a steady increase in both the maximum and average 
complexity of the evolving population.  The minimum complexity of the population 
also increases.  This rate of increase is not as large as the increase in the maximum 
complexity, but it does demonstrate a gradual loss of simpler individuals as the run 
proceeds. 
   The dynamics of the simplifying run are just the opposite.  Maximum, minimum, 
and average complexity of the population all decrease as the run proceeds.  As with 
the complexifying run, the search is a unidirectional hill-climbing algorithm. 
   However, in the blended run, maximum complexity increases while minimum 
complexity decreases.  The search is bi-directional.  Meanwhile, the average 
complexity remains fairly constant.   



 
 

Fig. 3. Complexity of evolving population from typical Tic-Tac-Toe 
Complexification (Standard NEAT) run 
 

 
 

Fig. 4. Complexity of evolving population from typical Tic-Tac-Toe Simplifying 
run 
 

 
 

Fig. 5. Complexity of evolving population from typical Tic-Tac-Toe Blended run 



   Another important consideration is the time spent searching.  All experiments were 
carried out on a desktop PC with a 1.00 GHz AMD Athlon processor, 504 MB of 
RAM, running the Windows XP operating system.  Table 7 lists average times for the 
10 Tic-Tac-Toe runs of each type. 

Table 7. Averaged computation time for Tic-Tac-Toe  runs (10 runs each) 

 
Type Avg. minutes per run 

(rounded to nearest minute) 
COMPLEXIFYING 216 

SIMPLIFYING 210 
BLENDED 170 

 
 
   Because there is a random element in the play of all hand-coded players, there is 
some variance in the number of moves in each game.  However, because of the large 
number of games played (500 against each ANN), the variance in the number of 
moves due to randomness should be consistent across runs. 
   In complexifying runs, because the average complexity of the population increases, 
the search will only become more computationally intensive as the run proceeds.  
Simplifying runs begin with large networks, so they are very computationally intensive 
at the outset.  Because the blended runs started with fairly minimal topologies and 
searched bi-directionally, they tended to be more efficient in their search. 

5   Discussion and Future Work 

In attempting to evolve optimal or near-optimal neural network topologies to solve 
problems, the two important decisions to be made are (1) what set of topologies 
should comprise the initial population, and (2) what dynamics should act upon those 
topologies as the algorithm searches for a solution. 
   The decision of starting topologies is still a difficult one.  NEAT’s approach of 
trying to start minimally is appealing, though systems that begin with random initial 
topologies, such as GNARL, can still perform reasonably well.   
   But the decision to include both complexifying and simplifying topological 
mutations in the algorithm mitigates the impact of choosing sub-optimal initial 
topologies.  A blended approach allows for a broader, more flexible search of 
potential topologies, so that the starting point for such a search is not quite as crucial. 
   This bi-directional search favors solutions that are the necessary complexity for a 
given task.   
  Thus, a very good approach to evolving a neural network to solve a given problem 
seems to be to start with relatively minimal architectures while including both 
complexifying and simplifying mutations, their rates balanced in such a way to 
produce an even search in both directions through the range of possible architectures.  
This approach should yield both more efficient searches and more efficient solutions 
than either complexifying or simplifying algorithms alone.  However, work remains to 
be done to verify these conclusions across a wide range of domains of varying 
difficulty. 
   In some cases, it may be preferable to favor one dynamic over the other.  Depending 
on the actual mutation rates, a blended approach may still be biased toward a 
particular trend.  These experiments demonstrate that a balanced approach works well, 
and proceeds under the assumption that the optimal architecture may be either more 
complex or simpler than one might assume.  However, if it is clear that the target 
behavior is extremely complex, a higher rate of complexification, along with a lower 
rate of simplification, may be preferred.  This may provide an interesting avenue for 
further research. 
   Comparisons were not performed with fixed topologies, or with neuroevolution in 
which other factors (such as the activation function) are mutated.   



   Investigation into the relative impact of complexifying and simplifying dynamics on 
indirect encoding methods is another important direction for future research in this 
area. 
   

6   Conclusion 

The experiments in this paper have demonstrated that while complexifying and 
simplifying dynamics are both important in the search for optimal neural network 
topologies, these dynamics work better together than either dynamic working alone. 

Algorithms using only complexification tend to produce overly complex solutions, 
and become much more computationally intensive as the search progresses.  They are 
also unable to eliminate unnecessary topological features that either evolve during the 
run or were present in the initial topologies.  Algorithms using only simplification are 
more computationally intensive to begin with, and are susceptible to removing 
topological features early on that could prove beneficial later. 

Algorithms using both dynamics simultaneously tend to be more computationally 
efficient, produce more efficient solutions, and do not suffer from the problem of 
“overstepping” topological features that either dynamic used exclusively poses. 

The results suggest that a blended approach leads to both a more robust and more 
efficient search for optimal topologies.  
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